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1 Introduction 

Let Q be a set of  germs of vector fields on R " at a singular point 0. What is the 

simplest normal form to which any vector field of  Q can be reduced by a change 

of  coordinates? This is a classical question and, in the case that Q consists of  all 

vector fields with a fixed linear approximation it is answered by the Poincare- 

Dulac-Belitskii theorem which says that under a formal change of coordinates 

any vector field with a fixed linear part 2 = J x  can be reduced to the resonant 

normal form. Namely, assuming that the matrix J has the Jordan normal form, 

J -- S + N, where S is the semi-simple part of  J and N the nilpotent part, one 

can reduce the given system, via a formal change of  coordinates, to a system of  

the form ~ = J y  + h ( y ) ,  where the formal series h ( y )  = ( h i ( y )  . . . . .  h ,~(y))  ~ 

satisfies the following relations. 

S h ( y )  - h ' ( y ) S y  = O, N t h ( y )  - h ' ( y ) N t y  = O. (1) 

L e t  ~1 . . . . .  )~n be the eigenvalues of  J ,  then the first equality of  (1) means that 

h i ( y )  = ~-~de~l>_2hi,c~y c~, where the coefficients hi,ee = 0 if )~i }z~ (Ot, ~). In 
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30 JIAZHONG YANG 

other words, h (y) only contains resonant monomials y" Oy i which correspond to 

resonant relations 

~i = (~ ,~ ) ,  I~1 ~ 2. (2) 

In the above we adopt the usual multi-index notations: ~ = (oq . . . . .  ~,~), 
~j c Z+, the set of non-negative integers, loll = oq + . . .  + e~n, (a,)~) = 

. . . . . . .  y~ . We also use Oy, to stand for ~ 
It is clear that if  there are a finite number of resonant relations between eigeval- 

ues of the matrix J then any smooth vector field ~ = J x  + . . .  is formally 
reducible to a polynomial. Since such vector fields are necessarily hyperbolic, 
therefore, by the Chen theorem, the normalization can also be in smooth cat- 

egory. If  a vector field admits infinitely many resonant relations between the 
eigenvalues, then, in the formal category, its finite determinacy is characterized 
by the Ichikawa theorem (see shortly afterwards). The Ichikawa theorem implies 
that such vector fields are either hyperbolic (the inverse statement that hyperbolic 
vector fields are finitely determined is obviously false) or partially hyperbolic. 
In the former case, again due to the Chen theorem, the normalization can be 

taken smooth, while in the latter case, the center manifolds of the vector fields 
have to be 1-dimensional or 2-dimensional with -4-)~i as eigenvalues. To these 

quasi-hyperbolic vector fields one can apply the Belitskii theorem to insure the 
smoothness of the normalization. More exactly, in [1] Belitskii generalizes the 
Chen and the Ichikawa theorems to the C ~ quasi-hyperbolic category: a smooth 
local vector field is C ~ k-determined if and only if it is formally k-determined. 
Moreover, it is proved in [1] that if a smooth vector field X is formally finitely 
determined (i.e., k-determined for some k < cx~) and a smooth vector field Y is 
formally conjugated to X, then Y is C ~ conjugated to X. This result implies that 
the C ~-  and the formal k-determinacy are the same property, and thus it reduces 
the C ~ classification of finitely determined vector fields to the formal category. 

The set of all formally finitely determined vector fields is characterized by the 
Ichikawa theorem (see [4, 5]), which, due to the Belitskii theorem as mentioned 
above, coincides with the set of all smoothly finitely determined vector fields. 
To describe this set, we introduce the following definition 

Definition 1.1. A vector f ield with ei genvalues )~ is called l-resonant i f  the number 
of  generators of  the semigroup {(3~, of) = 0, o~ c Z~} is I. 

The following statements are from [4, 5, 1]. 

Proposi t ion 1.1. A smooth vector f ield admitting infinitely many resonant re- 
lations is smoothly finitely determined if and only i f  it is 1-resonant and the 
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nonlinear part does not belong to a certain exceptional set E of infinite codi- 

mension in the space of  all vector functions. 

