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Abstract .  Given a rational homology class h in a two dimensional torus T 2, we show 
that the set of Riemannian metrics in T 2 with no geodesic foliations having rotation num- 
ber h is C ~ dense for every k 6 N. We also show that, generically in the C 2 topology, 

there are no geodesic foliations with rational rotation number. We apply these results and 
Mather's theory to show the following: let (M, g) be a compact, differentiable Rieman- 
nian manifold with nonpositive curvature, if (M, g) satisfies the shadowing property, 

then (M, g) has no flat, totally geodesic, immersed toil. In particular, M has rank one 
and the Pesin set of the geodesic flow has positive Lebesgue measure. Moreover, if 
(M, g) is analytic, the universal coveting of M is a Gromov hyperbolic space. 

Keywords: Geodesic foliations, rotation number, Mather sets, shadowing prop- 
erty, Gromov hyperbolic. 

Introduction 

Let (M, g) be a C ~,  compact Riemannian manifold. We denote by T1M the unit 
tangent bundle of  M, M denotes the universal covering of  M, Jr : M > M will 
be the covering map and rot (M) the fundamental group. Let ~bt : T1M > Tt M 
be the corresponding geodesic flow. The notation [a, b] represents a geodesic 
segment joining a and b. We say that (M, g) satisfies the shadowing property, 
if  there exists a C 2 neighborhood V of (M, g) such that every metric ~ c V has 
the following property: given a geodesic F in (M, ~), there exist a geodesic/? 
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in (3), g) with finite Hausdorff distance from V- The purpose of this article is to 
show the following result: 

Theorem 1. Let (M, g) be a compact Riemannian manifold with nonpositive 
curvature. If (M, g) satisfies the shadowing property then (M, g) contains no 
immersed, flat, totally geodesic tori. 

Combining Theorem 1 with some results of the theory of manifolds with 
nonpositive curvature, we obtain: 

Theorem 2. Let (M, g) be a compact manifold with nonpositive curvature. 
Assume that ( M, g) has the shadowing property. Then 

1. The rank of M is one, the Pesin set of the geodesic flow has positive 
Lebesgue measure, and in particular, the metric entropy of the geodesic 
flow with respect to the Lebesgue measure is positive. 

2. If (M, g) is analytic, the universal covering (1(/I, g) endowed with the 
pullback of g is a Gromov hyperbolic space. 

Recall that (3), g) is a Gromov hyperbolic space if every geodesic triangle is 
3-thin for some 3 > 0, i.e., given x0, xl, x2 in M, the distance from p c [xi, xi+l] 
to [xi+l, xi+2] U [xi+2, xi] is bounded above by 6 (here, the indices are taken rood. 
3). The shadowing property is a dynamical counterpart of the stability of quasi- 
geodesics in Gromov hyperbolic spaces (see [9], [7]), an idea that goes back 
to Morse [13]. In some sense, the former is weaker than the latter because the 
shadowing property only requires the existence of shadows for quasi-geodesics 
which are geodesics of perturbations of the metric. In a previous paper [16], the 
conclusion of Theorem 1 is obtained for manifolds with nonpositive curvature 
satisfying the so called e-C ~ shadowing property, where ~ = �89 us (M). 
It is not hard to check that the e-C ~ shadowing property implies the shadowing 
property, so Theorem 1 is a generalization of the results in [16]. The main idea 
of the proof is the following: if (M, g) contains a fiat, immersed totally geodesic 
torus T 2, we perturb (M, g) so that T 2 remains totally geodesic and the new 
metric induced o n  T 2 is generic enough to allow us to apply Mather's work [12]. 
Then, Mather's results yield the existence of geodesics that cannot have shadows 
in the original metric, namely, geodesics "connecting", in the sense of Mather, 
many different asymptotic behaviors. Notice that perturbations preserving a flat, 
totally geodesic, immersed T 2 might not be generic when restricted to T 2, since 
they have to preserve the selfintersections of T 2 (which are also geodesics). I 
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am very grateful to Professor V. Bangert, who suggested me Theorem l while I 
was visiting Freiburg University, and encouraged me to write this paper. 

1 Perturbations preserving totally geodesic submanifolds 

Throughout the paper, all geodesics will be parametrized by arclength. The 
length of a compact, rectifiable curve C in (M, g) will be denoted by lg(C), the 
Hausdorff distance between two subsets A, B of a metric space (X, d) will be 
denoted by d(A, B), and the distance in T1M induced by (M, g) will be denoted 
by d(r~M,g), or simply, dr~M. The main result of this section is a straightforward 
application of [16], Proposition 1.1. 

Lemma 1.1. Let (M, g) be a compact Riemannian manifold and let (T 2, g) be an 
immersed totally geodesic torus. Then, given an open, connected subset B C T 2 
such that its closure B contains only simple points (i.e., B is disjoint from the set 
of  points of  selfintersection of  T2), an integer k > O, a function f : T 2 > R 
supported in an open subset of  B such that I f  - 11 is C~-close to O, there exists 
a C k conformalperturbation (M, ~) o f (M,  g), where ~p = f (p)gp,  such that 

1. (T  2, g )  i s  totally geodesic. 

