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Abstract .  Area preserving diffeomorphisms of the 2-disk which are Identity near the 
boundary form a group which can be equipped, using the L2-norm on its Lie algebra, 
with a right invariant metric. In this paper we give a lower bound on the distance be- 
tween diffeomorphisms which is invariant under area preserving changes of coordinates 
and which improves the lower bound induced by the Calabi invariant. In the case of 
renormalizable and infinitely renormalizable maps, our estimate can be improved and 
computed. 
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1 Introduction 

The group of volume preserving diffeomorphisms on a compact oriented Rie- 
mannian manifold carries a structure of metric space. The (right invariant) metric 
can be defined, using the L2-norm on the Lie algebra, as the minimal length of an 
arc connecting two diffeomorphisms (see section 2 for a complete definition). In 
[ 12], A. Shnirelman proved that the diameter of the group of volume preserving 
diffeomorphisms of the unit cube in R" is finite when n > 3. The situation turns 
to be drastically different in the 2-dimensional case: the diameter of the group of 
area preserving diffeomorphisms of the square is infinite. Actually, Y. Eliashberg 
and T. Ratiu [7] proved that, on any compact symplectic manifold, the diameter 
of the connected component of Identity of the group of symplectomorphisms is 
infinite. The main steps in their proof are: 
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10 JEAN-MARC GAMBAUDO AND MAXIMELAGRANGE 

�9 one can reduce the problem to the case of symplectomorphisms of the unit 
2n-ball B2,~ which are Identity near the boundary OB2,,; 

�9 in this case, the distance of a symplectomorphism to Identity is bounded 
from below by the modulus of its Calabi invariant up to multiplication by 
a constant I (see section 2 for a complete definition); 

�9 it is easy to find symplectomorphisms with arbitrarily large values of their 

Calabi invariant. 

In this paper we shall concentrate on the case of the 2-disk. In this case, the 
Calabi invariant can be seen as the averaged linking number of pairs of orbits 
(see [8] and [10]), results which are summarized in section 2. 

Our aim is to introduce another quantity which gives a better lower bound of 

the distance to Identity. We call this number the asymptotic crossing number 
of the diffeomorphism. It is related to the crossing number of pairs of orbits. 
In section 3, we make precise the definition of this asymptotic crossing number 
and discuss its main properties. In particular, we show that this number is a 
differentiable invariant, i.e. invariant under conjugacy by an area preserving 
diffeomorphism. 

In section 4, we consider the case when the diffeomorphism is renormalizable, 

that is to say when it permutes a collection of disks. This new invariant allows us 
to bound from below the distance to Identity normalized by the area of each disk 
by a constant which depends only on the braid type of this collection. When the 
diffeomorphism is infinitely renormalizable, this last estimate shows restrictions 

on the geometry of the invariant Cantor set imposed by the braid type of the 
infinite system of permuted disks. 

Our work has been inspired by results due successively to V. Arnold [ 1 ] and M. 
Freedmann and Z.-X. He [9] on lower bounds for the energy of a divergence-free 
vector field in a domain of Ii~ 3. In Section 5, we show how our results lead to 
better lower bounds of the energy when the domain is the solid toms and the 
divergence-free vector field a suspension of an area preserving diffeomorphism 
of the 2-disk. 

2 Area preserving diffeomorphisms of the 2-disk 

Let us call D2 the group of smooth area preserving diffeomorphisms of the 2- 
disk which are Identity near the boundary of the disk. A tangent vector to 79a at 

I This implies that the Calabi invariant is a continuous function of  the symplectomorphism.  

BoL Soc. Bras. Mat., Vot. 31, No. 1, 2000 



TOPOLOGICAL LOWER BOUNDS 11 

a point q~ is a divergence free vector field X~ (see [6]) whose L2-norm is defined 

by: 

IIX~l12 = ( ]  Ilg~(x)ll2dx) 1/2, 
Jo 2 

where H. ]l stands for the standard Euclidean norm. More generally in the sequel, 
II - lip will stand for the LP-norm. 

Consider a path {(bt }t~t0,11 in Z)2 connecting two maps 4)0 and ~bl. The length 
of the path {~br } is given by the formula: 

f l dq~t /2({~,}) = II ~-112dt. 

Any two maps in ~D2 being connected by a path with finite length, this length 
function induces a distance function on Z)2 defined by d2(q~o, q~l ) = inf 12({~bi }), 
where the infimum is taken over all paths joining ~bo to ~bl. Notice that this 

distance is right invariant: de(~bo o ~b, q51 o ~b) = d2(q~o, q~l). 
The set Z)2 being now a metric space, it makes sense to speak about the diameter 

of  a subset S: 

d i a m 2 ( S )  = sup d2(qS0, qS1). 