Remark  1,1. The exceptional set E in the proposition can be described in terms 

of  the linear approximation. In fact, let X be a 1-resonant vector field with the 
Poincare-Dulac normal form ~j = Ajxj +x j  f j (x ~) +2gj  (x~), where (A, ~) = 0 
and 2 g j (x ~ ) are possible resonant terms when extra resonant relations arise (see 

non-strongly 1-resonant case shortly), then the exceptional set E consists of  those 

vector fields with ( f  (x"), ~) = O, where f = ( f l  . . . . .  fn). 
Proposition 1.1 says that, although the Poincare-Dulac normal form of a 1- 

resonant vector field consists of infinitely many resonant monomials, the vector 
field actually is reducible to polynomial (provided it does not belong to the 
exceptional set). The proposition, however, cannot be applied to the classification 
of vector fields since it says nothing about the index of finite determinacy (the 
index i (X) of finite determinacy of a vector field X is defined to be the minimal 
number k such that X is k-determined). One of the main objectives of the present 
paper is to find the index of finite determinacy of a given 1-resonant vector field. 

The known results concerning the index of finite determinacy are as follows: 
Complete classification of 1-resonant vector fields is known only on R and ~ 2  

(see [6]). On R n, n > 2, only the so-called strongly 1-resonant vector fields (see 
the explaination shortly) are classified (see [2, 9]). In [7], the author studies all 
the generic vector fields on R 3 (where the case that vector fields admit finitely 
many resonant relations is also discussed). In the present paper (see [8] also) we 
are going to give a complete classification of all (non-strongly) 1-resonant vector 
fields on R3 with arbitrary nonlinear parts. More precisely, given such a vector 
field X on R 3, we shall find the index of finite determinacy i (X), the number of 
moduli/z (X) which distinguishes closed vector fields of Q that are not smoothly 
conjugated, and the simplest normal form to which X can be reduced under a 
smooth change of coordinates. Our results reveal the intrinsic geometric relations 
between the central variable and the hyperbolic variables. Namely, given X with 
fixed degeneracy on the central manifol, we show that if X restricted to the 
hyperbolic manifold is not too degenerated (which is reflected in the number q 
in the following sections) then i (X) depends on the central variable as well as on 
the hyperbolic ones. On the other hand, if X restricted to the hyperbolic manifold 
is too degenerated then i (X) is totally determined by the central variable. 

Now we characterize the eigenvalues of 1-resonant vector fields. Let X be 
such a vector field on IR 3 and its eigenvalues admit a relation 

~ I A I  -}- Ol2A 2 -~- ~3A3 = O, lY i E ~ + ,  Ilyl > O. (3)  
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Then the following lemma holds. 

L e m m a  1.1. For any 1-resonant vector field, either 

( i) all resonant relations )~i = ki3.~ +k2)~2 +k3)~3 are corollary o f  relation (3), 
i.e., there exists an integer 1 > 0 such that (kl, k2, k3) = l (oq, o12, o13) + el, 
where el = (1, 0, 0), e2 = (0, 1,0) and e3 = (0, 0, 1); or 

(ii) up to enumeration, the eigenvalues are (0,)~o, m)~o), where )~o 7 ~ 0 and m 
is a natural integer. 

Vector fields of the first case in the lemma are called strongly 1-resonant. 
We leave the proof of the lemma to the reader as an exercise. In this paper we 

consider vector fields of the second case of the lemma, that is, non-strongly 1- 
resonant vector fields. According to all possible values of  m we have three cases: 
(1) m _> 2; (2) m = 1 and the linear part of the vector fields is not diagonalizable; 

and (3) m = 1 and the linear part of the vector fields is diagonalizable. 
The paper is organized as follows: In Section 2 we shall present the main 

results of the paper. Section 3 contains a brief exposition about normalization 
of vector fields. The proof of the results is given in Section 4. 

