On A Class of Quaternion Functions*

M. D. MAIA

Abstract

A special class of functions of one quaternion variable is studied. These functions have pro-
perties similar to the properties of analytic functions of one complex variable and contain
these functions in particular. The applications of these functions to the analysis of Space-
Time structures which are described in terms of quaternions, is suggested.

I — Quaternions

The quaternion algebra Q can be described as the set of elements of the
form X = ZXae", o« =0, 1, 2, 3, where the ¢*s are the elements of the
basis of the algebra and satisfy the multiplication table

eel =59 + ) glikek

el = el = ¢,

(1-1)

0" is the Kronecker delta and &% is the Levi-Civita symbol.

In general Greek indices will run from 0 to 3 while small Latin indices
will run from 1 to 3. Unless otherwise indicated the simbol Y. indicates
a summation over the repeated indices. The X,’s are the components of
the quaternion X in the basis ¢* and are assumed to be real. These numbers
can be thought of as coordinates of a point in some 4-dimensional mani-
fold. The module of X is defined by |X|* = XX =} X, X,, where X de-
notes the quaternion conjugate of X : X = X,¢° - X, . Thus, ¢® = ¢°
and ¢ = —¢'. In particular we have || = e'e’ = ¢°. Assuming that
| X| # 0, thereis an inverse X ~! such that XX ! = X !X = ¢° Therefore,

X3! =XAX]. (1-2)

*Recebido pela SBM em 25 de maio de 1972.
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In virtue of the non commutative character of the algebra we have that
Xy L2y X ilihus)

ee) ! =—éel =57 glikek
: : Y o = 1-3
() e = e =59 + ¥ P i

We can write a general quaternion as X = X,e° + ¢, where ¢ = ) X,¢,
corresponds to a vector in a three-dimensional Euclidean-space, with norm
[E12=( =X+ X}+X3. It follows from (1-1) that E&=E2=— (¢, ¢&). If
we put

£ =814 =4 /Y K ¥

then 4> = —(4,4) = — 1. We can also write a quaternion in polar form.
Define y = cos™!(Xo/|X]). From XX =|X|> = X2 + Y X2, we get
Y. X? =|X|?* Sen® y. Thus, if X = X, + & = X, + (X X?)12 4, it follows
that X =|X| (Cosy + 4Seny). Defining ¢’ = Cosy + ASen; we get

X =[X|eb. (14

IT — Quaternion Functions
Now consider a function f :Q — Q such that for X e Q,

=Y U,(X)e*e Q

where U, (X) = U,(X,, X, X,,X;) are the components of f(X). The
norm of the quaternions define a topology in Q which is the same as that
of R*. Thus we can speak of limits and continuity as in real analysis. We
shall assume that the U’s are real and of class C'. As the quaternion algebra
is non commutative we can define two distinct kinds of derivatives: the
right derivative

S0 = lim [f(X+ AX)- f(X)JAX)"" (2-1)
and the left derivative
£(X) = lim (AX)"'[f(X + AX)- f(X)]. (2-2)

Using polar representation of quaternions we can write AX = |AX | eh.
Thus if |[AX| = 0 we have AX = 0 without imposing any condition on 7,
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which remains arbitrary. This means that we can have an indefinite value
for the two derivates above at each point X. The function f(X) is said to
be holomorphic at right and left if the respective derivates (2-1), (2-2) are
well defined at each point.

Taking in particular AX = AX; e we get

S = Jim U + AX)- U] 5(AX, )

(AX) -0
S % Oy =1 i By —1
— 3X, e’(ef) X, elle’)t . (2-3)
Similarly
ou ou, ;
FX)g) = a3~ (€)71e® + Y =L (ef)~ e, 2-4
B) axﬂ zl aXﬁ ( )
Therefore
6U i
f(X)(O) 0 Z 6X X)(O),
aU l I
£ = - aX" b x0T, -5)
X))y = i o i 28”" g

where the indice (x) in the derivative indicates the particular direction
on which the differentiation is being carried out. On comparing these
derivatives we can select vatious classes of quaternion functions:

(A) — The class defined by the conditions:

(X )(0) It (X)(z) and i (X)(i) = fl(X)(j)y
which leads to '
oo ln =a. U Nl — = 0. U
Ui=—~aU, U, =8U, ijk cyclic
where 6, = 0/dX .
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(B) — The class defined by
/f(X)(O) = If(X)(i) and ’f(X)(i) = ,f(X)(j)

50U0=aiUn aoUi:‘aiUo,

2-7)
o;U; =-0,U;, OU;=-06,U;, ijk cyclic :
(C) — The class of functions for which
f/(X)(a) 7 ’f(X)(zz)’
or
o;U;=0,U,. (2-8)
Introducing the quaternionic differential operator
WD f 2-9)
3 0xX,’
we have
of(X) =) €0, f(X) (2-10)
=00 Uy + ). U, ef)(—Zai Ugd + 5, UoY-) &* e")),
ij
or
Af(X) = f' (X0~ X f' (X}
J
On the other hand 9 can act on f(X) at right:
fX)0 = Y., f(X)e (2-11)

= (@Uy + Y8, Ujef)-(—zai Upe + Y 0,5 (37 + ¥ gt e")).
i,j

That is,
f(X)o = 'f(X)(oFZ FX) -
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With this we can define three other classes of functions:

(D) — The class of functions for which 0 f(X) = 0. That is, from (2-10),
doUg—3,0"0,U, =0

2-12)
Og+ 8 U, + 5 &g, U, = 0.

(E) — The class defined by f(X)d = 0. We get from (2-11) the equations

9% Us-Y 890,U; =0

7 21
0, Up + 0U;~Y 6%8,U, = 0. e

(F) — The class defined by df(X) = f(X)0. That is, from (2-10) and (2-11)

o,U, = 0,U,. _ (2-14)

We notice that the classes (A) and (B) differ only in the last equations of
(2-6) and (2-7). In both cases the first three equations are generalizations
of the Cauchy-Riemann equations. Thus we may consider the class (A)
as the class of right analytic functions and the class (B) as the class of left
analytic functions. If we unify these two classes to obtain analytic func-
tions at left and right simultaneously we get the conditions dU, /60X, =
= 0U;/0X; = 0. Hence, introducing second order derivatives we get also
0> U;/0X,0X; =0 which gives U; = aX, + b(a,b constant quaternions).
Therefore the only possible solutions are the linear quaternion functions. A
reference to this theorem is found in Ketchum (1928). The functions of
classes (A), (B) and (4 N B) were extensively studied by Fueter (1928-1937).

We notice that the conditions of definition of the classes (D) and (E) are
equivalent to

f/(X)(O) 5 Z f/(X)(i) 5 (2‘15)
’f(X)(O) e Z f(X)m 5 (2'16)
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respectively. Furthermore the class (D) differs from the class (A) by the
substituition of the condition S (X)) = f(X);, by (2-15). An analogous
difference exists between the classes (E) and (B). Observe that (2-15) and
(2-16) contain in particular case the ordinary Cauchy-Riemann conditions.
Combining (2-12), (2-14) we get another class of functions, denoted by
H, which satisfy the conditions:

OoUo =3 0,U;,, 8,Uy=-0,U, o,U,=0,U,.

J ik

(2-17)

As we can see these equations also contain the Cauchy-Riemann condi-
tions in particular. However, from (2-10) and (2-11) we see that the functions
of class H are not analytic in the same sense of Cauchy-Riemann. The
direction X, is singled out so that the derivative of a H-function along
X, 1s the same as the derivative of the function along a vector of the coordi-
nate space spanned by X,, X,, X, in the neighborhood of a point. The
derivative f'(X) or 'f(X) of a H-function can be taken to be "f(X), or
> S (X) or f(X), or Y. 'f(X);)- We shall see that the functions of class H-
can be developed in power series so that in a certain sense they can be
labelled as analytic. One example of H-function is

liX

e T

Lata + Lie', X' 8" 1118
where

U = (1- X1 + 2X, +|X1%), U,= X1+ 2X, + | X2
It is an easy matter to see that these components satisfy (2-17). If a function
is of class H it is also harmonic. In fact the first equation in (2-17) gives