2. The restriction o f f  to T 2 is the function f . 

3. I f  the gradient V f is tangent to a g-geodesic segment V contained in B, 
then ~/ is also a ~-geodesic segment. 

Proofl In fact, in [ 16], section 3, we find conditions for a function f : M > R 
to define such a conforrnal change ~p = f (p )gp .  We sketch the main ideas 
of the construction of the perturbations for the sake of completeness. In few 
words, every function f : M ~ R whose gradient is perpendicular, to the 
tangent space of an embedded, totally geodesic submanif01d preserves the totally 
geodesic character of the submanifold. This implies immediately item (3). To 
construct an extension of f satisfying items (1) and (2) we proceed as follows. 
For q ~ B, let N(q) C TqM be the subspace of vectors which are o~hogonal tO 
Tq T 2. There exists ~ > 0 such that the open set 

V = U q c B { e X p q ( V ) ,  l[ V ]1< 8, V E N(q)} 

meets T 2 precisely in B. Now, we can chose f : M > R such that 

1. The support of f is V. 
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2. The restriction of f to B is the function f .  

3. The restriction o f f  to expq(N(q)) is critical at q 6 B and has critical 
value f (q). 

The idea of the construction is very simple. Let FI : V > B be the or- 
thogonal projection along the fibers expq(N(q)), Consider a bump function 
z : ( -  1, 1) > [0, 1] having a strict global maximum at t = 0, and define 

dZ(x, N(x)) 
f ( x )  = f ( n ( x ) ) z (  ). 

6 

It is easy to check that f is C k small if f is C k small. This shows items (1) and 
(2) in the lemma. [] 

2 Waists, homoclinic geodesics, and rational geodesic foliations 

Recall that a geodesic V in a Riemannian manifold (N, g) has conjugate points 
if there exists a pair of points V (t), y (s), where t < s, and a non trivial Jacobi 
field J : [t, s] > TN, with J(t) = J(s) : O, J(x) (= 0 for some x c [t, s]. 
A geodesic has no conjugate points if and only if it minimizes the length of local 
variations joining any two points in it. We say that a geodesic V in (M, g) is 
globally minimizing (or a global minimizer) if it minimizes the distance between 
any two of its points. Morse in [13] called these geodesics class A geodesics, and 
it is clear that globally minimizing geodesics have no conjugate points. Globally 
minimizing geodesics in periodic metrics on R 2 have very special properties. 
For instance, such a geodesic projects onto a geodesic in the 2-torus with no self 
crossings, and posseses a rotation number, i.e., a well defined real homology 
class in//1 (T 2, R). Throughout the paper, we shall identify rational homology 
classes with free homotopy classes in T 2. A closed geodesic ol with nonzero 
free homotopy class will be called a waist if the length of any closed loop in 
its free homotopy class is strictly greater than the lenght of a. Waists in closed 
surfaces lift to global minimizers in the universal covering of the surface. Next, 
we list some basic properties of global minimizers in surfaces due essentially to 
Morse [13] and Hedlund [10]. Our basic reference for the subject is the work of 
Bangert [4], where we can find a complete, recent exposition of the theory with 
generalizations to the theory of monotone twist maps. 

Lemma 2.1. The set of vectors in T1M which are tangent to globally minimizing 
geodesics of (M, g) is closed. 
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L e m m a  2.2. Let (T 2, g) be a Riemannian structure on the torus T 2, and let or, fi 

be two globally minimizing geodesics in (R 2, g ). Suppose that ot (0) = fi (0) = p. 

Then either ol = fi, or ol 0 fl = p and lim inft~+oo d(c~(t), fl) > O. 

L e m m a  2.3. Let (T 2, g) be a Riemannian structure on T 2. 

1. There exists a constant D > 0 such that every globally minimizing geodesic 
in (R 2, g) is contained in a tubular neighborhood o f  a straight line in the 
Euclidean plane R e o f  radius D. 

2. Let V be a closed geodesic which minimizes the length among closed loops 

in its free homotopy class. Let fi be a geodesic in (T 2, g) whose lifts are 
global minimizers in (R 2, g) with rotation number p. Then the rotation 

number o f  v is equal to p if and only if fi does not cross V. 

Given a closed geodesic ~(t) ,  t E [0, L] in (T 2, g), we say that a geodesic/3 
is homoclinic to ot if 

lira sup{d(oe(t),  fi), d( f i ( t ) ,  ol)} = 0, 
t--+ q-oo 

and 

lim su p { d (a ( t ) ,  ~),  d( f i ( t ) ,  oe)} = O. 
t---> --OO 

The following result obtained by Morse [13] will be of  fundamental importance 
for us. 

L e m m a  2.4. Let oe be a waist of (T 2, g), and let oq, Ot 2 be two consecutive lifts 

o f  oe in (R 2, g). Then there exist two globally minimizing geodesics fib f i2  in 
(R 2, g) such that 

and 

lim d (a l ,  i l l(t))  = O, lim d(ot2, ill(t)) = 0 
t - + + o o  t-->--Oo 

lim d(oe2, f l 2 ( t ) )  = O, lim d(oq, f l 2 ( t ) )  = O. 
t---> +oo t ~  --oo 

The previous Lemma has a sort of  converse, that is straightforward from 
Morse 's  work. 