Let us recall now the definition of  the Calabi  invariant  (see [5]) C : 292 -+ I~. 
Consider a map r in 292 and a 1-form ~ on D: which is a primitive of  the area 

2-form. Since q~ is area preserving, the form q~*c~ - ff is closed and vanishes near 
the boundary of  D 2. Thus, there exists a unique function H(q~, e<) : D 2 --+ A, 
which vanishes near the boundary of  D 2 and such that dH(qS,  o<) = ~*~ - ~. 

The Calabi invariant of  q5 is defined by: 

C(q~) = f H((b, o<). 
Jo  2 

The reader can check out (see for instance [2] or [10]) the fact that this integral 
does not depend on the choice of  the primitive e~ and that the Calabi invariant is 

actually a morphism from ~)2 to  R :  C((/) 0 o q~l) • C((b0) + C(~bl).  

It is known that every element in :D2 is the the "time 1" map of a Hamiltonian 
isotopy {~bt}t~10,11, i.e. there exists a smooth Hamiltonian Lift : D 2 --+ I~, which 
vanishes near the boundary of  the 2-disk, depends on time and satisfies for all t 
in [0, 1]: 

d L f f t ( - )  ---- a r e a ( - ,  o~ t )  
Ot 
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12 JEAN-MARC GAMBAUDO AND MAXIME LAGRANGE 

This Hamiltonian isotopy yields a second definition of the Calabi invariant: 

2 1 

For the equivalence of these two definitions, we refer for example to [2] where 
explicit calculations are done. Notice that on one hand, the Calabi invariant does 
not depend on the choice of the Hamiltonian isotopy and that on the other hand 
any isotopy in 792 is Hamiltonian (see [7]). This second definition of the Calabi 
invariant allows us to bound from below the distance of any diffeomorphism in 
792 to Identity: 

fo' fo 1 12({q~t}) = II 7112dr = 

Thanks to Poincar6 inequality: 

/2({q~t }) 

II VH~ (x)112dt. 

f0 
C IIH,(x)ll2dt 

for a constant C which depends only on the domain of integration (here the unit 
2-disk). 

From Schwarz inequality (normalizing the area of the unit 2-disk to 1): 

Z 1 Z 1 Z I L  1 [19(f(x)l[zdt > IIH,(x)llldt >l ~(~(x)dtl = IC(401. 
- -  - -  2 

Using the right invariance of the path length and the additivity of the Calabi 
invariant, we get the Lipschitz estimate: 

2 
IC(~bo) - C(~l)l ~ ~-d2(q%o, ~1). C 

There is a third definition of the Calabi invariant which is due to A. Fathi [8] 
(see also [ 10]) and which can be seen as an estimate in terms of braiding of pairs 
of orbits. Consider an isotopy {~bt}tel0,11 in 792 connecting Identity to qS. The 
map: 

Ang~ : D  2 x D  2 \ A - - + ] R ,  

(where A stands for the diagonal) which associates to any pair of points x 7~ y 

in D 2 the angular variation of the vector q3t(x)dA(y >) when t goes from 0 to 1, 

Bol. Soc. Bras. Mat., Vol. 31, No. l,  2000 



TOPOLOGICAL LOWER BOUNDS 13 

does not depend on the choice of the isotopy and is bounded where it is defined. 

The Calabi invariant is the integral of this function, i.e.: 

Ang~(x, y)dxdy. C(q~) = 2 • 2 

This third definition allows us to prove (see [10]) that the Calabi invariant is a 
topological invariant, that is to say that if h is a homeomorphism of the 2-disk 
which is Identity near the boundary, preserves the area 2-form and conjugates 
two maps q5 and 0 in 792, then: C(0 )  = C(~b). Notice that when q5 is a 
homeomorphism of D 2 which is Identity near the boundary of D 2, the map Ange 
remains defined and continuous on D 2 x D 2 \ A. However in this last case it is 

not necessarily integrable. 

3 Asymptotic crossing number 

Let us introduce now the new quantity we wish to study. Fix again an element 

q~ in 792 and a (Hamiltonian) isotopy {~bt}telo, 11 in 792 connecting Identity to ~b. 
To any pair of  distinct points x, y in D 2 and to every t c [0, 1], we associate the 

unit vector: 
qSt(y) - q~,(x) 

u(t, x, y) = 
I Iq~ t (y )  - q~,(x)ll" 

Lemma 1. The integral 

G({q~t}) - 

is well defined. 

