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1 Introduction 

This paper is concerned with holomorphic foliations with a finite singular set on 
compact complex regular surfaces and their modifications under bimeromorphic 
transformations. Our aim is to define foliated analogues of the numerical bimero- 
morphic invariants of compact complex manifolds and begin a bimeromorphic 
classification of foliations. 

A bimeromorphic transformation q~ : M-- --+ N between compact complex 
manifolds is a meromorphic mapping whose restriction 4~1 M - z : M -  Z --+ N -  S 
is a biholomorphism, for I2 and S analytic subsets (when M and N are projective 
manifolds, ~b is called a birational transformation). Such transformations are 
quite abundant for compact complex manifolds and very natural in the theory of 
holomorphic singular foliations. In the local theory (see e.g. [C-S]), the blow 

up ck : M --+ N of a singularity p of a foliation; E = 4~-~(p) is the exceptional 
line and S = {p}. In the global theory (see e.g. [LN], [Brl]), when there are 
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128 LU[S GUSTAVO MENDES 

different compactifications M = 2./U E and N = U U S of an algebraic foliation 
of an affine surface U. We say that a foliation f on M is bimeromorphically 

equivalent to G on N if f l  M-r = (r N-S), which is denoted by 

F = 0*(G). 
Our next definitions are based on two facts about foliations on surfaces. The 

first fact is that the holomorphic tangent field of a singular foliation F along its 
regular part has a unique extension to an abstract holomorphic line bundle over 
M (cf. [GM]), which is denoted by T F.  The second fact is Seidenberg's theorem 
(cf. [S]), which asserts that after a finite number of blow ups the singularities of 
foliations become reduced, i.e. locally generated by holomorphic vector fields 
whose linear part have eigenvalues 1 and )~ # Q+. We shall say that F is reduced 
if all its singularities are reduced. 

The cotangent line bundle is the dual line bundle of T F,  denoted by Tr  

Consider now the meromorphic mapping 0n " M -  ~ CIU given by O~(x) := 
(so(x) " ...  �9 sr+~(x)), where so . . . .  , Sr+l is a C-basis of H~ T~:| The 

image of M by 0n is defined as the closure qS~ (M) := 0~ (M \ I) in CI? r, where 
I C M is indeterminacy locus of ~b~. We define the cotangent dimension as 

x(M, Tff:) := max{dimc 0n(M)} 
ncN 

o r  

K ( M , T ~ ) : = - o c  if H~ Tff- | Vn> 1. 

If.T on M is any reduced foliation bimeromorphically equivalent to F ,  then the 
Kodaira dimension of f is defined as/c ( f )  := tc (M, T f ) .  

In the proof of Theorem 3.1.1 we will see that the definition ofx  ( f )  is coherent 
and that K ( f )  is a bimeromorphic invariant of f .  Let us state some results 
concerning foliations on projective surfaces. We shall say that a foliation f on 
M is deformable if there exists another foliation G on M such that T~ and T~ 

are isomorphic line bundles. I fx  (M) denotes the Kodaira dimension of M (cf. w 
2.2) and f is a deformable foliation on M, then tc (M) _</c (M, T~)  (Proposition 

3.2.1). We prove that K(M, T~)  < 1 if some leaf of f is a generic fiber of an 

elliptic fibration or if f is transverse to a generic fiber of a fibration; conversely, if 
x (M, T~)  = 1 then either f is an elliptic fibration or f is generically transverse 

to a fibration (Theorem 3.3.1). If ~c (M, T~)  = - oc, then either f is birationally 

equivalent to a rational fibration or f is not deformable. If x(M, T~)  = - o c  

and M is a rational surface with non-negative anti-Kodaira dimension (cf. w 
3.4), then f is birationally equivalent to a rational fibration (Theorem 3.4.1). 
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KODAIRA DIMENSION OF HOLOMORPHIC SINGULAR FOLIATIONS 129 

The dimension tc ( f )  is the coarsest bimeromorphic invariant and the clas- 

sification of foliations can be refined. In the last section (w 3.5) we introduce 

another invariant, which is the foliated analogue of the geometric genus of curves 

on surfaces. 

2 Preliminaries 

2.1 

We present here some facts on foliations (cf. [Br2]), for the reader's conve- 
nience. A holomorphic singular foliation f on a compact complex surface M is 

determined by a holomorphic bundle map o~ : T f  -+ TM with isolated zeros 

(defined up to constant), where T f  is the extended tangent line bundle of f and 
TM is the holomorphic tangent bundle of M. The bundle map oe associates to a 
holomorphic (meromorphic) section s of T f  a holomorphic (meromorphic) vec- 
tor field X := o~ o s inducing the foliation. On projective surfaces we can define 

a global meromorphic vector field X inducing f and T f  = OM ((X)0 - (X)~),  
if (X)0 and (X)~ denote the divisors of zeroes and poles, resp. 

The normal line bundle N f  can be defined as follows. Let {Ui} be an open 
covering of M in which f l  Ui is given by o)i = 0, where o) i are holomorphic 
1-forms with isolated singularities. We have coi = h i j o )  j in U i  (~ U j  ~ ~ and 

N f  is defined (up to isomorphism) by the O*-cocycle {hi j}. The canonical 
line bundle of the surface M is defined as KM : =  A 2 TM* and the contraction 

operation gives the isomorphism KM ~-- Hom(Tf, N'f), i.e. 

