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Abstract. We introduce a concept of measure-theoretic entropy for flows and study 
its invariance under measure-theoretic equivalences. Invariance properties of the cor- 
responding topological entropy is studied too. We also answer a question posed by 
Bowen-Walters in [3] concerning the equality between the topological entropy of the 
time-one map of an expansive flow and the time-one map of its symbolic suspension. 
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1. Introduct ion 
In the context of dynamical systems it is understood that  a reasonable 

measure-theoretic or topological entropy should be a measure of the 

complexity of the system and they should be invariant under measu- 

rable or topological change of coordinates, respectively. If the dynamical 

system is a homeomorphism on a compact manifold, Kolmogorov and 

Sinai found successfully a good concept for measure-theoretic entropy. 

Nevertheless if the dynamical system is a flow we face some difficulties, 

the entropy of the homeomorphisms generated by the time-one map of 

two measure-theoretically or topologically equivalent flows may not be 

the same. The main problem is that  in general measurable and topo- 

logical change of coordinates (in the case of flows) allow speed changes 

which are hard to be taken in account. Here we introduce a concept 

of measure-theoretic entropy (and topological entropy) for flows which 

behaves reasonable well when we make a speed change or a reparame- 

trization of the flow. It is easy to study its invariance, in particular the 
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0 and c~ entropy are preserved under  measure- theoret ic  equivalence or 

speed changes. 

Ins tead of adapt ing  t ime-one map,  our concept  of measure- theoret ic  

and topological entropy focus on the  whole flow itself. I tera t ing par t i t ion 

as in the discrete case does not  work here and so we consider certain 

open  sets consisting of points  whose reparametr ized segments  of orbits 

are close each other.  The  measure-theoret ic  and topological entropy 

obta ined generalizes the  original ones defined usually by t ime-one map.  

We prove tha t  they  coincide in the  special case of flows wi thout  fixed 

points. 

In [10] it was in t roduced a concept of topological entropy for flows 

which takes in considerat ion all possible reparametr izat ions  of the flow. 

Here we will follow some ideas in [5], [10] to introduce our concept 

of measure-theoret ic  entropy for flows. The  corresponding topological 

entropy is s tudied too. 

In [3] Bowen-Walters posed a question concerning the  equality bet- 

ween the  topological entropy of the  t ime-one m a p  of an expansive flow 

and the topological entropy of the  t ime-one map  of its symbolic suspen- 

sion. In the present  paper  we answer this question positively. Before, it 

was answered positively by Bowen in [2] in the  case of Axiom A flows. 

2. Basic Concepts and Main Results 
We star t  this section int roducing some notat ion.  Let (M, d) denote  a 

compact  metr ic  space and r R • M --+ M (or just  r if clear) a continuous 

flow on M.  For t E R, Ct: M --+ M denotes the homeomorph i sm given 

by Ct(x) = r t). A Borel probabil i ty measure (probability for short)  

is called Ct-invariant if for any Borel set B it holds #(r  = #(B).  

It  is Called r if it is Ct-invariant for all t. As usual a r 

invariant probabil i ty is called ergodic if any Ct-invariant Borel set has 

measure 0 or 1. A r probabil i ty is called ergodic if any Borel 

set Ct-invariant for any t has measure 0 or 1. The  set of all ergodic Ct- 

invariant and the set of all ergodic r probabilit ies are denoted  

respectively by 3r and $r 
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Given a closed interval I which contains zero, a continuous map 

a: I -+ R is called a reparametrization if it is an increasing homeomor- 

phism onto its image and a(0) = 0. The set of all such reparametriza- 

tions is denoted by Rep(I) .  Given a flow r on M, x C M, t E R and 

c > 0 we set 

B(x ,  t, e, r := {y E M; there exists a c Rep[O, t] 

with, d(O~(s)x , CsY) < e, 0 < s < t} 

and call it a (t, e, r  Clearly, the (t, e, r  are open sets. 

Let us introduce now a concept of measure-theoretic entropy for 

flows. 

Definition 1 Given a f low r on M ,  p E gr and 5 E (0, 1). Let N(5, t, e, r 

denotes the smallest number of (t, e, r needed to cover a set whose 

p-probability is bigger than 1 - 5. Then the measure-theoretic entropy of 

r denoted by e, ( r  is defined by 

1 
ep(r := lira limsup logN(5, t, e, 0). 