= 62 U 62 U
o o prsiging iRl
22 0X0X,  ox2°

defining (0% = 09, we get (12U, = 0. On the other hand we have also
from (2-17)

8 Uy 1) e LAWY
ox: TL% ey O
or
O0°U, = 0.
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Therefore if f(X) is a H-function,
bl i 7 S (2-19)

IIT — Diferential and Integral Relations

In analogy with the complex functions we can define the general form of
the differential of f(X) =) U,e*,

et
df(X) = Zﬁidxﬂea
B

oy au, o ou, U, i

From (2-4) we have for a fixed f

o

ou, ,
s

' (X)) el = R

so that

df(X) =}, g;,, ¢ dXy =3 [ (X)pe dX, G-

which is the quaternion formula equivalent to the complex differential
df (Z) = f'(Z)dZ. By commuting e’ with S'(X) 5 we get another differential
expression

= of e%(ef) L. (3-2)
B

6 () = X8 f(X)gydXy = ¥ %

On the other hand replacing the right derivative by the left one we get
two other differentials:

fX)d =Y f(X)pedXy =3 ZZ () e el dX,, (3-3)

oU
fX)6 = L& f(X)ydX, = Y% X X (3-4)
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Comparing (3-1) and (3-4) we see that df(X) = f(X)J, for any f(X). Fur-
thermore from (3-2) and (3-3) we see that §f(X) = f(X)d for any f(X),
since efe*(ef)™! = (ef) ! e*ef, whichever be «, f. If f(X) is of class H
we also have df (X) = of(X). In fact from (3-1) and (3-2) we have

A =df(X)-of(X) = Z%(e“—e”e”(eﬂ)_l)dXﬂ

an o E e
6X[(e eele) dX;

)

i

Using (1-6) we get
L0
oy aX, et etdX, .

If f(X) is of class H this vanishes in view of the last equation (2-17). There-
fore if the function f(X) is of class H we have only one differential form
which we denote by df(X) and it is given by (3-1). From now on we shall
consider that the functions f(X) are of class H (we shall refer to them as
H- functions).

In direct analogy with the theory of complex functions we can define
line, surface and volume integrals. The integral of f(X) along a curve y

is simply

Jf(X)dX = Ze“eﬂj U,dX,.
y ¥ ?
But we could also have

jde(X)z Zeﬁe“J b, dxy!

¥

The difference between these two integrals is

Al = Z(e"e’?eje")J‘

¥

Uide=—ZjU,-dXi.
Wy
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Using Stokes theorem and denoting by dS;; the componénts of the oriented
surface element limited by y, one gets.

OU; 0U;
= e L=
Al L(axj ﬁX,-) as;; =0,

when f(X) is a H- function.

Note that in the four dimensional space the 2-surface element correspond
to the quaternion

85, = T dX,pé e =25 ds,é + Y sds,,é.

The 3-surface element is a quaternion dv, with components

dvy = dX,dX,dX;, dv, = dX,dX,dX,,
dv, = dX,dX,dX;, dvy =dX,dX,dX,,

and the 3-surface integral of an arbitrary quaternion function is

Jf(X)dv,, = 4[ ¥ U, édvget
= J {(Uodvg=36"U;dv) + Y. (Udvg + Ugdv)+ Y. e U,dv;et) .

On the other hand we have the 4-volume element dt = dX,dX,dX,dX,
and the integral extended over the volume t bounded by a 3-surface v:

Jaf(X)dr £ JZ@,,U,,e"‘e”dr
=J{(Uodvo—25ijUidvj)+Z(U,-dvo+ Uodv)e' +Y ¢ U dvet}.