2 Main  Results  

In this section we shall discuss all the three cases as specified above. Let X 
be a smooth vector field with eigenvalues (0,)~, m)Q. Then one sees that in all 
the three cases X has a 1-dimensional center manifold and the restricted normal 

form to the center manifold takes the form 21 = f ( x l ) ,  where f ( x l )  is a formal 
power series, f ( 0 )  = i f (0)  = 0. If  f ( x l )  is not fiat, then there exists an integer 
p > 1 such that f (x l) = x~+l f l  (x l), where f l  (0) ~ 0. In generic case, p = 1. 
It is clear that p is invariant of X due to the fact that if two vector fields are 
equivalent then their restrictions to the center manifold are equivalent. 

Remark  2.2. Vector fields with fiat f (x~)  belong to the exceptional set E as 
described in Proposition 1.1. 

Convent ion.  We shall use capital letters Ps('), Qs('), Rs(.), etc. to denote 
polynomials, where the subscript s stands for their degree. 

2.1 Vector fields with eigenvalues (0, 3., m)Q, m > 2 

The Poincare-Dulac resonant normal form in this case is given by 

v p + l  .c m 
21 = h  I jI(x~), 2 2 = x 2 f 2 ( x l ) ,  .~3=x3f3(Xl)-[-x2f4(xl), (1) 
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where  f i ( x l )  are formal  series, f l ( 0 )  = ap 7~ 0, f2 (0)  = X and f3(0)  = mX. 

Define  an integer  q by 

f3(Xl) -- mf2(x l )  = ~lqX q -~- " " , aq • 0 (2) 

( if  f3 (x~) - m f2 (xl) =-- 0 then q = oc).  We dist inguish two cases: 

Case  I: q r p ,  or q = p but  gtp/ap f~ {1, 2 . . . .  }. 

Case II:  q = p and Ctp/ap = k ~ {1, 2, . . .  }. 

Theorem 1. Let X be a vector f ield with eigenvalues (0, X, mX), m >_ 2. Then, 

in terms o f ( l )  and (2), 
(1) # ( X )  = 2 p  + 1; 

(2) 

m a x ( 2 p + l , m + s ) ,  w h e r e s = m i n ( p ,  - 1 )  Case I q 

i (X )  = [ m a x ( 2 p  + 1, m + p + k) Case I I  

(3) The simplest normal form of  X is as follows: 

21 = -~Xf  § -~- ax~  p+I 22 = x 2 P p ( X l )  

! 23 = m x 3 P p ( x l )  + x ~ R s ( x l )  Case I 

/mx3G(x , )  + kxfx3 + l p-,(x,)x7 + b f+kx  ' Case n 

where s = rain(p,  q - 1), ['p(Xl) - Pp(x~) = fiqX q + . . . ,  gtq ~= 0 i f  q < p, or 
tip ~ + l , - t - 2 , . . .  i f p  = q, R(O) ~ {0, 1}. 

2.2 Vector fields with eigenvalnes (0,)~, )0 and non-diagonal linear part 

In this case the Po incare -Dulac  resonant  normal  fo rm is as follows: 

21 ~p+l = f l  (Xl) ,  

X2 = x 2 f 2 ( X l )  "-[- XBf3(Xl ) ,  ( 3 )  

23 = x 2 f 4 ( X l )  q- x 3 f 5 ( X l ) ,  

where  f,.(Xl) are formal  series, f l ( 0 )  7 ~ 0, f2(0)  = f s (0 )  = )~, f3(0)  = 1, 
f4(0)  = 0. Def ine  an integer  q by  

f 4 ( X l )  = CX q + ' ' "  , C • O. (4) 

I f  f4 (x l) is the zero formal  series then define q = ~c. We dist inguish two cases: 
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Case I: q < 2p; 
Case II: q > 2p. 