We remark that the limit above is not dependent on the choice of 5, see: 

[1], [5]. The topological entropy of r  denoted by e(r is defined by 

e(r := sup{e.(r p c Er 

D e f i n i t i o n 2 L e t  r  • M --+ M and ~b:R • W ~ W be two flows 

on compact metric spaces with ergodic invariant probabilities p and u, 

respectively. We say that ( M ,  r p ) is measure-theoretically equiva- 

lent to (W, % u)  if  there exist a measure preserving homeomorphism 

P: M --+ W and a continuous map a: R • M -+ R satisfying the follo- 

wing 

1. ax: R -+ R is strictly increasing for  all x C M; 

2. ax(S + t) = ax(S) + aCs(z)(t ), for  all x E M and s, t C R; 

3. P o Ct(x) = ~ x ( t )  o P(x) ,  for  all x E M and t E R. 

The continuous map a is called a cocycle of r I f  r ~ are jus t  

topological f lows we say that ~ is a generalized time change of r i f  there 

exist a homeornorphism P: M --+ W and a continuous map a as above. 
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Measure-theoretic equivalence is an equivalence relation, that  is: it 

is symmetric, reflexive and transitive (see Lemma 2 in the next section). 

Let us recall that  two flows r ~p are called topologically equivalent if there 

exists a homeomorphism H: M --+ W which maps orbits of r onto orbits 

of r preserving their orientation. We remark that  two flows which do not 

have fixed points are topologically equivalent iff one is a generalized time 

change of the other. Nevertheless, there exist topologically equivalent 

flows which are not a generalized time change one of the other. This 

fact follows easily from Lemma 1 in the next section. The following 

theorem states that  the measure-theoretic entropy defined above is in 

some extent invariant under measure-theoretic equivalence. 

Theorem 1. Let (M, r #) and (W, r  u) be measure-theoretically equi- 

valent flows where # , ,  are ergodic. Then eu(r = 0 i f f  e , ( r  = 0 and 

e , ( r  = i #  = 

Given a flow r we denote, respectively, by h,(r  and h(r the 

usual measure-theoretic entropy and topological entropy of the homeo- 

morphism r The next theorem relates the entropy we introduce above 

with these ones. 

Theorem 2. I f  r is a continuous f low as above which has an ergodic 

invariant probability #, then eu(r _< hu(r I f  0 has no fixed points 

the equality holds. 

The corresponding results hold for topological entropy. 

Theorem 3. Let r r be two flows on compact metric spaces. I f  these 

flows are a generalized time change one of  the other, then the following 

hold: 

1. e(r = 0 i f f  e(r = 0 and e(r = ~ iff  e(~b) = c~. 

2. e(r ___ h(r and the equality holds when r has no fixed point. 

In [8] it is proved that  Part  1 of Theorem 3 is still true if we replace 

e(r by h(r  (and e(r by h(r Nevertheless an example of two to- 

pologically equivalent flows r r such that  h(r  = 0 and h(r  > 0 

is given. Note that ,  in the special case of flows without fixed points, 

the new measure-theoretic entropy and the new topological entropy we 
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introduced coincide with the measure-theoretic entropy and the topolo- 

gical entropy (respectively) given by the time-one map. 

Given an expansive flow r one can define a symbolic suspension flow 

associated to it which we denote here by ~, see Section 6 and [3] for 

the precise definition. The following theorem answer a question posed 
in [3]. 

Theorem 4. Let r be an expansive f low without fixed points and ~ be a 

symbolic suspension f low for  r then h(01) = h(~l).  

3. Preliminary Facts 
In this section we start establishing some intermediate steps to prove 

the theorems stated in the previous section. 

Lemma 1. I f  cr is a cocyele of a f low r there exist constants M1, M2 

such that M l t  <_ crx(t ) < M2t,  for  all Itl > 1. 

Proof. See [10]. 

Lemma 2. Measure-theoretic equivalence of f lows is a reflexive, symme- 

tric and transitive relation. 

Proof. If (M, r #) is measure-theoretically equivalent to (W, r u), 

then (W, r u) is measure-theoretically equivalent to (M, r #). Indeed, 

we define A:R x W --+ R by Ay = a~l ,  where y = P(x) .  Then /~ 

is continuous and satisfies Property 1.-3. This proves that measure- 

theoretic equivalence of flows is a symmetric relation. That it is reflexive 

and transitive is immediate, see [12]. [] 

Lemma 3. Let r be a f low without fixed points on a compact metric space 

M .  Then for  any given ~1 > 0 there exists e > 0 such that for  any x, y E 

M and any reparametrization (~ C Rep(I) ,  /f d(r r < e for  

all s �9 I it holds [~(s) - s] < el whenever Isl <_ 1 and ]~(s) - s I < Isle 1 
whenever ]s I > 1. 