1 fol L d u  27c 2 • II~- (t, x, y)Ildxdydt 

Proof.  An easy calculation yields: 

du I](q~t(Y) - q~t(x))/x (~bt(y) - qSt(x))ll 
I l l - ( t ,  x, y)ll = ]14~t(y) - q~(x)ll 2 ' 

where/x is the wedge product and q~t = ~ .  It follows that 

du 2 II-~(t,x,y)ll < sup I I ~ ( x ) l l .  
- 114~,(y) - ~ , ( x ) l l  r215 2 

The quantity sup(t,x)~[0,1]• II is bounded. Hence it is enough to remark 
that since qSt is area preserving for every t in [0, 1 ]: 

dxdy s dxdy 

2• ll4~t(y) - - ~ ( x ) l l  = 2• Ily - xl[ 
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14 JEAN-MARC GAMBAUDO AND MAXIME LAGRANGE 

and that this last integral converges. [] 

We now introduce the quantity G(4,) = inf G({4,t}), where the infimum is 
taken over all isotopies in D2 joining Identity to 4,. 

Lemma 2. The map G : D2 --+ R + is subadditive, i.e. for all 4, and ~ in D 2" 

G(4, o ~ )  < G(4,) + G(O). 

Proof. The proof is straightforward. Let us choose two isotopies {4,t}~cI0, l l and 

{7rt}tcl0,11 in D2 joining respectively Identity to 4, and Identity to 7r and consider 
the isotopy {fir }teI0, l l joining Identity to 4, o ~ obtained by concatenating {4,f o ~} 
after {~t} and time rescaling. The quantity G({pt}) is equal to: 

G({pt}) = G({Ot}) + 

1 f ~ f  ll(4;,(~(y)) - q~r(7,(x)))A (~,bt(g,(y)) 4,,(g'(x)))ll 
+ JoJn2• I[4,,OP(Y)) - ~bz(~(x)) II 2 dxdydt. 

Since ~ is area preserving, we get: 

G({p,}) = G({~',}) + G({4,,}). 

Thus G(4, o ~b) < G(4,) § G(~) .  [] 

This subadditivity property implies that the sequence ( �88 G (4,'~)),, > 0 converges 
when n goes to +no.  We denote by s this limit and call it the asymptotic 
crossing number of 4,. It satisfies: 

1 1 
L(4,) = lira -G(4,  ") = i n f - G ( 4 ,  ") _< G(4,). 

iz--++oc n n>0 n 

T h e o r e m  1. The asymptotic crossing number satisfies the following three prop- 
erties: 

i) it is a differentiable invariant, i.e. for any maps 4) and ~ in D2: 

L(7,  o 4, o ~ - ~ )  = L(4,); 

ii) there exists a constant K > 0 such that for any map 4, in D2: 

s _< Xd2(ld,  4,); 

iii) for any map 4, in D~: ]C(4,)] < L(4,). 

Bol. Soc. Bras. Mat., Vol. 31, iV<>. 1, 2000 



TOPOLOGICAL LOWER BOUNDS 15 

Proof .  i) The conjugacy  equal i ty  reads: G((gt  04) o ~ - l ) n )  = G(O  o4) n o 1~-1).  

It fol lows that: 

IG((g, o 4 ) o O  J)n) - G(4)')I -< GOP) + GOk-I) .  

Dividing by n and letting n go to +oo we get L ( ~  o 4) o 4 -1) = L(4)). 
ii) The quanti ty G({4)~}) satisfies: 

l f l s  Ilq~,(x)ll 
G({4)t }) < - dxdyd t .  

- -  7 1 "  2• 114),(Y) - 4)~(x)[I 

The Cauchy-Schwarz  inequali ty gives: 

if0' a({4)t}) _< --  IIc~rlI211ItlJ2dt, 
7r 

where:  s "Y 
I,(x) -- 2 1[4)t(Y) - 4),(x)ll" 

For every t in [0, 1] the map 4)t is area preserving;  consequent ly  the L2-norm of  
It satisfies: 

IIItll2 = ( 2( 2 IIx - yll )2dx)1/2 < +oc. 

Thus,  for  g = l[ l l t l l2 we  get G({4),}) _< K/2({4)t}). It fol lows that s < 
gd2(Id,  4)). 

r.4. (n) I iii) We  choose  an integer n, a map  4) in D 2  and an isotopy w,t !tE[0,1] con- 
necting Identi ty to 4)". For  every pair  o f  distinct points x and y in D 2, the unit 
vector: - 

uO~)(t, x, y) = 
I)4)}n)(Y) - 4)}'~>(x)ll 

can be writ ten as u(")(t, x, y) = exp(2i~rO(t, x, y)). This yields: 

du o') dO 
[ l ~ 7 - ( t , x ,  y)ll = 2 z r l ~ - ( t , x ,  y)l ,  

which  gives by  integration: 

1 foo I du (n) Iangr < ~ I I ~ - ( t , x , y ) l l d t .  