L e m m a  2.5. Let oe be a waist o f  (T 2, g). Then every globally minimizing 
geodesic o f  (R 2, g) contained in a strip bounded by two consecutive lifts o f  oe 

behaves like the geodesics fil and fi2 in Lemma 2.4. 
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Corollary 2.6. Let ~ be a waist in (T 2, g), and assume that there exists a 
continuous foliation of  T 2 by geodesics of (T 2, g) which have the same rotation 
number as el. Then every geodesic in this foliation is homoclinic to or. Moreover, 

any two geodesics in the foliation are asymptotic in the past and in the future 

(i.e, their distance goes to 0 as t ---> -4-cx~). 

Proof. It is not hard to check that each geodesic in the foliation lifts to globally 
minimizing geodesics (see [17] for instance) in (R 2, g). Since the geodesics 
in the foliation have the same rotation number as c~, by Corollary 2.4 these 
geodesics do not cross o~. This implies that o~ must be a geodesic of the foliation. 
So Lemma 2.5 implies that each of these geodesics is homoclinic to or. Since 
there are essentially two possible asymptotic behaviours (described in Lemma 
2.4) of the lifts of the geodesics in the foliation with respect to lifts of o~; and 
two geodesics having different asymptotic behaviours always intersect, we easily 
deduce that the geodesics in the foliation have to be bi-asymptotic. [] 

3 The destruction of rational geodesic foliations by Ck-small bumps 

Lemma 3.1. Let ol be a waist in (T 2, g ), and let t6 be a geodesic that is homoclinic 

to ot whose lifts are globally minimizing. Let V be any open subset such that the 
closure of  V is disjoint from et and ~. Then (T 2, g) can be approached in any 
C k topology by a metric (T 2, ~,) satisfying the following properties: 

1. The geodesic ot continues to be a waist of  (T 2, g) in its homotopy class, 
and ~ is still a ~,-geodesic homoclinic to ot whose lifts are ~,-globally 

minimizing. 

2. There is no ~,-globally minimizing geodesic that is bi-asymptotic to some 

lift of  ~ and meets re-1 (int (V)). 

Proof. L e t f  : T 2 > RbeaCkperturbat ionof thefunct ionh(p)  = lVp c T 2 

with support in V. Choose f such that f ( q )  > 1 for every q E int (V). Consider 
the metric ~p = f ( p ) g p  in T 2. The geodesic oe continues to be a waist of (T 2, ~) 
in its homotopy class. Moreover, the curve 13 remains geodesic, homoclinic to 
t~; and its lifts continue to be globally minimizing. This is simply because the 
conformal factor f increases arclength in V and the geodesics ~,/~ do not cross 
V. Consider two consecutive lifts c~1, o/2 of or in (R 2, g), that bound a strip F. Let 
us call also by 13 C F a lift of the geodesic [3 in (R 2, g). Suppose that there exists 
a ~-globally minimizing geodesic g C F that, at the same time, is bi-asymptotic 
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to/3 and meets rc l(int(V)). To simplify the notation, let us denote Jr -1 (V) by 

V. Then there exists a continuous parametrization s �9 R ~ R of F such that 

lira d~(/3(t), V(s(t))) = 0, lim d~(/3(t), y(s( t ) ) )  = 0. 
t ~ + o o  t--+-oo 

Given r > 0, let t, > 0 be such that 

suph=g,gdh(/3(t), y(s(t))) <_ r 

for every Itl > t,. Let us estimate the ~-length of y [ s ( - t ) ,  s(t)] in terms of its 
g-length. We have that 

l~(v[s(-t) ,  s(t)]) = l~(v[s(-t) ,  s(t)] N V) + lg(v[s(-t) ,  s(t)] n VC), 

where V C is the complement of V, which implies that 

l~(F[s(-t), s(t)]) = lg(v[s(-t) ,  s(t)] n V) + Ig(V[s(-t), s(t)] n VC). 

Since f is strictly greater than 1 in V there exists p > 0 depending on y such 
that lg(V[s(-t), s(t)] N V) = lg(F[s(-t), s(t)] n V) + p. So we get 

l~(y[s(-t) ,  s(t)]) -- lg(F[s(-t), s(t)] n V) + p + lg(F[s(-t), s(t)] n Vc), 

and hence 

lg(F[s(-t), s(t)]) = Ig(v[s(-t),  s(t)]) + p. 

On the other hand, since/3 is g-globally minimizing, we have for t > t,, 

lg(/3[--t, t ] )  < dg( /3 ( - t ) ,  Z ( s ( - t ) ) )  + d g ( Z ( s ( - t ) ) ,  y ( s ( t ) ) )  

+ d g ( y ( s ( t ) ) , / 3 ( 0 )  

< 2E +lg(V[s(-t)) ,s( t)])  

< 2r § Ig(y[s(-t)),  s(t)]) - p 

Therefore, since Ig(/3[-t, t])) = Ig(/3[-t ,  t]) we conclude that 

lg( /3[ - t , t ] )  - 2r q- p < l~(y[s(-t) ,s(t)]).  (1) 

Take r = ~. Let us use the notation [p, q] to designate a minimizing geodesic 
segment joining p and q. Notice that the broken ~-geodesic  q formed by 

~/= [ y ( s ( - t ) ) , / 3 ( - 0 ]  U [ / 3 ( - 0 , / 3 ( 0 ]  U [/3(0, V(s(t))], 
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joins the points ) / (s ( - t ) )  and V(s(t)), and has ~-length 

If(o) <_ lg(/3[-t, t]) + 2 ~  

< lg(/3[-t, t]) + p- 
- 3 

for every t > t,. But inequality (1) implies that 

2p 
l~(/3[-t, t]) + ~ -  < l f ( y { s ( - t ) ,  s(t)]) 

for every t >_ t~. Thus, 

P 
l~(rl) < l~(y[s( - t ) ,  s(t)]) 3 '  

contradicting the ~-minimizing assumption on V. This ends the proof of the 

lemma. [] 

Corollary 3.2. Let [ol] be a free homotopy class of  (T 2, g) represented by a 
closed geodesic ~ whose length minimizes the length among closed loops in [or]. 
Then (T 2, g) can be approached in any C k topology by a metric (T 2, ~,) such 
that 

1. ~ is a waist in its homotopy class. 