Theorem 2. If X is a vector field with eigenvalues (0,)~, )~) and non-diagonal 
linear approximation, then in terms of ( l )  and (2), 

2 p + l Case I 
(1)/z(X) = [ P  + 1 Case II  

[max(2p + l, p + q + l) Case I 
(2) i(X) = [ 2p § 1 Case II  

(3) X is smoothly conjugated to the following simplest normal forms: 

)el : -4-xP+I ~- ax~ p+I .~2 : )~X2 -~- X3, 

Ix3Pp(xl) + xqQp l(Xl)X2 CaseI 
23 | 

I X3 Pp (X 1 ) Case II  

where Pp(O) = )~, Qp-l(O) 7 ~ O. 

2.3 Vector fields with eigenvalues (0, ~, )~) and diagonalizable linear part 

Notice that the diagonalizability means that f3 (0) = 0 in (1). The number p can 
be defined as in (1). To describe the normal form we need to introduce another 
integer q. In terms of (3), consider the matrix 

M r :  kf4(r)(0 ) f~r)(0) ] ,  r = 0 , 1 , 2 , . . .  (5) 

Denote by /zr and v,. the eigenvalues of Mr. The number q is defined to be 
the minimum number r such that/zr ~: v~ or/zr = v~ but M,. is not diagonal. 
In other words, the Jordan normal forms of the matrixes 34o . . . . .  Mq_l are of 
the form diag(a, a), whereas the Jordan normal form of Mq takes one of the 
following forms: 

(#O r V0q) ' (O l/z)' (_aft ~ ) ,  (6) 

where/zq - Vq r 0, fi 7~ 0. If q = p we also introduce 

Vp - #p 
r - - -  (7) 

f~ (0) 

We shall distinguish the following cases: 
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Case I. q < p, or q = p but r r Z. It contains the following subcases: 

case 1.1. Mq is equivalent to the first matrix in (6), or q --- p and r r Z. 

case 1.2. Mq is equivalent to the second matrix in (6), 

case 1.3. Mq is equivalent to the third matrix in (6). 

Case II: q --- p and r = k ~ {1, 2 . . . .  } ( i fk  E { -1 ,  - 2 ,  . . .  }, then enumerate 

X2 and x3). 

Case III:  q > p. 

T h e o r e m  3. I f  X is a vector field with eigenvalues (0,)~, )~) and diagonalizable 
linear approximation, then in terms o f ( l )  and (3), 

( 1 ) / , ( X )  = 

(2) i (X) = 

2p - q + 2 Case 1.1 

4 p -  3q + l Case 1.2 

4 p -  3q + 2 Case 1.3 

p § 2 Case II  

p § 1 Case I I I  

2 p + l  Cases I and I I I  

max(2p + l, p § k + l) Case II 
(3) A list of  the simplest normal forms is as follows. In all the cases 

Xl = 4-Xl )+1 § ax~ p+I, 

and X2 and x3 are given by 

Case 

where 

Case 

where 

Case 

1.1 22 • x2Pp(Xl) x3 = x3Pp(Xl), 

P~,(x)  - p t , ( x )  = o ( x q ) .  

1.2 22 = x2Pp(Xl) § X3Qp(Xl) 23 = x3Pp(Xl) § X20p(Xl),  

~,,(xl)- p~(x,)= o(x~), O~x,)= x~ + ..., O~(xl)= o(x~). 

1.3 22 = x2Pp(Xl) § X3Qp(Xl) 23 = -X2Op(Xl)  § X3Dp(Xl), 

where/Sp(Xl)-  Pp(xl) = o(xq), O,p(X~)- Q p ( x , ) =  o(xq). 

P h~,P+ k Case I I  22 m x2Pp(Xl) 23 = x3Pp(xl)  i kx  I x 3 + ~'1 x2, 

where a and b are parameters. 

Case I I I  22 = x2Pp(Xl) 23 = x3Pp(x~). 
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3 Normalization 

In this section we briefly recall some techniques of normalization of vector 
fields. More detailed explanation can be found in [2, 6] (in [8] there is also a 
brief account). 

The starting point of normalizing a given vector field is the Poincare-Dulac 
normal form or the Belitskii normal form if there is a nilpotent part. For further 
normalization, one needs only to perform resonant transformations, namely, 
changes of coordinates whose linear part is the identity and the nonlinear part 
contains the resonant monomials (see[2]). 