B y  integrating over  D e x D 2 we get: 

IC@")l = nlC(4))l _< G({4)}'~>}). 

Since this is true for all isotopies jo ining Identi ty to 4)", we  have n lC@)l  _< 
G@~).  Dividing by  n and letting n go to + o c  we  get: IC(4))1 __ L(4)). []  
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16 JEAN-MARC GAMBAUDO AND MAXIME LAGRANGE 

The asymptotic crossing number of a map q5 in :D~_ can be interpreted as follows. 
For an isotopy {qSt }te~0,11 connecting Identity to ~b and a pair of distinct points 
x, y in D 2, we consider the map: 

ux,~:[O, 1] --+ S 1 

t ~-+ u ( t , x , y ) .  

The change of  variables induced by the map ux,,, leads to the equality: 

I I ~ ( t ) l l d t  = 1 ~{Ux'y-l(~ 

where ;~ stands for cardinality. By integrating we get: 

l f D f s ; ~ { u x , ~ , - l ( c o ) } d c o d x d y .  G({q~t})-  27r 2• 1 

For any co in S 1 , when the arcs V~: : t ~-+ qS~(y) and Vx : t ~-> q~,(x) are projected 
in the direction of  co onto a plane orthogonal to co, V~, overcrosses ~{ux,~, -1 (co)} 
times y~. The integral: 

1 f s  ~{ux'"-I(co)}dco Cr(*'l(x' Y) - 2zr ~ 

is the averaged number of  times the arc y), overcrosses g~- over all directions co. 

G({qSt}) is then the spatial average fD2 • Crle, I (x, y)dxdy.  
Changing the isotopy {qSt } may reduce the averaged quantity of  overcrossings 

G({qSt}); the infimum is given by G(qS). 

R e m a r k .  The group :D2 has infinite diameter. This is also the case for the kernel 
of  the Calabi invariant (see [7]), even if in this last case a direct estimate of  the 
distance to Identity using the Calabi invariant is useless. The estimate of  the 
distance to Identity using the asymptotic crossing number turns to give a simple 
proof of this last result and is a direct consequence of the following lemma: 

L e m m a  3. There exist on K er ( C) maps with arbitrary large asymptotic crossing 
number. 

Proof. Consider on D2 a Hamiltonian H which vanishes near the boundary of  the 
2-diskandsatisfies H ( - X l ,  x2) = - H ( x l ,  x2), H(xl ,  x2) > 0 w h e n x l  > 0and 
H(Xl, x 2 )  = 0 when xl is close to 0. The "time 1" map q5 of  the corresponding 
Hamiltonian flow is in Ker (C) (indeed C(O) = 2 fn 2 H(x)dx  = 0). Let D 2 and 
D~ be the two 1/2-disks o f D  2 corresponding respectively to xl _< 0 and xl > 0. 
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TOPOLOGICAL LOWER BOUNDS 17 

The Hamiltonian H can be written as the sum of two Hamiltonians/4o and HI 
with supports respectively in D 2 and D 2. We denote respectively by q~(0),t and 
~b(j),t the "time t" maps of/4o and Hi. Let {~bt}t~10,11 be an isotopy connecting 
Identity to @. We have: 

G({4~x}) = ~ -  2• I1~-(t, x, y)Ildxdydt 

> - -  I l l - ( t ,  x, Y)lldxdydt + 
- 22r {• 

l/o I + 2~  ~xD~ I l l - ( t ,  x, y)Ildxdydt 

> [ fo Angr y)dxdy] + I fD Ang6(x, y)dxdyl 
~• ~• 

Let us recall that Angr (x, y) stands for the angular variation of the vector 
> 

Ot (x) ~/t (Y) where {~/l}t c[0. J l is an isotopy connecting Indentity to ~b and that it 
does not depend on the choice of the isotopy. Ifx and y are in D~ then Angr y) 
can be computed using only {~b(i),t}t~10, I I. 

Thus: 

f f 
I 1  Ang~)(x, y)dxdyl = I 1  Ang@,., (x, y)dxdyl. 

JD xO~ JD~• 

Hence: 

I fD Angr > IfD Ang@~.~(x,y)dxdyl - 21, 
• 2 xD 2 

where 

Then, we get: 

f 
l = I I Ang@,, (x, y)dxdyl 

Jo o2• 
< ~ .  

G({~b,}) 

: 2(~2 ]Ho(x)ldx+j;~ IH,(x)ldx)--4rc. 

Consequently: 

G(4,) ~ 2jD2 IH(x)ldx -47r. 