Proof. See [10]. 

Lemma 4. I f  (M, r and (W, r are a generalized time change one of 
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the other. Then for a given # E $r define the probability r~ by 

1 f(1,x) 
IMgdF~ -- fMa(1, x)dp /M JO g ~ r x))dsd#' 

for all continuous map g: W --~ R. The probability F~ is an ergodic r 

invariant probability and the map # --+ F~ is a bijection from Er onto ~r 

Proof .  See [8]. 

4. Flow Entropy and Entropy of Time ~- Maps 

Lemma 5. Let r be a continuous flow which has an ergodic invariant 
l h  probability #. Then e , ( r  < ~ ~(r for any 7- C R \ { 0 } .  In particular 

eu(~b) < h , ( r  

P roof .  Let  us consider  three  cases: 

Case 1. Let  us consider  ~- > 0 and  t = n~-, where  n > 0 is an integer.  

For a given e > 0 take  ~/ > 0 such tha t  d(x ,y)  < ~] implies 

d(r Csy) < e, if 0 < s < ~-. For x E M we set 

O(x, t, 4, r := {y E M;  d(r CsY) < 4, 0 < s < t} 

and  

D(x, n, ~1, r := {y c M; d(r City) < r/, i = 0, 1, ..., n}. 

T h e n  

/9(x, n, 7, r C D(x, nT, 4, r C B(x,  n7, E, r 

We denote  by N(6, n, 7, r the  smallest  n u m b e r  of open balls 

D(x, n, 7, r needed  to cover a set whose #-probabi l i ty  is bigger t h a n  

1 - 6. We also recall  t h a t  N(6,  t, 4, r denotes  the  smallest  n u m b e r  of 

(t, 4, r  needed  to cover a set whose / t -p robab i l i t y  is bigger t h a n  

1 - 5. It  follows t h a t  N(5, n~-, 4, r < N(6, n, ~/, ~b~). 

From [5], [6] it follows t h a t  

1 
lira l i m s u p -  log 1V(6, n, ~/, r = hu( r  

therefore  

et~(r ) = lim l i m s u p -  logN(5,  n~-, e, r _< h#(r  
e-~O n - - , o c  n T  
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Case 2. Let us consider 7- > 0 and t > 0. 

Take nt > 0 an integer such tha t  nt7- < t < (nt + 1)7-. It is clear from 

the definition that  N(~, t, e, r <_ N(6, (nt + 1)7-, e, r Thus we get 

1 
e~(r = lim lim sup log N(5, t, e, r 

1 
lira limsup - -  logN(~, (nt + 1)% ~, r 

- -  e---~O t - - ~  n t T -  

1 
= elite0 limsuPt~o~ (nt + 1)7- log N(~, (nt + 1)7-, e, r 

1 
_< - h , ( r  

7- 

Case 3. Let us consider ~- < 0 and t > 0. 

Then  taking -7- > 0 and arguing like in Case 2 we get 

T h e o r e m  5. Let r be a continuous f low on a compact metric space M .  

I f  r has no fixed points and # is an ergodic r  probability then 

e , ( r  > ]~lh,(r for  any ~- E R \  {0}. 

Proof .  First we consider a part i t ion ~ = {A1,. �9 , Am, A,~+I } of M such 

tha t  

1. The sets A1, A2 , . . .  , A,~ are compact  and pairwise disjoint. 

2. Am+l = M \ (Uim_-i Ai). 

Then  we define the sequence of partitions 

n--J_ 

i = 0  

and recall tha t  by definition 

h,(r  ~) := - l i r n  ~ #(A) log #(A). 
Ae~ n 

The theorem is a consequence of the following claim. 

Claim. For any r > 0 and any part i t ion ~ satisfying Propert ies 1.-2. 

above it follows tha t  

r + eu(r > l h ~ ( r  , ~). 
i'tl 

Bol. Soc. Bras. Mat., VoL 30, A( 3, 1999 



3 2 2  W_ S U N  A N D  E. VARGAS 

In order to prove this claim we choose a positive integer L so tha t  
1 ]~.IL log 6 < r and consider three cases. 