Therefore we get the Boundary Theorem

J S, = f of (X)de (3-5)

65



and similarly

f dv, f(X) = j f(X)dde. (3-6)

Using the theorem of tue rotational, the difference between these two
integrals is

% 3 ou; ou;
ZEJkekJ;(Uide—Ude,-) = ZSIkek[(an _—ai(ii->d7.',
so that if f(X) is of class H this difference vanishes.

In this case it follows from the right hand sides of (3-5) and (3-6), that

ff(X)dv,, = J dv, f(X) = 0. (3-7)
This result can be regarded as a generalisation of Cauchy’s Theorem. The
§econd Cauchy’s Theorem follows immediately. Let f(X) be a H-function
In a region t bounded by a simple, closed 3-surface v. Let P be an arbitrary

point inside v. Then the second Cauchy’s theorem would be generalized
by the expression

f(P)=—~l— fj'(X)(X—P)‘Mv,,.

7.[2

To see that this is true we notice firstly that the function f(X)(x-p3
fails to be of class H at P, so that the integral does not necessarily vanish.
However, constructing a small sphere C of radius ¢ with center at P and
connecting its surface with v by means of a “cut” such that along which
the integrals vanish by symmetry we get as in complex analysis:

ff(X)(X—P)""’dv,. & f S(X)(X ~P)"*dv,. (3-8)
v €
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Now we can use the polar form of quaternions to write n = ¢* and
X - P = ge’ = ¢n for X on the sphere C. Considering that f(X) has the
form ) U, (X,)e* and that it is of class H, we can expand each component
in Taylor series around the point P:

fX) = f(P) + e Xm0, f(X)

2
€
+*2,Zﬂ'1an,a6ﬁﬁf(X) +..., (39)
P ta, P

where 7, are the components of the unit quaternion n. With this expansion
the integral over C becomes

j F(X) (X~ P)" dv, =
C

f(P)J (X-P)"*dv, + EZJ 10.f(X)| X-P) 3dv, + ...
c - c P

In the limit ¢ - 0 we obtain

JFy= J f(X)(X_P)_denl:J (X—P)_3dv..] ; +0().  (3-10)
€ Cc

We can calculatej (X — P)"3dv, using the spherical coordinates in R* :
C

Xo = pCosy, X, = p Siny Sin 0 Cos ¢

X, = p Sin y Sin 0 Sin ¢, X5 =7SinyCos 6.
The volume element is dt=dX,dX,dX,dX ,=Jdpd0d¢ dy, where J is the
Jacobian determinant of the coordinate transformation: J = p* Sin? y Sin 0.

On the other hand the 3-surfac: element can be written as dv, = ndv,
dv = |dv,|, n = €". In particular the 3-surface element for a 3-sphere of

radius R is dv, = ndv = e"“/;—; = e dOd¢ dy. Therefore we have for the

3-sphere of radius ¢

J (X =Py dy,.= Je—“v Sin? y Sin 0 d6 d¢p dy = —7°,
e
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Where we put ¢ ?* = Cos 2y -Sin 2y and 0< 0 < 2r, 0<y<n0<¢p<nm
Hence (3-10) becomes for an arbitrary point Y

1 .
f(Y)=——n—2 ff(X)(X—Y)_3dv,.- (3-11)
Frofn this it can be easily seen that the n™ derivate at right of f(Y) is

FY) = -—;lz— ff(X)[(X- ¥ M. (3-12)

IV — Power Series and Singularities

Consider initially the H-function (1-X)~3

The series

(n+ 1)

X" =1 24+
4+ 3X 4 6X° 4 +2(n DI

Exe L

s - § &z

(4-1)

converges to (1-X)~3. In fact, we have

e T S T
( ) (ll Xlz)s (1 X)3 (1—r)3’

where we have put [1- X2 = 1=2X5 4+ |X[P = |~

Assuming that | X|? < 1, we have also r < 1. Thus we can develop the
real series

1
m—= 1+ 3r +6r2 + 10r3+_”+n_(n§2+_1)rnv—1 4y

so that

-0 ={=xp Yy "t ,,
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Taking the module of the difference between the n" term of the two series
and considering a fundamental property of quaternions which is

| XX'| = |X]]X], 4-2)

together with the triangular inequality, one gets that this difference goes
to zero as n — oo, so that we can write

2 nn + 1

1-X) = z (_2-"_2

n=1

; A 4-3)

Starting with this simple example we can construct more general power
series for a H-function.