Bol. Soc. Bras. Mat., Vol. 3 I, No. l, 2000 



i8 JEAN-MARC GAMBAUDO AND MAXIME LAGRANGE 

Using the linearity of  the Calabi invariant, the same calculation for the "time 

n" map # '  of  the Hamiltonian H leads to: 

G((b '~) >_ 2n fD2 IH(x) ldx  - 4zr. [] 

4 Renormalizable maps 

A map ~b in 792 is renormalizable if there exist a disk A in D e and an integer 

n > 0 such that: 

� 9  < i < n ,  ~pi(A) A A  = 0 ;  

�9 # , ( A )  = A .  

In this section we focus on this particular type of maps which play a central 

role in Dynamics. We derive, in this case, an estimate from below of  the asymp- 

totic crossing number which depends only on the area of  the disk A and on a 

topological invariant associated to the way the n first images of  the disk A are 

permuted. In order to give a more precise statement, let us recall some notations, 

definitions and results concerning braids. 

Thekr t in  Braidgroup B,, is a group given by the set of  generators al, a2 ..... an-l 
and the relations: 

a i a j  = r  

r i = (7i+i(7i(7i+1, 

for all i, j in {1 . . . . .  n} with li - j l  > 2. An element of  this group is called a 

braid. 
A geometrical way to represent braids (see for instance [11]) consists in fixing 

the 2n points P/ = ( i / (n  - 1) - 1/2, 0, 1) and Qi = ( i / (n  - 1) - 1/2, 0, 0) 

for i = 0 . . . . .  n -- 1 in the solid cylinder D 2 • [0, 1]. A braid/3 can be seen 

as the isotopy class of  a system of  n non-intersecting arcs, joining each point 

Pi to a point Qr~(i), where r f  is a permutation on {0 . . . . .  n - 1}, and such that 
the intersection of  any of  these arcs with any disk D 2 • {t}, t in [0, 1], consists 

in a unique point. With this representation, it turns easy to understand what the 

group law, the generators and the relations mean (see for instance [11]). 

The crossing number of  a braid /3 in Bn is the minimal number cr(fi) of  

generators ai and their inverse that can be used to write/3. Two braids/3 and/3'  

in Bn are conjugated i f  there exists a third braid V in Bn such that fl' = g/3 V-J. 
The conjugacy class fi of  a braid/3 is called a closed braid. The crossing number 
cr@)  of  a closed braid is the minimal crossing number among all braids in the 
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conjugacy class/~. Closed braids (that are the conjugacy classes in B,~) possess 
also a geometrical interpretation. Consider the standard revolution solitorus 
D 2 • S 1 embedded in IR3; a closed braid can be seen as the isotopy class of a 
collection of  curves in the solitorus which intersect the disk D 2 • {0} transversally 
in exactly n points for all 0 in S 1 . It is plain that any orthogonal projection of  a 
collection of  curves representing a closed braid j~ possesses at least cr (/~) double 
points and that there exists a representative and an orthogonal projection with 
exactly cr (j~) double points. This last point will be used in the proof  of  Lemma 4. 

Finally, the asymptotic crossing number ac(fi) of a closed braid j~ is the limit: 

1 
ac(fi) = lim -cr(/3 ). 

n ~ + o e  n 

It is easy to check that this last definition does not depend on the element 13 of 
the conjugacy class j~ and that, for any integer n in Z, we have the inequality: 

cr(/3 '~) < Inlcr(fi), 

which insures that our limit exists and satisfies: ac(fi) < cr (/~). It does not seem 
to be known whether this inequality can be strict. In consequence, it is interesting 
to find a lower bound for the asymptotic crossing number ac(fi) which can be 
computed directly from/3 without looking at the whole conjugacy class and at 
the asymptotic behavior. 

This can be done as follows. There is a canonical morphism from the Artin 
braid group Bn onto the symmetric group En which maps any braid/3 on the 
permutation r e. The kernel of  this morphism is called the pure braid group and 
denoted by Pn. For any pair of  distinct integers i, j in {0 . . . . .  n - 1 } we consider 
the forgetful map f,.j �9 P,~ --+ P2 which associates to any pure braid 13 in Pn 
the pure braid obtained by keeping only the strands i and j of  a system of arcs 
representing/3. The braid group B2 is the free group generated with a single 
element or. For any braid/3 in B2, cr(fl) is the absolute value of  the integer n 
in Z such that/3 = or". Notice that cr(/3) does not depend on the choice of  the 
generator o-. Then, to any pure braid/3 in P,, we can associate the quantity: 

cl(fi) = Z cr(fi,j(/3)), 
i# j  

which does not depend on the element chosen in the conjugacy class of/3 and 
satisfies cl (/3~) = ]m [cl (/~) for any integer m in Z. For a braid/3 in Bn, we get: 