Case 1. Let us consider T > 0 and t = nL% where n > 0 is an integer. 

The element of ~.~ which contains x is denoted by An(x). By 

Shannon-McMillan-Breiman theorem (see [4], [7], [9]) the limit 

1 
- liin - logp(An(x))  

n---+ ~ Tt 

exists for x in a set of full p-probability. The sequence 

1 
x --+ - -  logp(An(x)) 

n 

converges in the L 1 norm to a L 1 function which we denote by x --+ 

h,(~, r Since p is by assumption ergodic and h~(~, r = 
hu(~, r r it follows that ,  for x in a set of full p-probability 

CL , x) = CL ). 
Take a small constant b > 0 and define 

n . Anb(~) := {A E ~L~, p(A) < exp(-n(h,(~,  r -- b))} 

and 

~ b ( ~ )  := [_J d .  

A E A n b ( ~ )  

It follows tha t  p(c4nb(~)) > 26 for some 6 > 0 and all n big enough. 

Set 70 := min{d(x,y);x E A~,y E Aj and 1 < i r j < m}. 

Given ~? E (0, 70) we choose 0 > 0 so tha t  d(r z) < 7/3 for all 

z E M and Is] < 0. We also choose e E (0, 7/3) corresponding to el = 

O/(4LT) in Lemma 3. Then we set N := N(6, t, e, r and consider 

(t, e, r  B(xl ,  t, e, r ..., B(XN, t, e, r whose union covers a set 

of p-probability bigger than  1 - 5. Observe tha t  

N 

n [_J B(xj ,  t, 4, r > 6. 
j = l  

Let us prove now tha t  for each j = 1 , . . .  , N  at most 6 n elements 

from A~b(~) have non-empty intersection with B(xj ,  t, c, r Indeed, if 

x E A N B(xj ,  t, e, r there exists a E Rep[O, t] such tha t  

d(r r < e, 0 < s < t .  
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Setting u := 8-81 and 7(u) := a ( s ) - a ( s l )  we get 7 E Rep[-81 ,  t -s1] 

such t h a t  d(r162 CUCSlX ) = d(r CsX) < e, for - S l  < u < 

t - Sl. So, for u = s2 - sl  with Is2 - Sll _< L r  it follows from Lemma 3 

that  I(~(sl) - Sl) - (c~(s2) - s2)l _< 0/4. 

Then we denote by [z] the biggest integer smaller or equal to z and 

consider the following sequence of integer numbers 

Sa := { [ a ( k L v ~ -  kLr]},  k = 0, 1, ..., n - 1. 

If for another element Jt E ~ there exists y E A A B ( x j ,  t, e, 0), 

then we can take/3  E Rep[0, t] such that  d(r Csy) < e, 0 < s < t. 

If the sequences Sa and SZ are the same we get 

>(s)-  z(s)l _< i(<s)- s)-  I >)l 

< _ + ~ ] 0  0 a ( [ ~ ] L r )  - [ ~ ] L r  _ /~( [~]Lr)  - [ ~ ] L r  I +-0 
- 4  0 0 4 

<0, 

for all s E [0, t]. From the choice of 0 it follows tha t  d(r r < 
V/3 for all s E [0, t]. Therefore 

d(r CsY) _< d(r r + d(r r + d(r r 

< e + ~ + e < r /  

for all 0 < s < t. tn part icular d(r i CLrY) 5 ~, i=O,  1, ..., n - -1 .  
Recall tha t  for an element A in Anb(~) there exist io, i l , . . .  , in-1 E 

{1 , . . .  , m  + 1} such that  

A = Aio N -1 �9 I I~LT (Ain_l)" 

Then for a given sequence S~ there exist at most  2 n choices for A such 

that  A A B ( x j ,  t ,  e, 0) ~ ~ .  

Now observe that  the first term of a sequence Sa is zero and two 

consecutive terms of it differ at  most by 1. So there exist at most  3 n-1 
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such sequences. Then  we conclude tha t  for each j = 1 , . . .  , N at most 

6 ~ elements from Anb(~) has non-empty intersection with B(xj ,  t, E, r 

It follows tha t  at most N6 ~ elements from Anb(~) has non-empty inter- 

section with uN=I B(xj ,  t, e, r 

Recall tha t  

N 

j---=l 

and for each Anb(X) in Anb(~) 

N 

#(A~b(x) • U B(xj ,  t, ~, r < exp(--n(hu(r , ~) - b)). 
1 

It follows tha t  at least 6 exp(n(hu(r , ~) - b)) elements from AnD(~) has 

non-empty intersection with ug=l  B(xj ,  t, e, r Therefore 

6aN(6, t, e, ~) > 5exp(n(h,(r ~) - b)). 