Consider that we have a quaternion f(X) which is of class H in a certain
region of the four dimensional manifold. Let Q be a point inside this region
and let R be the radius of the largest sphere with center at @ and which .
is inside the region considered. We wish to show that there is a power series
of the form )’ a,(X — Q)" which converges to f(X) for all X inside the sphere.
In fact, consider a point P inside the sphere. Then |P-Q|= R, <R
and by (3-11)

) = J SX) (X~ P do,
Cy

where C, is the sphere with radius R, and center at Q. We can also write
1 S Al =
by b f FOOX -~ 11X -0y - 0)]5 du,.
Ci

As we have seen,

< (” I 1)(” = 2) —-n 4_4
P (X0 el

n=0

[1-(x-9)'(P-0Q)]° =
so that

R e f FO0 (X ~0)> (P~ Q dv
n= c,
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(P—Q)" is a constant quaternion and can be written as (P — Q)" = ¢"e"*’.

Since dv, = e*’ dv, we have

(P-Q)'dv,—dv,(P-Q)' = e"dv(e"?e?? —e* ") = 0 (4-5)
so that
——%iwu fX) (X -0)*" "dv](P or.
Defining
a; = — nll (_t+_ll£_+_2)f f(X)(X Q) 3~ tdvn, (4-6)
we get

f(P) = Y a(A~ A). i
0

Therefore we have a power expansion for a general H-function f(X),
provided the integral (4-6) is finite. Conversely, every power series of the
form (4-7) represents a H-function defined in a certain domain. We can
also have power expansions involving negative powers. Consider that
f(X) is of class H inside a region limited by two concentric spheres ¢ and
C of radius r and R respectively and center at Q. Thus f(X) is H for
r<|X-X,| <R and by (3-11) (Cauchy’s formula) we have

f(P) = “ Jf(X)(X—P)*dv,, + n—lz ff(X)(X-P)*du,,
g c ¢
-2 f SOOIX-Q)-(P-Q)] d,~ f FXNP-0)~(X-Q)]*ds,
€, ¢
- ff(X)(X—Q)*[l (= Q1 (P =0l] do, -

- jf(XxP—Q)—S[l—(P—Q)—}(X—Q)]-wu,,.
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As in (4-4) we replace the brackets by the corresponding expansions to get

@ t+1)(t+2)

)= f £ (X - Q)‘3{Z (X—Q)"(P—Q)’}dv—

0 "
(4-8)

lff(X)(P 0" 3{2%@—@)”0{—@5}@

c

In virtue of (4-5) we may commute P—Q with dv,. Using the definition
(4-6) the first integral can be written as

Z a, (P g Q)l

0
On the other hand, putting f(X) = U, e* and commuting with (P—- Q)™ 3~
we get

THP~0)""7" = (P2 0)°"*f(X) » el Ul(P—-0) "% )¢

so that the second integral (4-8) becomes

Ly et D grs [ x-oran +

.1_22£'s+—nﬂ.2_)jeijk Ui((P_Q)—B—S)j ek(X___Q)s dU" ]
54

2 { 4
Defining
a=- ot Netd f F(X)(X ~ QY do, @)
1 (s+ 1) +2) j ;
tp =g B2 22 j UL(X - QY dy, (410
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the expression (4-8) can be written as

1) =3 a(P-0) +§:,(P-Q)'3’sas+28”" & (P-0)3"%), ag
0 : (4-11)

But since (X — Q) is of class H in the interior of ¢ (that is, outside the sphe-
rical ring considered) it follows from (3-5) that (4-10) vanishes. Thus, putting
-3-s=-r5=0,12,...r =3,4,5,... and callinga, =a_,,, =b_.. the
expression (4-11} becomes for P = X

=Y aX-0r + 3 X-0"b, (@-12)
with .
b =‘E]7 (—’—1)(’—2) Jf X)(X - Q) 3dy,. (4-13)

The expression (4-12) is the equivalent to the Laurent expansion for complex
functions. We can say that the two spheres C, ¢ define the convergence
“ring” for f(X) around Q. In analogy with the complex case we call 0
the 3-pole and the first negative coefficient in (4-12):

bh_, =—-17 Jf(X)dv,,, (4-14)
Y/ c
is called the 3-residue of f(X) at Q.