1 
ac(~) >_ ^ cl(/3p(~), 

p(/3) 
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20 JEAN-MARC GAMBAUDO AND MAXIME LAGRANGE 

where p(fi) stands for the smallest positive integer p such that fie is a pure braid 

class. 
There is a third way to interpret the Artin braid group which is related to 

Dynamics. Consider the n-punctured disk Dn construct by taking away from the 
2-disk D 2 n non intersecting disks B i centered around the points with coordinates 
(i/(n - 1) - 1/2, 0) for i = 0 . . . . .  n - 1). J. Birman [4] proved that the Artin 
Braid group is isomorphic to the subgroup of automorphisms of the fundamental 

group nl (D,,) deriving from homeomorphisms of Dn+l which are Identity near 

the boundary of the 2-disk. 
Consider now a diffeomorphism q5 in 2)2 which is renormalizable and let A 

be a disk in D 2 and n > 0 an integer such that: 

�9 fo r0  < i < n ,  ~bi(A) N A  = 0 ;  

�9 q~" (zx)  = A .  

Let h be a homeomorphism of D 2 which is Identity near the boundary of D 2 and 
such that, for each i in {0 . . . . .  n}, h(~bi(A)) = Bi. The map ~ = h o ~b o h 1 
leaves the n disks Bi globally invariant. Thus, thanks to J. Birman's isomorphism, 
we can associate to ~ a braid V (~b, h). Another choice of homeomorphism h' 
leads to a braid Y ((/), h') which is conjugated to V (r h). It follows that we have 
described a way to associate to any renormalizable diffeomorphism r a closed 
braid ~) (~). Notice also that the closed braid ~) (~b) depends only on the conjugacy 

class of ~ in 9 >  

Theorem 2. s  _ ac@(()))(area(A)) 2. 

Proof.  Consider an isotopy [r in :D2 connecting Identity to ~b. The 

integral G([r )) reads (see Section 3): 

and consequently: 

G({~b~}) 

G({~,}) = s215 Cr{~'l(x' y)dxdy, 

_ f~ Cr{~,}(x, y)dxdy 
> ~ i(A) • (A) i # j  

i#j 
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For (x, y, co) 6 A x A x S 1 , let 'Uo (x, y, co) be the minimum over all isotopies 

in ~D2 connecting Identity to ~b of the quantity: 

and consider: 

Te = min min "Ue (x, y, co). 
( x , y ) r  A toES I 

It is clear that: q(q~) > T 4 ( a r e a ( A ) )  2. 

L e m m a  4. There exists a constant C which depends only on the way the n disks 
A, q~(A) . . . .  q)n-1 (A) are embedded in D 2 such that: 

7~ > c r @ ( ~ ) )  - C 

P r o o f o f L e m l n a  4. Let x0 . . . . .  xn I be n points respectively in A . . . . .  q~,,- 1 (A) 

and {q~t}t~[0,11 be an isotopy in ~D2 connecting Identity to q~. In the cylinder 
D 2 • [0, 1], we consider the system of arcs: 

S = {(4~,(xi), t) It e [0, 1], i r { 0 , . . . ,  n - 1}}. 

We perform now a surgery on this system of arcs which consists in adding to 
each arc {(~bt(xi), t) It r [0, 1], } an arc in ~i+lm~ connecting (O(xi),  1) to 

(xi + 1rood,,, 1). This yields a system of n arcs S' in D 2 x [0, 1 ] connecting the point 

(xi, 0) to the point (xi+l, 1) for i = 0 . . . .  , n - 1 and the point (xn, 0) to the point 
(x0, 1). Identifying the top and the bottom of the cylinder, transforms the system 
S t in a simple closed curve in the solid toms whose isotopy class con esponds the 
closed braid )3 (q~). It follows that any generic orthogonal projection of S' parallel 
to a direction co r S 1 yields a system of arcs which intersect at least in cr (~, (r 

points. The number of extra crossing points forced by the surgery is bounded by 
a constant C which depends only on the way the n disks A, q~ (A) . . . .  qS,~ 1 (A) 

are embedded in D 2, and consequently the number of crossing points of the 
projection of S is at least cr (~, (r - C. This yields the inequality: 

iTLj 

and achieves the proof of lemma 4. 
Since any iterate q~q (with q and n coprime) possesses the same set of invariant 

disks as q~, we obtain by replacing in Lemma 4 ~b by @~: 

G(q5 q) > ( c r ( f q ( ~ ) )  - C ) ( a r e a ( A ) )  2. 