It follows tha t  

as we claimed. 

l hu ( r  ~) < %(r  + r 
T 

case 2. Let us consider ~- > 0 and t > 0. 

Take nt C Z + such that  ntL~- << t < (n~ + 1)L~-. It is clear from the 

definition tha t  N(5, t, e, r > N(5, n~L'c, e, r Thus we get 

1 
eu(r + r  = Eliv~ limsuP0 t - ~  ~ logg(5,  t, e, r  

1 
> lira lim sup log N(5, ntL~, e, r + r 
- -  c-+O t - + ~  ( a t  + 1)L~- 

1 
= clim0 limt_~sup ~ log N(5, ntLT, e, r + r 

1 
> - h , ( r  ~). 

T 

Case 3. Let us consider ~- < 0 and t > 0: 

Then taking -~- > 0 and arguing like in Case 2 we get 

T 

[] 
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Corollary 1. Let r be a flow on a compact metric space which has no 

fixed points. Then for any ergodic r probability # we have that 
1 

h#(~bl) = e~(qS) = lim lim logN(5, t, e, r 
~ 0  t ~ a z  t 

Proof. We can replace lim sup by lira inf in the proof of Theorem 5 and 

get 
1 

lira liminf ~ logN(5, t, e, ~b) > h~(~bl). 
~--~0 t ~ c o  

This together with Lemma 5 imply tha t  h~(r = e~(r [] 

5. Proof s  o f  T h e o r e m s  1-3 

Proof o f  Theorem 1. Let (M,  r # )  and (W, ~0, u)  be measure-theore- 

tically equivalent flows where #, u are ergodic. Let P, a be as in Defini- 

tion 2 

Lemma 1 guarantees the existence of a constant M2 > 0 such tha t  

0 < crx(t) < M2t for all x c M and t > 1, see [10]. 

For a given e > 0 choose r / >  0 such that  d(P- l ( y l ) ,  P - l ( y2 )  ) < ~ for 

all y], Y2 ~ W with d(yl,y2) < r/. Let us fix 5 > 0, N := N(5, t, rl, ~) 
and choose (t, r~, r  B(y] ,  t, % ~), ..., B(yN,  t, r~, ~) whose union 

covers a set of u-probability bigger than 1 - 8. 

For y c B(yj ,  t, r h r there is a E Rep[O, t] such that  

d(~(s)(Yj) ,  Cs(y)) < ~, 0 < s < t. 

Taking A v = cr~-I where y = P(x)  it follows tha t  

d(d)),yj(c~(s)) o p - l ( y j ) ,  r o p - l ( y ) )  = 

= d(P -1 o r p - 1  o Cs(y)) < c, 0 < s < t. 

Setting u := )~y(s), /3(u) := Avj o c~ o A~l(u) and recalling that  )~y(t) = 

a j l ( t )  it follows tha t  Ay(t) > 1 2 t  for all t > 1. Then  

d(r o P - l ( y j ) , O u o p - l ( y ) )  < e ,  0 < u <  t _  
M2  

Therefore 
t 

P - I ( B ( y j ,  t, rl, r C B ( p - I ( y j ) ,  M 2 '  e, 0), j = 1, 2, ..., N. 
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Since P . #  = u we get 

N t N 
# ( U  B(p-I (YJ  )' M 2 '  e, 0)) _> u ( U  B(yi, t, rl, r > 1 - 6  

j = l  i = 1  

and 
t 

N(6, M 2 '  e' r -< N(6, t, V, r  

For B2 := M2 it follows tha t  eu(O) _< B2e, ( r  By symmet ry  there 

exists another  constant B1 such tha t  e , ( r  > B l e , ( r  and theorem 

follows immediately. [] 

P r o o f  o f  T h e o r e m  2. This theorem follows immediately from Lemma 5 

and Theorem 5. [] 

P r o o f  o f  T h e o r e m  3. 