Since any 1-resonant vector field always admits infinitely many resonant rela- 
tions, we find that very often it is more convenient to normalize the vector field 
jet-by-jet. More exactly, once the K-jet of the given system is normalized by 
polynomial resonant transformations, then, to normalize the k + 1 jet, one can 
perform a higher order polynomial resonant transformation. In other words, the 
normalization consists of a series of polynomial transformations. 

Denote by jl  X the/-jet of X and call two vector fields X and X/-jet  equivalent 
if there is a diffeomorphism ~ such that f c ~ . X  = j l f ( .  We shall use the 
following lemmas. Please refer to [8] for the proof. 

Lemma 3.2. I f  two vector fields X and Y have identical k-jets and the equation 
jk+l IX, ~o] : jk+l (y  _ X)  has a solution ~o with a vanishing 1-jet, where IX, ~0] 
denotes the Lie bracket of  X and ~o, then X and Y are k + 1-jet equivalent. 

Iffor any k < ~ X and Y are k-jet equivalent then they are formally equivalent. 
I f  for any vector field Y such that j k y  = 0 the equation IX, ~o] = Y has a 

solution ~o with j i q9 = 0 then X and j~ X are formally equivalent. 
From Lemma 3.2 one sees that to prove a vector field X is formally k-jet 

determined, it suffices to prove that for any vector field Y, j k y  : 0, the equation 
[X, ~0] = Y has a solution ~o with a vanishing 1-jet. Moreover, it suffices to prove 
the solvability of this equation where Y is any formal resonant (with respect to 
the tuple of eigenvalues of X) vector field with vanishing k-jet (see [8]). In other 
words, following statement holds: 

Lemma 3.3. Let X be a smooth vector field, X(0) = 0. I f  for  any formal 
resonant (with respect to the tuple of  eigenvalues of  X)  vector field Y, j k y  = O, 
the equation 

[jkX, ~o] = Y (1) 

has a formal solution ~p, jl~o = O, then X is smoothly k-determined. 
Equation (1) is called the homological equation. 
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4 Proof of Theorems 

The proof of each theorem consists of the following steps: ( l)  the i (X)-jet of a 

vector field X can be normalized to one of the normal forms listed in Theorems 
1-3; (2) assume that the normalization of j i ( X ) x  has been done, then we need 

to prove that the homological equation (1) is solvable for any resonant vector 
field Y with a vanishing i (X)-jet; (3) the vector fields j i (X)-I  X is not equivalent 
tO j i ( X ) x ,  namely, X is not i (X)  - 1 jet determined. In the proof we shall 

sometimes put these steps into one. 
Notice that in all the three cases the resonant normal form restricted to the 

center manifold is the same: 21 = xP+lf l (x l ) ,  f l ( 0 )  7 & 0. By the results of 
[6] on the normalization of vector fields on IR, the restricted system is smoothly 
conjugated to 21 = 4-xf  +1 + ax~ p+I, where a is a parameter and the signs 4- 
can be put into + for odd p. We assume in what follows that this step has been 

taken. That is, we have performed (a series of) changes of coordinates of the 
form xl --+ xl § e~x~, k = 2, 3 . . . .  with the possible exception for the case 

k = p + 1 (the term x~P+~Ox~ is unremovable). In further simplification of 

hyperbolic variables, we shall make the best use of this extra freedom. 
Remind that any transformation of the form x 1 -+ x i +c~x~ does not change the 

number q defined in (2), (4) and (5), and vice versa, any resonant transformation 
on the hyperbolic variables have no influence on the center manifold. 

4.1 Proof of Theorem 1 

Let X be a vector field having eigenvalues (0,)~, rn)~) and taking resonant normal 
form (1), where 

/ l ( X l )  = 4-1 q - a x  p. 