Dividing by q and letting q go to + o c  yields the theorem. [] 
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We say that a map ~b in D 2  is infinitely renormalizable i f  there exist a sequence 

o fnes t edd i sksD 2 D A1 D A2 D A3 D - .-  D A m . . .  andasequenceof in tegers  

(a,,),>o with a ,  > 1 such that: 

� 9  < i < qm, q~i(Am) f-)Am = O; 

�9 (zx ) = A m ,  

where ql = al and qm = amqm-I for m > 1. 

Area preserving infinitely renormalizable maps appear naturally in Dynamics, 

for instance when perturbing the "time t" map of  a Hamiltonian flow. 

Let  @m(~b))m>0 be the sequence of  closed braids associated to a infinitely 

renormalizable map by using J. Birman's identification. Theorem 2 gives: 

Kd2(Id,  O) > L(qb) > cr(G(qb))(area(Am)) 2. 

It follows that for an infinitely renormalizable map in D 2 which is at bounded 

distance from Identity, there is a relation between the way the area of  the nested 

disks (Am)m>0 goes to zero and the complexity of  the sequence of  closed braids 

5 Suspension of maps of the 2-disk 

Let ~b be a map in D 2  and {~pg} an isotopy from Identity to q~ and consider the solid 
torus 'F = D 2 • R / • .  The volume form area/x dt on D 2 • ~ induces a volume 

form vol on the solid torus. The vector field in D 2 x R with coordinates ( ~  (x), 1) 
over any point (x, t) yields a vector field XI~,/ in T whose flow preserves the 
volume form vol: ix~vol = 0. It is tangent to the boundary aT  ~ S 1 x S 1 
which is foliated by periodic orbits with length 1. Consider now the embedding 
i mapping ~7 onto T ,  the standard solitorus of  revolution in IR 3 : 

i :D 2 x IR/Z ___~]~3 

(rexp2iJrO, t) ~--~((R +rcos2rcO)cos27rt,(R +rcos27rO)sin27ct, rsin2rcO), 

where the constant R is chosen so that the pullback by i of  the standard volume 
form in IR 3 coincides with the 3-form voI. The above construction allows us 

to associate to any map ~b in D2 a divergence-free vector field X({~bt}) in the 

solitorus T tangent to the boundary 0 T .  

In [ 1 ] V. Arnold studies the more general case of  divergence-free vector fields in 

a domain D of  N 3 with smooth boundary O D which are tangent to this boundary. 

He finds a lower bound for the energy of such vector fields which can be inter- 

preted in terms of  linking of  the orbits. More precisely, let X be a divergence-free 
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vector field in D tangent to the boundary and qSt the flow associated to this vector 
field. To any point x in D and any time T we consider the closed curve k(x, T) 
constituted of the arc of orbit joining x to ~bT (x) followed by the arc of geodesic 
joining ~br (x) to x. V. Arnold proved the following: 

�9 for almost every pair of points (x, y) and almost every time TI and T2, 
the two closed curves k(x, T~) and k(y, T2) are knots and we denote by 
l (x, y, T1, T2) their linking number; 

�9 for almost every pair of points (x, y) the limit when Tl and T2 go to §  
of the quantity r-~l(x, y, TI, T2) exits and is denoted by lx(x, y); 

�9 the map (x, y) ~-~ lx(x, y) is integrable and the integral 

A x  = f lx (x, y)dxdy 
JD xD 

is called the Asymptotic Hopfinvariant of the vector field; 

�9 the energy of a vector field is bounded from below by its asymptotic Hopf 
invariant, i.e. there exists a positive constant C' which depends only on 
the geometry of the domain D such that for any divergence-free vector 
field X in D tangent to the boundary: 

IlXlt~ >__ C'IANI; (*) 

�9 the asymptotic Hopf invariant is invariant under volume preserving conju- 
gacy, i.e. for any volume preserving diffeomorphism ~ on D and for any 
divergence-free vector field X in :D tangent to the boundary: 

Ar = A x ,  

where ~.X(x)  = d ~ ( X ( ~  -I (x)) for any x in D. 

This last point is particularly important. Indeed, the energy of the vector field 
is not invariant under volume preserving change of variables and thus V. Arnold's 
result gives a lower bound of the energy among all volume preserving conjugacy 
of the vector field. 

In the particular case of a divergence-free vector field X ({qSt }) in the solitorus 
T tangent to the boundary a T  induced by a map ~b in D 2  and an isotopy {qSt} 
joining Identity to q5 a simple calculation gives: 

IIXC{q~t})ll~ = Eo + II II~dt >_ EO -Jr- (/2({q~t})) 2 > EO + ( d e ( I d ,  ~))2 ,  
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where E0 is the energy of  the vector field induced by the Identity in 792 and the 
constant isotopy from Identity to Identity. On the other side, it is shown in [10] 
that the asymptotic Hopf  invariant Ax( /e , / /does  not depend on the isotopy {q~t} 
but only on the map 4) and that we actually have: Ax(Ie,/) = C(qS). It follows 
that the estimate ( ,)  can be improved in our particular case in: 

2 
IIX({~,})ll~ _> E0 + (~C(qS)) 2, (**) 

a lower bound that grows at least quadratically in term of asymptotic Hopf  
invariant. 