Part  1. By Lemma 1 there exists a constant  M2 > 0 such tha t  ~(x, t) < 

M2t for all x E M and t > 1. For a given e > 0 choose r I > 0 so tha t  

d(P-l(y l ) ,  P- l (y2 )  ) < e for all Yl,Y2 c W with d(yl,Y2) < rl. 
Given tt E s162 set 

fl := sup{vr(x, 1); X E M} 
fM a(Z, 1)d# ' 

clearly fl > 1. If r~  E ge is the probability given by Lemma 4 and B is 

a Borel set we have that  

r.(P(B)) - fM a(x, 1)d~ XP(B) ~ Cs(P(x))ds d~ 

f~ ~(x, 1)d~ 
/M ~(x, 1)d~' 

here Xp(B) denotes the characteristic function of the set P(B). Then 

r,(P(B)) _< fl~(B). 
Let us fix 6 > 0, N := N(6, t, r/, r  and choose (t, r/, r 

B(yl,  t, rl, r ..., B(yN, t, ~, r  

whose union covers a subset of W with F,-probabil i ty bigger than  1 - 6. 

Since 
t 

P-l (B(y i ,  t, rl, ~)) C B(P-i(yi) ,  M2 '  e, r i = 1, ..., g 
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it follows that  
n t n 

p ( U  B(P-I(Yd , -~2, e, ~)) >- p ( P - I ( U  B(yi, t, v, r ) 
i = 1  i = 1  

> (I -- ~)//~ =: 1 -- ~'. 

So 
N(~', t 

M2' r < N(A t, n, r 

Since %(~) is not dependent on the choice of ~ we get %(r < M2er , ( r  

Taking C2 := M2 we have that  e(r < C2e(r By symmetry we also 

get Cie(r  _< e(r for some constant C1 > 0 and Part  1 of the theorem 

follows. 

Part  2. Let us remember that  the set of all ergodic Ct-invariant and r 

invariant probabilities are denoted respectively by get and Cr By AdCt 

we denote the set of all Ct-invariant probabilities. 

It is clear that  Er C AdCt. From Theorem 2 we get 

e(r = sup e,(r _< sup h , ( r  <_ sup h,(r = h(~bl). 
, e% ,eer , e ~ r  

If the flow r has no fixed points it follows from Theorem 5 that  

sup e~(~) > sup h•(r 

In [8] it is proved that  

sup _> sup h.(r  = h(r 
uecr 

This part  of the theorem follows immediately. [] 

6.  E x p a n s i v e  F l o w s  a n d  S y m b o l i c  Dynamics  

Let us start this section recallin~ some facts from [31. Given a finite 

family 5 c = {$1 , . . . ,  Sk} we set E f  := l-[z-7"- The elements of Ej= are 
S ~o hi-infinite sequences which we denote by S = { i}~=-oo. The metric d 

in E f  is defined as follows 
oo 

d ( S I ' s 2 ) : =  E ~($1'$2) 
2_1il , 

{ z - - o o  
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w h e r e S ( S 1 , S ~ ) = O i f S l = s ~  and 5 ( $ 1 , $ 2 ) =  l i f S  1 ~ S ~ .  

The map a: E7 --+ E~ is the shift defined by a(S)  = S where Si = 

Si+l. Defined in this way a is an expansive homeomorphism of E~. 

Definition 3. A f low r is called expansive i f  for  any c > 0 there exists 

> 0 so that, i f d ( r162  < 0 for  some x , y  E M ,  a C Rep(R)  

or a ~ 0 and any s C R it follows that y = Ct(x) with It] < e. 

The definition of expansive flow is independent  on the choice of the 

metric. Among expansive flows there are Anosov flows, Smale Axiom A 

flows and suspensions of expansive homeomorphisms. Expansive flows 

have finitely many  fixed points and each one of them is an isolated point 

of M. This reduces the s tudy of expansive flows to those without  fixed 

points. 

Throughout  this section we assume that  r R x M --* M is an ex- 

pansive flow without  fixed points. 

Definition 4. Given a f low r and ~ > 0 a local cross section at t ime C 

is a closed set S contained in M such that S n r162 = {x} for  all 

x E S .  

If S is a local cross section of r at t ime ~ we have that  r maps 

S x [-~, C] homeomorphicaly onto r162162 (S). Defining 

S* := S A i n t  (r162162 

(for any s > 0) it follows tha t  r is an open set and r 

is a closed set with empty  interior. 

It is proved in [3] tha t  there exist e > 0, 0 E (0, e) and a family 

= ,~(e, ~) = { $ 1 , . . .  , S~} such that  

1. $1, $2, ..., Sk are pairwise disjoint local cross sections at t ime e. 