We shall only consider the case f l  (0) = 1. The case f l  (0) = - 1  can be 
discussed in the same way. Remind that the number q defined in (2) and the 
cases defined before Theorem 1. 
Case I: Denote by 

f2(Xl)  = ) ~ - } - a l X l  --]- " " " -t- a q  i x  q 1 q_ a q x q  + . . ,  , 

then 
f3(xl) = m()~ + alxi + . . .  + aq-i  x q - l )  + bqx q q- . . .  , 

where bq - rnaq = 0. If q = p we also assume that bp - map 7~ 1, 2 . . . . .  
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The normalization of ji(X)x m e a n s  the elimination of three kinds of resonant 

terms: 

0 x~+kx3 0 l_m 0 
xt~+kx20X2 OX3 XI~2 8X3 (1) 

where k = 1 . . . . .  i ( X )  - p - 1 and I = ra in (p ,  q - 1) + 1 . . . . .  i ( X )  - m. We 
shall show that this can be done via three kinds of resonant transformations: 

x- -+ id.  +c~x~X28x2; x --+ id.  + flx~X3Ox3; x -+ id.  + gXlX a s  mox3. (2) 

In fact, it is straightforward to show that the first two kinds of transfor- 
mations keep the first two kinds of terms in jp+Ix unchanged while they 

bring the following contribution to the higher order terms (0,/~,~ ~p+k �9 ~ 1  x2,*) and 
(0, 0, k~xP+kx2 § *), where �9 means some resonant terms of the third kind of 

(1). Therefore by choosing suitable ot and/3 we can eliminate the first two kinds 
of terms from the original vector field. 

Observe that only the terms x~x~Ox3, k < i (X) - p - 1, of the third kind are 
influenced by the first two kinds of  transformations. However, it is clear that 
the influence entirely depends on the i (X)-jet of  X, therefore the index of finite 
determinacy does make sense. Moreover, as shown below, some of these terms 

with higher degrees can be removed by the third kind of transformations in (2). 
Indeed, this transformation keeps the first two kinds of terms unchanged whereas 
it brings to the original vector field the following effect: 

(a) i f q  < p,  ((maq - bq)~/x q+s ~- o(Yq+S))x;nOx3;  

p+s m . (b) i f q  > p,  (syx~)+s + o(x  1 ))x2 0x3, 

(c) i f q  = p,  ( (map - bp -4- s ) g x  p+~ § o(x~+S))x~Ox3. 

Therefore the elimination of these terms follows precisely from the assumption 
of the present case. 
Case II: By similar arguments as applied above, we can normalize the i(X)-jet 
of X. The difference in this case is that if  bp - map  = k then the term x f+kx~ ~ Ox3 
is unremovable. Therefore the index i (X) in this case depends on the value of k 
which can be arbitrarily large. 

From the above discussion it is easy to see that the homological equation (1) 
is always solvable for any vector field Y with a vanishing i(X)-jet. In fact, one 
only needs to perform changes of coordinates (2) where k > i (X) - p and 
l > i ( X ) - m + l .  
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The extra parameter ee in the change of coordinate x I ~ x I ~- cg)~l )+1 yields 

no further simplification on the hyperbolic variables. 

The coefficient of term x~ ~ Ox3 can always be put into 1 or 0 (via a linear scaling). 

Theorem 1 follows from the above arguments. [] 

4.2  P r o o f  o f  T h e o r e m  2 

Given a vector field of normal form (3), we assume that f l  (Xl) = 1 + a x e .  Due 
to the existence of the nilpotent part in the linear approximation of the vector 
field, we can apply the Belistkii theorem to reduce (3) to 

21 = x~ +l + a ~  p+I, 22 = x 2 g ( x l )  + x3, 23 = x 3 g ( x j )  § x 2 h ( x l ) ,  (3) 

where g(0) = )~, and h ( x l )  = cx  q + . . . ,  c (= O. 