Now we can prove the “Residue Theorem” for H-functions. If f(X) is
of class H in a given region except in a finite number of 3-poles QY which
do not belong to the boundary V of the region, then

J f(X)dv, = —n? (Z b O+Y c_3<f>>, (4-15)

where b_," are 3-residues given by (4-14) for each pole j given by the
quatermon Qv

bl =~ f fX)dv,, (#-16)

g2

where ¢; is a small sphere constructed with center at QY and

C—s(j) =J (X Q(J) [b (j)dvn(f)]’ (4_17)

=3

where [ ] denotes the commutatior. To prove (4-15) we construct the
spheres ¢; around each 3-pole Q¥ and use (3-7):

jf(X)du,, = Zj f(X) dv, 9.

Expanding f(X) in power series around each pole we have
X)(j) - Z am(j) (X £e Q(j))m 2l Z (X A Q(j))—l b_l(J)
m 1

so that

J

f(X)dv, = Zj f(X)(j) dvn(j)

i Zza ) (X—Q(j))"' dv,,(j) 15 ZZJ (X_Q(j))—lb_l(j) dv,,“"
3 jm 4 i sl

&)

i zza ) (X_Q(j))mdvn(j) Gt zzj (X—Q(j))_l dv"(j)b-,(’)
Ty i

(=)

+ sz (X - 09) ' [b_,? dv,9].

Using the polar form we can put (X — QY)" = &7} e, where ¢, is the
radius of the j™ sphere and

dvn(j) —= ehivi dl)n(j),

so that

[ (X - Q)" dp,® = gnt3 J e™* D4758in? y Sin 0 dy dO de,

f - OV) hdp O =g 203 f e DA718in? 5 Sin 0 dy dO d
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and

J (X = Q(j)) i [b B l(j) dvn(j)]

(=)

=g J e vi[b_ D e*7]Sin? y Sinf dy d6 dép.

i

When ¢ — 0 the first integral vanishes for any m while the last two integrals
are different from zero when | = 3. Thus

jf(X) dv, = —n? <Z b_,9 4+ Zf (X -QV)3[b_,0 dv,,‘f’]> ;
i T (=)

In general b_; is a quaternion given by (4-14). In particular it may have
only the e® component and in this case it commutes with dv, so that C_ 3V
vanishes and (4-15) reduces to the form

f@Xdv, = -7 Y b_30. (4-18)

The maximum negative power in (4-12) is called the order of the 3-pole Q.
When this maximum power is —3 the 3-pole is said to be a zero order
pole (note that there is no negative power less than 3). In the case of a
zero order pole we have from (4-12)

D_si= o {(X-0)* ()} (4-19)

On the other hand if the pole is of finite order larger than zero (i.e. if the
largest negative power is —s—3 for some finite s) then, again' from (4-12),

X=0r"* fX)=3 X0V *** 20+ (X-QFb_s +(X-0F "b_ +...+ 6 3,

so that

aiids
b~3 e }I_I}(l) axs {(X; Q)S+3f(X)} (4'20)
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We may use the same terminology of the complex theory. For example
if there is no negative powers in (4-12) the power series coincide with the
Taylor’s series for quaternion functions and in this case Q is called a remo-
vable singularity. On the ohter hand for the case when we have an infinite
number of negative powers, Q is called an essential singularity.