2. 0 > 0 is the constant corresponding to e > 0 given by Definition 3 

and diam 5 c := max{diam Si; i = 1 , . . . ,  k} is smaller than  r 
k k 

3. M = r Ui=] Si = r Ui=l Si. 

4. r Si = • and r (x)NUk=l Si = 2~ for all x E Ui~l Si 

and some b c (0, 0)i 
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Define 

k k 

W:=M\ U r162 and V:=Wr] Us i  
n c Z  i=1  i= 1  

For x C V we consider the doubly infinite sequence 

. . .  < t _ 2 ( x )  < t _ l ( Z )  < t o ( z )  = o < t l ( x )  < t 2 ( x )  < . . .  

k of all t such tha t  Ct(x) E Ui=l  Si. Let Qi(x) denote  the  element of ~- 

tha t  Ct~(=)(x) belongs to and define Q(x) = {Qi(x)}+~,o .  Then  we get 

a a-invariant  closed set As  = Q(V) c E j:. 

For T = {Ti}_+~ in A7 we take x C U i ~ l S i  and a doubly infi- 

nite sequence { t i (x)}+~ wi th  to(x ) = 0, t~+l(x) - t i ( x )  E [b,0] so tha t  

Ct~(x)(x) E T~. Then,  defining f ( T )  := t l (x)  we get a continuous well 

defined function f: Aj= --+ R such tha t  f (T )  > b. A symbolic suspension 

flow for r under  f ,  namely  (A f ,  p) or just  p, can be defined as follows 

h f := { ( T , s ) ; T  C Aj:, 0 < s < f ( T ) } / ( T , f ( T ) )  ~ (~(T),O) 

and 

~ ( ( T , s ) , t ) = ~ t ( T , s ) = ( T , t + s ) ,  0 < t + s <  f (T) .  

There  exists a cont inuous surjection p: A f -+ M so tha t  p o p t  = Ct cp  

for all t. Moreover, there exists a Baire set I ~ / =  p - l ( w )  contained in 

A~ which is m a p p e d  by p homeomorphica ly  onto the Baire set W. See 

[3] for more details. 

In [2] it is proved tha t  h(r = h(~l )  in the case tha t  r is an Axiom 

A flow. In [3] the  following problem is posed. 

Prob lem.  In the case tha t  r is an expansive flow is it possible to get 

h(r  = h ( ~ l ) b y  choosing the family 2 -o f  local cross sections carefully? 

The  following theorem assures a positive answer to this problem. 

T h e o r e m  4. Let r be an expansive flow without fixed points and ~ be a 

symbolic suspension flow for  r then h(r  = h(qol). 

To prove this theorem we need the following lemma. 

L e m m a  6. Given ~ > 0 there exists rl > 0 so that for all Yl, Y2 E W with 

d(yl, Y2) < 7] we have that d(p- l (y l ) ,  p- l (y2)  ) < ~. 
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Proof .  We recall tha t  p ~  is a homeomorphism between the Baire sets 

W and  l~  and consider the following claim. 

Claim. For any a in M and any A E p - l (a ) ,  there exists ~(a) > 0 such 

that  p-l(B(a, r/(a))) C B(A, ~). 
To prove this claim we consider two cases. 

Case 1. In this case we assume that  a E W. By the continuity of p-1 in 

W there exists ~(a) > 0 such that  

p-l(B(a, v(a)) N W) C B(A, ~). 

This implies that  p-lB(a, ~7(a)) C B(A, c/4). In fact, otherwise the 

open set p-l(B(a, ~7(a))) \ B(A,  ~) would contain some T E A f and its 

neighborhood B(T, l) for some small l > 0. Since I/V is dense in A~ one 

can find a point P in B(T, l) N l~  what  contradicts P = p-l(p(p)) C 
p-l(B(a, rl(a)) n W) C B(A, ~). Therefore the claim is true 

Case 2. In this case we assume that  a E M \ W. Then we take and fix 

A c p - l ( a )  and notice that  p(B(A, ~)) contains not only a = p(A) but  

a neighborhood of a in M.  In fact, otherwise for each positive integer 

n one could pick out  yn E (B(a,  !)n n W) \ p(B(A, ~)). The sequence 

Yn converges to a as n tends to infinity. Take a sequence {An}n~_l in 

l ~  such that  An converges to A. Then d(yn, p(A~)) converges to zero 

as n tends to infinity. Since p ~  is a homeomorphism between the 

Baire sets W and l ~  we get tha t  d(p-l(yn), An) converges to zero. So 

p- l (yn)  c B(A, ~) for n large enough which contradicts the choice of 

Yn. This implies tha t  p(B(A, ~)) contains B(a, rl(a)) for some ~(a) > 0. 