In the following normalization, we shall first look for transformations which 
normalize (3) as well as preserve its form. In fact, any changes of coordinates 

of the form 

(x l ,  x2, x3) --+ id.  § x~(O, olx2 + fix3, Vx2 + Ox3) (4) 

makes the following contribution to (3) 

(V - 13h(xl) - k ~ P ( x l ) ) x 2  § (0 -- ot - k f l P ( x l ) ) x 3 )  x~ 

((~ - O)h(x l )  - k v  P(xl))x~_ + ( f l h ( x l )  - V - kO P ( x l ) ) x 3 )  

where P ( x l )  = x~  + ax~ p, and t means the transpose. More generally, the 

change of coordinates 

(X3 

(xj, x2, x3) --+ id .  + ~ x ~ ( O ,  ~kX2 + flkx3, Vkx2 + Okx3) 

k 1 

brings to (3) the following effect 

~ X~ (Yk --  f lkh -- k c ~ k P ( x l ) ) x 2  q- (Ok --  Otk --  k f l k P ( X l ) ) X 3 )  ( 5 )  

k i \ ( ( a k  -- Ok)h -- k v k P ( X l ) ) X 2  + (flkh - Vk -- k O k P ( x l ) ) x 3 ) J  

Rearrange the terms of (5) by their degrees, we have the following. 

C a s e  (i): 1 < q < p.  

X2 : * q- X 2 h l ( X l )  @ x 3 h 2 ( x l ) ,  -~3 : * @ x 2 h 3 ( X l )  -]- x 3 h 4 ( X l ) ,  (6) 
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where �9 stands for the terms of  the original vector field, and 

h i ( x )  = g lx  + ' "  q- yqx q + ( Y q + l  - -  C~I) xq+l  ~ - ' ' "  "~ (~/p --  Ct~p-q) x p  

oo 

+ ~ _ , ( y p + ~  - c f l p - q + k  - kak ) :~  p+k 

k = l  
{3o 

h2(x) = (01 - -  ~ l ) X  -t - ' ~ 1 7 6  + (Op -- Olp)X p ~- ~ (Op+ k --  Olp+k --  kflk)x p+k 
k = l  

h3(x) = c ( o ( l  - -  O1)x -Jc " " @ C(~p_q -- Op_q)X p 

oo 

-~- Z ( C ( O t p _ q + k  --  Op_q+k) -- kyk)X p+k 
k = l  

h4(x) = -y lX . . . . .  Yq xq  -- ( Y q + l  - -  Cfll) x q §  . . . . .  ()/p --  6.tip q)X p 

oo 

--  Z ( ? / p + k  --  Cfip q+k q- kOk) x p + k  

k = !  

We show below that, by choosing suitable parameters o#,, ilk, Yk, Ok, k = 
1, 2 . . . . .  we can normalize X to the following form 

-~1 = x P + I  -~  ax~  p+I x2 ~- x3 + x 2 P p ( X l )  x3 = x 3 P p ( X l )  -~ xq  Q p ( X l ) X 2 .  ( 7 )  

To arrive at this form one needs to prove the solvability of the following linear 
equations: 

01 ,=ak ,  k =  1 . . . . .  p 

Op+~ --  oq)+k --  kf lk = O, k = 1, 2 . . . .  

g ~ = O ,  k =  1 , . . . , q  

gq+k = Cqfik, k =  1 . . . . .  p - q 

?/p+k - Cqf lp-q+k --  kOtk = A k  = - -gp+k  + Cqflp-q+k --  kOk, k = l , 2  . . . .  

for any number A k .  

It is a direct matter to check the solvability of  these equations and we omit the 
proof here. 