2. There is no foliation by geodesics with the same rotation number as or. 

Proof. Applying Lemma 1.1, we get Ck-arbitrarilly small conformal perturba- 
tions of (T 2, g) where the geodesic ol is a waist in its homotopy class. Indeed, it 
suffices to take a conformal factor f supported in a small neighborhood B of a 
point in o~ that satisfies the following conditions: 

1. The function f is strictly less than one in B, 

2. The restriction of f to any geodesic segment in B that is normal to c~ 
reaches its minimum value at o~. 

In this way, the metric ~p = f ( p )gp  satisfies the hypothesis of Lemma 1.1, (3) 
(the proof of this fact is made in detail in [16]). So, assume without loss of 
generality that e~ is a waist of (T 2, g). By the results of Section 2, a foliation 
of (T 2, g) by geodesics with the same rotation number of o~ is a foliation by 
geodesics which are homoclinic to o~. Let ~/1, 02 be the projections in (T 2, g) 
of two g-globally minimizing geodesics/31,/32 which are bounded by two lifts 
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of o~, and that behave asymptotically like in Lemma 2.4. Given any open ball 
W c T 2 whose closure is disjoint from oe, the geodesics 0~, 772 meet W only a 
finite number of times. So it is possible to find an open ball V whose closure 
is disjoint from o~, ~l and 772. Then, Lemma 3.1 shows that we can approach 
(T 2, g) in any C k topology by a metric (T 2, ~) without any foliation by geodesics 
homoclinic to ~. [] 

Corollary 3.3. The set of  metrics in T 2 with no rational geodesic foliations is 

C 2 generic. 

Proof. Let [ot] be a free homotopy class of (T 2, g) represented by a closed 
geodesic o~ whose length minimizes the length among closed loops in [ol]. We 
can perturb g conformally in the C 2 topology in order to transform o~ in a waist 
that is at the same time a closed, hyperbolic geodesic. This fact is straightforward 
from the results in [15] for instance, where the equation of the curvature of the 
perturbed metric is calculated explicitly. Denote this metric by ~. By Corollary 
3.1, we can approach (T 2, ~) in any C k topology by a metric with no foliations 
by geodesics with rotation number [o~]. Let M0 be the set of metrics on T 2 
with a hyperbolic waist in [c~] and no geodesic foliations with rotation number 
[o~]. The point is that this set is open in the C 2 topology. In fact, let (T 2, go) 
be an element of M0. There exists an open neighborhood V of go in the C 2 
topology where every metric in V has a hyperbolic waist in [~]. We claim that 
there exists an open neighborhood W C V of go where no metric in W has 
foliations by geodesics with rotation number equal to the rotation number of c~. 
For, suppose that there exists a sequence gn of metrics in V approaching go in the 
C 2 topology, where (T 2, gn) has a foliation Fn with the above property. It is not 
hard to show that the sequence of foliations F,, converges to a foliation of (T 2, go) 
by globally minimizing geodesics with the same rotation number of el, because 
the set of foliations by globally minimizing geodesics is a co-compact subset 
of the collection of foliations of T 2. This clearly contradicts the assumption on 
go. We conclude that the set of metrics in T 2 with a waist on each homotopy 
class and no geodesic foliations with rational rotation number is the intersection 
of a countable collection of open, dense subsets of metrics. Thus, by Baire's 
Theorem, the above set is a nonempty subset of the first category in the set of 
metrics in T 2 endowed with the C 2 topology. [] 

Lemma 3.1 and Corollaries 3.1, 3.2, 3.3 hold for immersed, totally geodesic, 
two-dimensional tori in view of the results in Section 1. In fact, we can perform 
the conformal bumps required by the proof of Lemma 3.1 in an open subset of 
simple points in an immersed, totally geodesic two-dimensional toms, and then 
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extend the perturbation as indicated in Lemma 1.1. So we have: 

Corollary 3.4. Let (M, g) be a complete Riemannian manifold with an im- 
mersed, totally geodesic two-dimensional torus (T 2, g). Let Go be the set of 
metrics in M for which the torus T 2 is totally geodesic. Then, 

1. Given a nontrivial, free homotopy class [oe] of T ~, the set of metrics in 
Go with a waist in [~] and no geodesic foliations with rational rotation 
number [ol] is Ck-dense in Go for every k ~ N. 