Clearly p-l(B(a, rl(a)) N W) c B(A, ~). Again the claim is true. 

In this way we get an open cover {B(a, ~(a)); a C M }  of M. If rl > 0 

is the Lebesgue number  of this cover it follows that  p-l(B(y, rl) ) C 
B(p-ly, ~), for any y E M N W and the lemma follows. [] 

P r oof  o f  T h e orem 4. The notat ion employed in this proof  is the same 

introduced above. Take v an ergodic probabil i ty for the flow p on A f 

and set # := p.u. Then # is an ergodic probabil i ty for the flow r on M.  
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Given x c M, and t, r] E R we set 

D(x,  t, rh 0 ) : =  {y e M; d(r r < r~, 0 < s < t}. 

Given 5 > 0 denote by N(8, t, 7, r the smallest number  of these open 

sets needed to cover a subset of p -p robab i l i t y  bigger than  1 - 5. Let 

us prove tha t  hr(6, t, rl,r > N(8, t,e, qD), see Definition 1 in order to 

remember  the meaning of the notat ion N(8, t, e, ~). Indeed, if N := 

N(5, t, rh 0) we choose D(x l ,  t, r h r  D(XN, t, rl, r whose union cover 

a set of p-probability bigger than  1 - 8. 

First we need to replace the points xi possibly not in W to points zi 

in W. Then  let e, r /be  as in Lemma 6 and take ~ > 0 very small so that ,  

if d(y,y')  < r / + ~  then d(p- l (y ) ,p - l (y ' ) )  < e/2, for any y,y '  E W. Take 

w > 0 small enough so that ,  if d(y, y') < aJ then d(r Cs(Y')) < ~, for 

any y , y / C  M and 0 < s < t. 

Now we choose zi E B(xi ,  a~) A D(xi', t, rl, r C~ W, where B(xi ,  a J) 
denotes the open ball of radius co centered at xi. For y E D(xi,  t, rl, r 

one sees tha t  

d(r Cs(y)) _< d(r r + d(r r < r /+ ~, 0 < s < t. 

This gives D(xi,  t, rl, r C D(zi,  t, r/+~, r i = 1 , . . . ,  N. Then  the open 

sets D(zl ,  t, ~ + ~, r  D ( z y ,  t, r] + ~, r cover a set of #-probability 

bigger than 1 - 6. 

From Lemma 6 it follows tha t  

p-l(D(zi , t ,r~ + ~,r N W)  c B(p - l z~ , t , e /2 ,~ ) ,  

and, since p - l ( w )  is dense in A f we see tha t  

p- lD(z i ,  t, rl + ~, O) C B(p - l z i ,  t, e, ~), 

Then  

i = 1 , 2 , . . . , N .  

N N 

u([,.J B ( p - l z i , t , e , ~ )  > t](p-l(U D(xi,  t, rl,r 
/ = 1  i = 1  

N 

= p ( [ _ J  D(x ,t, r  > 1 - e. 
i = 1  

It follows tha t  hr(8, t, r/, r _> N(8, t, e, ~). 
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Now we choose a > 0 small enough so tha t  d(y, y') < a implies 

d ( r 1 6 2  0 < s < l .  I f t = ( k - 1 ) + q ,  k E Z a n d O < q < l  

we set 

D(y,  k, a, r  := {y'  c M;  d(r r < a, i = 0 ,  1 , . . . , k - 1 } .  

If R(6, k, a,  r denotes the smallest number  of these open sets needed 

to cover a subset of p -p robab i l i t y  bigger than 1 - 6 then 

R(~, k, a,  r -> N(~, t, U, r -> N(~, t, e, ~). 

From this and the definition of h , ( r  and %(r it follows that  hu(r  _> 

One can easily check tha t  p.g~ = gr so by Theorem 2 together  with 

the fact that  neither r nor ~ has fixed points we get 

e(r = sup{e,(r p Er 

= sup{h,(r  p e Er 

Then by Theorem 3 it follows that  h(r = e(r > e(~) = h(~l) .  From 

p o ~1 = r o p one can easily show that  h(r  _< h(~l)  and then we get 

h(r = h(Wl). [] 
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