In [9] M. Freedmann and Z.-X. He improved the Arnold's result by considering 
the crossing number of  two piecewise differentiable closed oriented curves kj : 
S 1 ___> •3 and k2 : S I --+ IR 3 parameterized by an angular value in [0, 1]. This 

crossing number is the quantity: 

fo 1 fo 1 I(dk~(t)/dt, dk2(s)/ds, kl(t) - ks(s))ldtds. 
cr(kl, k2) = ][kl (t) - k2(s)II 3 

It differs from the linking number of  the two curves kl and k2 by the absolute 
value in the numerator, and unlike the linking number it is not a topological 
invariant. However it can be interpreted geometrically as follows: 

�9 choose a direction u in IR 3, i.e. a point on the 2-sphere S 2, and project k1 
and k2 following that direction onto a plane orthogonal to u; 

�9 count the number cr(k~, k2, u) of  times the projection of  kj overcrosses 
the projection of k2; 

�9 the crossing number is then the average over all direction u of the over- 
crossing number cr (kj, k2, u). 

M. Freedmann and Z.-X. He proved the following: 

�9 for almost every pair of points (x, y) the limit when T1 and T2 go to + o c  
of  the quantity ~ cr (x, y, Tl, T2) exits and is denoted by crx (x, y); 

�9 the map (x, y) ~ crx (x, y) is integrable; the integral 

K x  = [ crx (x, y)dxdy 
J9 x'D 

is called the asymptotic crossing number of the vector field; 
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�9 for any divergence-free vector field tangent in D tangent to the boundary, 

we have K x  >_ IAxl ;  

�9 the energy of a vector field is bounded from below by its asymptotic cross- 
ing number, i.e. there exists a positive constant C' which depends only 
on the geometry of the domain D such that for any divergence-free vector 
field X in D tangent to the boundary: 

IlXll 2 ~ C'Kx; (,') 

�9 the asymptotic crossing number is invariant under volume preserving con- 
jugacy. 

The advantage of the asymptotic crossing number on the asymptotic Hopf 
invariant is that the quantity crx(x, y) is positive when defined, consequently 
the asymptotic crossing number of the vector field is always greater than or equal 
to the asymptotic crossing number computed on any subset of D invariant under 
the action of the flow. 

In the particular case of a divergence-free vector field X ({~bt}) in the solitorus 
T tangent to the boundary a T  induced by a map q5 in D2 and an isotopy {4~t} 
joining Identity to q~, the estimate (, ' )  can be improved in: 

2 
IIX({q~,})ll~ >__ E0 § (~L(4~)) 2, (*'*') 

a lower bound that grows at least quadratically in term of asymptotic crossing 
number of the map qS. However, unlike the equality Ax(/o, I) = C(qS), there is 
apriori no way to compare the two numbers Kx(/0,/) and s The reason is that 
the quantity Cr{e I I (x, y) estimated in section 3 is an average of overcrossings over 
all directions in S I and the quantity Crx(14), II (x, y) is an average of overcrossings 
over all directions in S 2. 

At this point it is worth noticing that the fact that the energy of a divergence- 
free vector field grows at least like the square of some average of the number 
of crossing points of projection of orbits has been already pointed out by M. A. 
Berger [3] who cleverly derived such estimates in the special case of a magnetic 
field in a cylinder. 

Finally M. Freedmann and Z.-X. He also give a minimization of the asymp- 
totic crossing number of a divergence-free vector field which possesses a knot- 
ted invariant tube. For this purpose, they introduce a knot invariant called the 
asymptotic crossing number of the knot which is smaller or equal to the minimal 
crossing number of the knot and conjecturally equal. In the particular case of 
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a divergence-free vector field X ({q~t}) in the solitorus which is the suspension 
of a renormalizable diffeomorphism of the 2-disk, our Theorem 2 gives a sim- 
ilar estimate. However, in our particular case, the estimate we get is better in 
the following sense. We introduced a quantity defined for closed braids: the 
asymptotic crossing number of a closed braid, which is smaller than or equal to 
the minimal crossing number of the closed braid and conjecturally equal. The 
minimal crossing number of a closed braid can be of course strictly bigger than 
the minimal crossing number of the corresponding knot; it is also easy to show 
examples where the asymptotic crossing number of a closed braid is strictly 
bigger that the asymptotic crossing number of the corresponding knot. 
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