2. The nonexistence of  rational geodesic foliations in T 2 is C 2 generic in Go. 

4 Birkhoff map and the existence of regions of instability 

In this section, we denote by Ye, where 0 = (p, v) c T1T 2, a geodesic with 
initial conditions Ye (0) = p, yf(0) = v. Given a Riemannian metric (T 2, h) 
in T 2, and a simple closed geodesic/3,  the Birkhoff map P/~ associated to/3 is 
the first return map of geodesics intersecting/3 transversally. Namely, if y is 
a geodesic in (T 2, h) with y(0)  = /3(s), and y ' (0)  is transversal to/3'(0),  then 
P/~(y) = y(r) = /3(g) is the next intersection of  y with/3. If  we assume that 
such next intersection always exists, the Birkhoff map induces a map 

W e ~. S 1 X (0 ,  2 re )  > S l x (0, 2rr), 

T~ (s, t) = (g, i), 

where S 1 = R / Z ,  (s, t) represents the geodesic Yo = Yo(,,O with initial con- 
ditions y0(0) = f l ( s l h ( f l ) ) ,  t = c o s - l h ( y ~ ( O ) ,  f l ' ( s l h ( f l ) ) ) .  S o  the coordi- 
nate t is a branch of  the angle with respect to /3. Analogously, (~, i) rep- 

resents the first return of  Y0 to /3, i.e., P/~(Y0) = y0(r) = /3(slh(/3)), and 
{ = cos-lh(y~(r),/3'(rXlh(fl))). This map might not be defined everywhere, 
and the purpose of  this section is to show that perturbations of the Euclidean 
metric of  the toms have well defined Birkhoff 's  maps satisfying some generic 
properties. Recall that a measure preserving map F : S ~ x R > S 1 x R, 

O{ 
F(t, s) = (i, ~), is called a twist map if ~ # 0 for every point in the annulus 
S ~ x R. There is a natural variational principle associated to twist maps whose 
minima are certain orbits of the dynamics satisfying very special properties, the 
so-called Aubry-Mather sets (for definitions and a clear, simple exposition of  the 
theory we refer to [4]). Following Mather's notation, the collection of  Aubry- 
Mather sets with rotation number p will be called MF,p. One of the fundamental 
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facts of the theory is that MF,p is nonempty for every p (see, for instance, [4]). 
When F is a Birkhoff map, homotopically nontrivial invariant curves in MF, p 
correspond to invariant toil in TIT 2 foliated by globally minimizing geodesics. 
A Birkhoff region of instability B of a twist map F of the annulus is an invari- 
ant closed annulus bounded by two invariant, noncontractible curves, such that 
there is no other noncontractible invariant curve in its interior. To simplify our 
notation, we shall often identify geodesics with their corresponding orbits in a 
Birkhoff map. The main result of the section is the following: 

Lemma 4.1. Let (T 2, g) be a flat, immersed, totally geodesic torus in (M, g), let 
p c T ~ be a simplepoint, and go, 0 = (p, v), be a closedgeodesic that minimizes 
the length among closed loops in its free homotopy class. Given 6 > O, there 
exits a 3-C k perturbation (M, ~) of  (M, g) with the following properties: 

1. (T 2, ~) is totally geodesic. 

2. There exist a closed, ~,-geodesic fl in (T 2, g), and a locally isometric 
covering l-I : (~2, ~) > (T 2, g), with the following properties: 

�9 The s e t  ,if2 is a 2-dimensional manifold, and the (unique) lift fi offl  
in ~2 is a simple closed geodesic. 

�9 The Birkhoffmap T~ associated to fi is a well defined twist map of 
an annulus C. 

�9 The annulus C posseses a Birkhoff region of  instability B which 
contains the lift of  go in ~2, and every Mather set Mr~,p, where p is 
the rotation number of go with respect to T~. 

Notice that the annulus C is not in general in the standard form S ~ x [a, b]. We 
shall usually identify an orbit of the Birkhoff map with the underlying geodesic. 
We show first some elementary lemmas about conjugate points and twisting of 
the Birkhoff map. 

Lemma 4.2. Let (T 2, h) be a Riemannian structure on T 2. Suppose that there 
exists a simple closed geodesic t 3 of  (T 2, h) with the following properties: 

1. The associated Birkhoff map induces a well-defined map on an annulus 
T ~ : C  >C. 

2. There exists ), > 0 with the following property: 

Given a geodesic Yo represented by the Birkhoff map, with Ye (0) E fi, let 
ro be the first return time of  V6 to fl (i.e., To(ro) = P~(To))- Then the 
geodesic segment Vo [-)~, ro + )v] has no conjugate points. 
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Then the Birkhoff map of t~ is a twist map. 

Proof. Since this lemma is well-known we just sketch a proof for the sake 
of completeness. On the one hand, the Birkhoff map preserves the measure 
s in ( t )dsd t  of the annulus [6], where s, t are the coordinates defined in the 
beginning of the section. On the other hand, the absence of conjugate points 
in the geodesic segment Fo [-~ ,  ro + ~] implies the convexity of the generating 
function H of the Birkhoff map at the pair (s (F0 (0)), s (Fo (ro))) (see [4]). This 
is equivalent to the twist property of the map. [] 

Lemma 4.3. Let (T 2, g) be a flat metric on T 2. Given k ~ N, there exists 
> O, 6' > O, such that every 6-C ~ perturbation (T 2, ~,) of  (T 2, g) satisfies the 

following property: 
Let S C T1T 2 be a region invariant by the geodesic flow of  (T 2, g), whose 

boundary consists on two invariant tori foliated by globally minimizing geodesics 
which are within a (Hausdorff) distance 6 ~. Then there exists a closed ~-geodesic 

whose associated Birkhoff map restricted to a certain annulus C represents 

the geodesic flow restricted to S. Moreover, the Birkhoff map is a twist map. 