V — The Applications

We shall consider here the uses of the theory of H-functions in Special and
General Relativity theory. Quaternion formalism has been the object of
renewed interest in these branches of theoretical Physics (see for instance
Rastall (1964)) and the theory of H-functions can be useful in treating some
problems. Let us consider initially the case of Special Relativity. In this
case the manifold to be considered is the Minkowski space-time for which
the metric tensor is n“ = diag(-1,1,1,1). A vector belonging to this
space-time has norm

(X X =-Xi+ X050 9, =Ty (5-1)

We can represente such vector by a quaternion X = X, ¢* where ¢* is a
new basis defined by

Gl — icih o el (5-2)

With this, XX =|X|* = (X, X). The multiplication table for the new
basis is

oigl = ol A igtdk gk

(5-3)

This table is satisfied by the set of Pauli matrices

el Do s e (D Y eell s

In Minkowski Space-time a vector transforms according to the Lorentz
group. As it is known, the group of automorphisms of the quaternion
algebra is isomorphic to SO(3) only (see eg. Boerner (1963)). Therefore
the quaternion algebra is not invariant under the Lorentz group.
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We can represent a Lorentz transformation in terms of quaternions by
& =qXg' (5-5)

where X = X, ¢* and q* means the hermitian conjugate of g. In the special
case where g is unitary we get one automorphism but this occur only for
the subgroup SO(3) of the Lorentz group. We can modify the quaternion
algebra in such a way that the automorphisms of the resulting algebra
represent the Lorentz group. This can be obtained by asking for a set of
4 algebraic elements S* so that Qo*Q* = 08*Q~'. That is, S* = 6*Q* Q
where Q is a specific Lorentz transformation (Lord (1966)). These elements
form the basis of the modified quaternion algebra. To relate to our original
algebra we set 0" = (%34 + i) ¢'6¥) and

St = (204 +iY 640" Q. (5-6)

Conversely o* = $*(Q* Q)™ ! and
et {82 ay iy S0 (0T 0) . (5-7)

Theorefore to use the theory of H-functions in Minkowski Space-Time
we just plug in the above expression for the es. It is important to notice
that if @ is unitary we obtain §' = ie’, S® = ¢°, and we say that we have
a special frame for the modified algebra. The unitary transformations
map these special frames into each other. The theory of H-functions deve-
loped in the previous sections can be thought of as being done in one of
these special frames.

Conformal motions are also considered in Special Relativity. Consider
the quaternion formulation of a conformal transformation (Giirsey (1956))
dX' = + T'*(X)dX I'(X), where I'x) = \/B(X~A)‘1q and where f is a
constant, g is a Lorentz transformation and 4 is a quaternion which gives
a translation. In analogy with the complex conformal transformation we
should expect that I'(X) is a H-function. The components of such function
are

Uol) = /Bry=gga.  Ux) = ~VBry=ipe

By direct calculation we see that (2-17) are satisfied.
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In the case of General Relativity we have to introduce further modifications
on the original quaternion algebra. We may consider the tangent bundle
structure where each fibre is a Minkowski space where we can apply
(5-6,7). In order to obtain the algebra in the Riemannian manifold we use
a tetrad system hj(x) so that the modified algebra is translated to =
= Y hi(x)S* and, using (5-6)

= Y@ et i Y d6nat e, (5-8)
or conversely S = Ah4(*, so that, from (5-7)
e =Y (" ~iy W8 (Q* Q). (5-9)

With this expression we may translate the theory of H-functions to Rieman-
nian Manifolds. The tetrad system can be conveniently choosen. We suggest
the one used by Newmann & Penrose (1962) which is closely related to
the quaternion formalism. The algebraic forms which can be associated
to a tensor are obtained by contraction with the base elements (%. Thus,
for example the Ricci tensor corresponds to five algebraic functions

Ry = Rypl* = Ryphi (%05 + i) €'64)Q" Q,
R=R [ = R, s h 8 (e84 + i) o) (e°dy + iY 200" 0

These function can be written is the form U,(x)e* and be studied from
the point of view of the theory of H-functions. One possible application
is the study of the properties of singularities in General Relativity.

The author wishes to thank Professor S. Sidki for the useful discussions
on the subject of this paper.
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