To prove that the index of finite determinacy makes sense in the theorem, one 
needs to show that the elimination of any terms with order higher than i (X) 
has no influence on the i(X)-jet of X. It is not hard to see this point from the 
above equations (one can realize so by investigating the relations between the 
subscripts of these parameters). 
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The highest degree term in Qp (Xl)X20x3 can be removed by the extra freedom 

from the change of coordinates xl --+ xj + o~x p+l . 
The equivalence of normal form (7) and the normal form listed in the theorem 

is obvious. 
Case  (ii): p < q < 2p. The only difference in this case is the rearrangement 

of those linear systems. A similar discussion can be given and is omitted here. 
Case  (iii): q > 2p. In this case, the functions in (5) are given by 

h ~ ( x )  = y l x  + . . .  + V p x  p 

+ (Vp+l  - ~ l ) x  p+l  + " "  + (Vq - (q  - p ) o l q  p ) x  q 

o o  

+ ~ ( V q + k  - c f ik  - (q  - p k ) ~ q _ p + k ) X  q+k + 

k=l 

h2 remains the same. 

h 3 ( x )  = - F 1  x p + I  . . . . .  (q - p ) F q _ p X  q 

OG 

§ ~ ( C ( O l k  -- Ok) -- (q -- p §  p+k)X q+k 

k-1 

h 4 ( x )  = - y l X  . . . . .  y p x  p 

- (Vp+l  + 0 1 ) x  p+I . . . . .  (Vq + (q  - p ) O q _ p ) x q  

C Q  

- ~ - ~ ( Y q + k  - c f ik  + ( q  - p + k)Oq_p+k)X q+k 

k - I  

The corresponding normalization means the solvability of the following linear 
equations. 

0h=~k, k = l  . . . . .  p, 

Op+k --  ~p+k  = kf ik ,  k = l ,  2 . . . .  

Fk =0 ,  k =  1 . . . . .  p, 

Fp+k--ke~k=Ak=--Fp+k--k0k, k =  1 . . . . .  q -  p 

Fq+k --  (q --  P + k)otq p+k -- Cflk = Aq-p+k = - -Yq+k  -- (q - p + k)Oq-p+k q- Cflk 

for any number Ak. We shall skip the details here. 
The solvability of these equations means that the original vector field can be 

reduced to the following polynomial form 

)~1 ~--- Xl p+I  § ax~  p+I X2 = x3 -4- x z P p ( X l )  -~3 = x 3 P p ( X l ) ,  
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which, like the previous cases, is equivalent to the final normal form given in the 

theorem. 
Collecting all the facts above, we prove the theorem. [] 

P roof  of Theorem 3. We shall only sketch the proof of the case 1.1. All the 
other cases can be treated similarly. 

First, it is easy to see that this case implies that the functions in (3) take the 

following forms: 

fR(Xl )  : )~ -~- /ZIX 1 -~- . . .  -~- ]~q i x q - 1  -~- ]ZqX q - ~ - . . .  

f 3 ( X l )  : O ( x q + l ) ,  f 4 ( X l )  ---- O ( x  q§  

fs (xl )  = ~. § tz lx j  + ' "  + ~ q - l X  q-I  + VqX q + . . .  

where Vq - #q 7~ O, and if  p = q we also assume that Vp - / Z p  ~ 1, 2 . . . .  We 

shall show that all the terms in f3 and f4 and the those terms in f2 and f5 whose 
degrees are higher than p are removable. In fact, one can check that the change of 

coordinates x --+ id. + (0, fll Xl x3, Yl x 1 x2) makes the following effect to the q + l- 

jet of the original vector field (lZq - Vq)X q+l (fllX3Ox2 --  )"1X20x3). Therefore by 

choosing suitable/31 and ?/1, one can remove the terms A x  q+ 1x3 cqx~- -]- B~'q+l~l X20~3 

for any parameters A and B. Notice that the transformed vector field admits the 
same resonant form. By performing a series of this kind of transformations (with 

higher order terms), we can remove, jet-by-jet, all the terms in f3 and f4- The 
normalization of f2 and f5 can also be fulfilled jet by jet. To this end, take 
transformation x -+ id.  + (0, ~ l x l x2 ,  OIXIX3). Then it keeps the p + 1-jet of 

~.p+l - 
X unchanged and brings the terms ~1 (~lXzOxz + 01x30~3) to the p + 2-jet. 

Therefore with suitable al and 01, one can normalize the p + 2-jet. Carrying 
on this process with higher order transformations, one can arrive at the normal 

form given in the theorem. 
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