Proof. Recall that every flat toms has a pair of generators of the fundamental 
group Vl, v2 represented by  simple closed geodesics which meet making an 
angle of at least ~ (see [16] for instance). Let F1, F2 be two straight lines in 
the plane tangent to vl, v2 respectively, with Fl(0) = F2(0). Then it is clear 
that every straight line intersects either F1 or F2 forming an angle of at least 6" 
These geometric features of fundamental domains of an Euclidean torus persist 
in some sense under small perturbations of the metric. In fact, let now F1, F2 be 
two closed ~-geodesics in T 2 with free homotopy classes [Vii = vi. Suppose that 
F1 (0) = Y2 (0). Given k ~ N, ~ > 0, there exists S > 0 such that for every 3-C ~ 
perturbation (T 2, ~) of (T a , g), we have that the angle of intersection between F1 
and F2 is at least ~ - E. Hedlund observed in [10] that any globally minimizing 
geodesic in (R 2, g) whose rotation number differs from vi must cross all the lifts 

of Fi. 

Claim: There exists A > 0, A = A(a), such that every metric (T 2, g) that is 
6-C ~ close to an Euclidean metric, where k >_ 1, has the following property: 

Let/3 be a geodesic of (T 2, ~) that lifts to a globally minimizing geodesic fi 
in (R 2, ~) with rotation number [fi]. Then, either the time spent by fi between 
any two consecutive lifts of V1 is less than A, or the time spent by fi between any 
two consecutive lifts of F2 is less than A. 
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Otherwise, there would exist a sequence of metrics g,,, n c N, which are C k 

close to g, geodesics/3n of (T 2, gn) that lift to globally minimizing gn-geodesics 
fin in R 2 having rotation numbers [/3,~], a sequence of intervals [t,~,i, sn,i], i = 
1, 2 with Itn,i - sn,i] --+ +ec ,  such that the geodesic segment/3,~[t,,,i, sn,i] is 
contained in a strip bounded by two consecutive lifts of Y,,,i. Here, Y,,,i is a 
closed minimizing gn-geodesic with homotopy class vi. Now, since the periods 
of the geodesics Yn,i are uniformly bounded by some constant P, and the angles 
between y~, 1, Y,~,2 are close to }; we can easily show that there exists no such that 
the geodesic/3~ has self-crossings for every n > no. Since globally minimizing 
geodesics cannot have self-crossings, this yields a contradiction. 

The Claim implies that there exists a = a (A) > 0 such that for any S -  C ~ small 
perturbation ( r  2, ~,) of (T 2, g), and any g-geodesic/3 whose lifts are globally 
minimizing, then either each time that/3 and 1'1 cross they form an angle greater 
than a, or each time/3 and 1'2 cross they form an angle greater than a. 

Now, given e > 0, let 3' = 3'(e, A) > 0 be such that for every Ck-3 small 
perturbation (T 2, ~) of the Euclidean (T 2, g) we have 

1. Given two g-geodesics 1'0, 1'~, where 0, o- E (T~T e, ~),  satisfying 

dr~v2(O, ~r) < ~, then d~(1'o(t),  1"~(t)) < ~' for every It[ < 4A; 

2. Given a g-geodesic 1"o which has no conjugate points in the interval 
( - 1 ,  4A), then every g-geodesic 1'~ with d~(1"o(t), 1"~(t)) < 3 7 for ev- 
ery - 1  < t < 4A has no conjugate points in the interval ( - 1 ,  3A); 

3. If a g-geodesic segment 1'0 [0, T], where IT[ _< A, crosses 1'~ at the points 
1"o (0), 1"o (T )  with angles greater than a, then any g-geodesic 1'~ [ -  A, 2A] 

a 
satisfying dg (1"o (t) ,  1"~ (t)) < 3' for every -~- < t < 2A also crosses 1'i 
at (at least) two points, and the angles formed by 1"o [0, T] and 1'i at their 
crossings is greater than ~. 

Lemma 4.3 is straightforward from the above Claim. Indeed, let 3, 3 ~ be 
the numbers previously defined, let S be a region in (TIT 2, ~) bounded by two 
invariant toil foliated by globally minimizing geodesics with rotation numbers 
rl, r2. Let FI, F2 be the projections of these foliations in T 2. Assume that 
the boundary tori of S are within a Hausdorff distance 3'. By the Claim, we 
can assume that F~ crosses g~ forming angles of at least a, and then the first 
return map P of F1 to the cross section 1'~ is well defined, as well as all of its 
iterates. By the choice of 3', the same happens to the projections in T 2 of every 
orbit of the g-geodesic flow contained in S. Moreover, the return times of the 
geodesics in S is bounded above by 3A, and they meet 1'! with angles greater 
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than 2" Hence, the map P• is well defined for every projection of an orbit in S. 
By item 2 above and the proof of Lemma 4.2, (2), the map Pyl restricted to the 
projections of the orbits in S gives rise to a twist map Tyj. We have to check that 
T• is defined in an annulus. Observe that there is a bijective correspondence 
between the above geodesics and an annulus. Indeed, let t(0(0), t/(0)) be the 
angle coordinate defined in the beginning of the section, where ~ is the projection 
of some orbit in S satisfying r/(0) c V1. Let Fi(p), i = 1, 2, be the geodesic of 
Fi passing through p, and denote by ti (s), s ~ R / Z ,  the angle coordinate of the 
geodesic Fi (p) at the point p = Yl (sl(Iq)). Assume that tl (s) < t2(s) for every 
s c R / Z .  It is not hard to see that the twist property of the map r?/1 implies that 
t(O(0), r/(0)) 6 [q(s(tj(0))), t2(s(o(0)))] for every projection ~ of an orbit in 
S; and hence, the set of coordinates (s, t) of the projections of the orbits in S is 
the set 

= U [tl(s), t2(s)] C 
sER/Z 

This set is homeomorphic to an annulus, its boundary consists on the two closed 
curves C1 = { ( s ,q (s ) ) , s  c R /Z} ,  and C2 = {(s, t2(s)),s c R /Z} .  This 
finishes the proof of Lemma 4.3. [] 

Proof of Lemma 4.1: Given k >_ 5, let 3 > 0, Y be the numbers defined in 
Lemma 4.3. Let (T 2, ~) be &C ~ close to an Euclidean toms (T 2, g). By KAM 
theory, there exists 30 > 0 such that for every 3 _< 30 there exists a lamination 
Fg C T1T 2 whose leaves are invariant tori. In each invariant toms the dynamics 
of the geodesic flow is equivalent to an irrational flow of the toms, and the 
Lebesgue measure of Fg tends to be full as 3 goes to 0. Any such toms gives rise 
to a foliation by ~-geodesics of T 2 with irrational rotation number. Moreover, 
according to [4], any geodesic foliation with irrational rotation number is unique 
with this rotation number. Given 3" > 0, we can choose 3 very small so that the 
boundary tori of every connected component of the complement of F~ are within 
a Hausdorff distance less than 6". Then, by Lemma 4.3, letting/~" _< 6', every 
invariant region in (T1T 2, ~) whose interior has no invariant toil determines a 
Birkhoff map in an annulus that is a twist map. 

Now, let us suppose that (T 2, g) is a flat, totally geodesic toms immersed in 
(M, g). Let p c T 2 be a simple point, let Yo be a closed geodesic through 
p, and let (T 2, ~) be a 3'-C 5 perturbation of (T 2, g) satisying the hypothesis of 
Corollary 3.4, (1), with ~ = Y0. Since (T 2, g) is flat, it is covered by flat planes in 
(~ r  g). Let (P, g) be one of these planes. Let us remind that (T 2, ~) and (T 2, g) 
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correspond to the same toms immersion (by the properties of the perturbation 
~), so (P, ~) is a totally geodesic plane in (M, g,) that covers (T 2, ~). Let co, 

be two closed ~-geodesics whose homotopy classes generate 7rl (T:). There 
exists a pair of covering transformations Do~, D,~, acting on (P, ~) by isometries, 
whose axes are the lifts of o) and ~ respectively in (P, ~). Now, the quotient 
P~ < D~o, D~ > of P by the action of D~o, D~ is a Riemannian torus ~2 which is 
locally isometric to (T 2, ~). Moreover, Lemmas 4.2 and 4.3 apply to 2? 2, since 
i? 2 is close to a flat toms, Hence, we can assume without loss of generality that 
(T 2, ~) is embedded in (M, ~). 

We claim that F0 is contained in a Birkhoff region of instability. Indeed, 
let p be the rotation number of F0 in H~ (T 2, R). By Corollary 3.4, there is 
no geodesic foliation in (T 2, ~,) with rotation number p. This implies that 0 
belongs to the complement of the closure of invariant tori in 7"1 (T a, ~), because 
the collection of invariant tori is closed in T~ (T 2, ~). In particular, 0 belongs 
to the complement of Fg, and there exists an open neighborhood V of 0 in this 
complement. Hence, the connected component F of the complement of the set 
of invariant tori that contains 0 is bounded by two invariant toil which are within 
a Hausdorff distance less than ~'. Therefore, by Lemmas 4.2, 4.3, there exists 
a closed ~-geodesic 13 such that the geodesic flow restricted to F is represented 
by the Birkhoff map Tr : C > C associated to fi, where C is some annulus. 
Moreover, the boundary of C consists on two invariant curves representing the 
invariant tori in the boundary of F, and there are no other invariant curves in the 
interior of F. This finishes the proof of Lemma 4.1. 

5 The proof of the main Theorem 

We first recall the following property of twist maps of the annulus whose proof 
is due to J. Mather ([12], Theorem 4.2). 

Theorem 5.1. Let F : S 1 • R > S 1 • R be a monotone twist map, and let 

B be a Birkhoff  region o f  instability. Let F_, F+ be the invariant curves in the 

boundary of  B, with rotation numbers p_ < p+. Consider for  each i ~ Z a 

real number co i C [p--,  p+]  and a positive number ei. Then there exists an orbit 

{F~(x)} in B and an increasing bi-infinite sequence {Ji} of integers such that 

d (FJ i (x ) ,  MF,~i) < el. 

Combining Lemma 4.1 and Theorem 5.1 we get 

Corollary 5.2. Let k >_ 5, let ~ > 0 and (T 2, ~) be the 8-C k perturbations of  an 

Euclidean metric (T 2, g) defined in Lemma 4.]. Then there exist two different 
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rotation numbers vl, V2 E HI(T  2, R), geodesics rl, Y~,~, Y2,n in (R 2, ~,), where 

n E N, satisfying: 

1. The geodesics Yi,n are globally minimizing with rotation numbers [Yi,,~] = 

v i , f o r i  = 1,2. 

2. There exists a sequence tk, k ~ Z, with tk --+ +c~, such that 

1 
dT-~7-z(~/(t2,,), YI,~) < ]~nn 1, 

and 

1 
dT, T2(~I(t2n+l),  ~/2,,,) < 1 2 ~ 1 .  

Proof. Let F be the Birkhoff map associated to (T 2, g) obtained in Lemma 4.1, 
and let B be its region of instability. Let F_, l?+ be the invariant curves in the 
boundary of B whose rotation numbers are p < p+, and let Yo be the closed 
geodesic defined in Lemma 4.1. Let t~ be the rotation number of the orbit of 
F associated to the geodesic )6. Since there is no invariant curve in B whose 
rotation number is ~, we know that p_ and p+ must be different from ~. We can 

1 apply Theorem 5.1 for instance to the sequences co2i = p_, co2i+~ = c~, ek = ~. 
By the construction of the Birkhoff map, this yields the existence of geodesics 
Yl,n, Y2,,~, ~ in the universal covering of (T 2, ~), where gl,,,, Y2,n have rotation 
numbers [gl,,~] = vl, [Y2,n] = [Y0]; and 0(t) approaches to within I~l or I 1 
to, alternatively, Yl,n and Y2n. This finishes the proof of the Corollary. [] 

Proof  of Theorem 1: The proof of Theorem 1 is by contradiction. Let (M, g) 
be a compact manifold with nonpositive curvature satisfying the shadowing prop- 
erty. Assume that (M, g) contains a flat, totally geodesic, immersed toms T 2. Let 
(M, g) be a small C ~ perturbation of (M, g) satisfying Lemma 4.1, i.e., the torns 
( T2, g) is totally geodesic, and the restriction of the geodesic flow of (M, ~,) to 
( T2, g) posseses an invariant region whose associated Birkhoff map has a region 
of instability. Notice that there exist infinitely many flat, totally geodesic planes 
in (&t, g), that cover (T 2, g), which are totally geodesic in (&t, g) and cover 
( T2, 3)- So let us choose one of these fiats P, and let Yl,n, Y2,n, for n c N, and 
0, be the geodesics in P given by Corollary 5.1. By Hedlund's work [10], there 
exists a constant D > 0 such that each geodesic Yi,n is contained in a tubular 
neighborhood of radius D of a straight line Li,,~ in P. The rotation number of 
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Li,n is clearly vi, the rotation number of Vi,n, for every n E N. So the lines 
{Lj,n, n 6 N} are parallel to each other, as well as the lines {L2,~, n 6 N}. Let 
us call by 00 the corresponding shadow in (/~/, g) of the geodesic r/. By the 
definition of the shadowing property, there exists A > 0 such that 0 is contained 
in a g-tubular neighborhood of radius A of r/0. Since t/is a subset of the flat 
P, which is totally geodesic in (37/, g), the geodesic ~0 is within a distance A 
from P. By nonpositive curvature geometry, there exists a flat strip F, whose 
width is less than A, bounded by r/0 and a g-geodesic ~0 in P. The strip F 
meets P perpendicularly precisely at the points of 7)0. But P is flat, therefore 
the geodesic ~)0 is a straight line. Hence, the ~-geodesic t/is within a distance 
2A from a straight line L = 7)0 in P. By Corollary 5.1, given ~ > 0, there are 
sequences ti,n < Si,n, for i = 1, 2, n E N, where lim,~_~+~ Si,n - -  ti,n = -~-OG, 
such that 

d(rl[ti,n, si,n], Vi,,,) < ~, 

for every n 6 N. This implies that 

d(rl[ti,,~, si,n], L i , n )  < 6 -[- D 

for every n E N. Hence, there exist sequences of points ai,n, bi,n in L, where 
lim,_++~ d(ai,,,, bi,n) = +oo,  such that 

d([ai,n, bi,,~], Li,n) 5 ~ + D + 2A.  

Here, [a, b] means the subsegment of L joining two points a, b c L. This clearly 
leads to a contradiction, because given two line fields vl, v2 in P, the straight 
line L makes a constant angle ~1 with the field vl, and a constant angle ~2 with 
the field v2. Since the contradiction arose from the assumption of the existence 
of a flat, totally geodesic, immersed toms in (M, g), we get Theorem 1. 

Theorem 2 follows from Theorem 1 and two classical results of the theory 
of manifolds of nonpositive curvature. By [2], [3], manifolds of rank > 2 axe 
foliated by flats and have a dense subset of flat tori. So Theorem 1 implies that 
the geodesic flow of a rank m manifold, m > 2, cannot satisfy the shadowing 
property. Standard arguments in nonpositive curvature geometry imply that 
the Pesin set of the geodesic flow has positive Lebesgue measure and thus, the 
metric entropy with respect to the Lebesgue measure is positive. On the other 
hand, if (M, g) is analytic, by [5], the existence of a flat, totally geodesic plane 
in ~r implies the existence of a flat immersed toms in M. Finally, Eberlein's 
characterization of visibility manifolds of nonpositive curvature through the non- 
existence of flat planes in M [8], tells us that the shadowing property implies the 
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visibility of (M, g). Now, it is easy to verify that (M, g) is a visibility manifold 
if and only if it is a Gromov hyperbolic space. 
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