KM "~ T~ | N~. (1) 

The divisor of tangencies DFG = ~-~i ki Ci of a pair of foliations f and G on 
M has as support the set Ui Ci of points where f and G are not transverse and 
ki > 1 is the order of tangency at a generic point of the irreducible curve Ci. 
From the definitions, we have 

N*y | r G OM(-DFG). 

Let us suppose to what follows that a foliation F on M is locally induced at 
p = (0, O) by a holomorphic vector field 

0 0 
X = a(x, Y)~x + b(x, y)~y. 

F 
Let C = Y-~i=l Ci be a reduced curve of M with local equation fp = 0 at p. 
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Suppose that all local components of C at p are not f-invariant. Consider 
the ideal I = (fp, X(fp)} and define tang(f ,  C, p) := dimcOc2/:I. If all 
components Ci of C are not f-invariant, we define t a n g ( f , C ) =  
Y~,pcC tang(F, C, p) and obtain: 

T )  �9 C = tang(f ,  C) - -  C 2, (2) 

If we define the degree of a foliation on the projective plane CI? 2 as d ( f )  := 

tang(f ,  L), where L is any (non F-invariant) straight line, then (2) gives T )  = 

Oc~,2 ( d ( f )  - 1) and thus x (CP 2, T ) )  = - o c ,  0, 2 according if d ( f )  = 0, 1, > 

2, resp. 
Suppose now that C is a f-invariant smooth (connected) curve. Denote by 

Z ( F ,  C, p) the vanishing order of Xic at p and define 

Z(F, c) := ~ Z(F, c, p). 
p6C 

Then we obtain: 

T~.C = Z ( F , C ) -  x(C), (3) 

where X (C) is the Euler characteristic (this fact can be extended to singular 
reduced curves, by means of the GSV index [G-S-V] and X (C) := --KM �9 C - 
C2). 

Consider the ideal ff =< a(x, y), b(x, y) >, for a(x, y), b(x, y) the local 
components of X and put 

D e t ( f  , p) := dimcOp/ff, Det(F) := s D e t ( f  , p). 
pcM 

According to Baum-Bott's formula (see e.g. [Br2]): 

Det(F) = c2(M) -t- T ~ .  (T~ | K~),  (4) 

where c2(M) is the Euler number of M. 

2.2 

We present here facts on D-dimension (cf. [I1], [I2]) which will be used along 
the paper. 
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Let D be any holomorphic line bundle over a compact complex surface M. 

Consider the meromorphic mapping q~ (D) �9 M -  --+ CI? r given by 0n (x) := 

(so(x) " . . .  " sr+~(x)), where so , . . .  , sr+l is a C-basis of H~ D| The 
D-dimension is defined as 

K(M, D) : :  max{dimc On(D)(M)} 
n6N 

or  

K ( M , D ) : = - e c  if H~174  =O 'On> 1. 

From the definition it follows that K (M, D) < dimc (M) and that tc (M, D) = 
dimc(M) if D is ample. It is not difficult to prove that a): K(M, D) = 
K(M, D| for any n > 1 and that b): x(M, D1) ___ K(M, D1 | D2), if 

K(M, 0 2 )  > 0. 

A useful characterization of D-dimension is the following: there exist no c N 

and o~, fi > 0 such that for n > > 1: 

olnK(M,D) < hO(D | <_ finfC(M,D), 

where h~ := dimcH~ .) and n - ~  := 0. 
The Kodaira dimension of a n-dimensional variety M is defined as K(M) := 

to(M, KM), where KM := A n TM* is the canonical line bundle. If M is a 
compact Riemann surface, then K (M) = - c~ ,  0, 1 according if the genus verifies 
g (M) = 0, 1, > 2, resp. We refer [B-P-V] and [R] for the role of tc (M) in the 
bimeromorphic classification of surfaces. 

3 Proofs 

3.1 

Theorem 3.1.1 Let f and G be holomorphic singular foliations on compact 
complex surfaces. If f and G are bimeromorphically equivalent, then K(F) = 

x(G). 

Proof: The proof follows immediately from the definitions and the following 
fact: If f l  and f 2  are bimeromorphically equivalent reduced foliations on M1 
and M2, resp., then 

= ' 
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132 LUIS GUSTAVO MENDES 

In order to prove this assertion, let q5 : M I -  --+ Me be a bimeromorphic trans- 
formation such that f l  = r By the theorem of elimination of indeter- 
minations [B-P-V], there exist a compact complex surface S and sequences of 

blow ups (and isomorphisms) Ei " S ~ Mi such that E~(F1 ) = E~(F2 ). Let 
us show that, for G := E*(Fi) ,  i = 1, 2: 

H~ T ,| = HO(Mi T *| G " .T i  " V n > l .  

Without loosing generality, suppose that ~]i is just one blow-up o-i of a point p,- c 
Mi, with Ei = cri-I (Pi). If COl is a local 1-form inducing f i  at Pi and mpi > 0 is 

~ 0 " *  * the vanishing order of cri* (COl) along Ei, then N~ i (Nf i )  | Os (mpi El) (cf. 

w 2.1). Using the isomorphisms Ks = cr[(KM~) | Os(Ei) and T~ = N(5 | Ks, 

we obtain: 

T~ = (ri*(T.~i) | Os((1 - mpi)Ei ). (5) 

Since ~7 i a re  reduced foliations, mp~ C= {0, 1}. In the case mpi = 1, the result 
follows from the fact that H~ cr*(L)) = H~ L), for any line bundle L 
(see e.g. [B-P-V], [I2]). In the case mpi = 0 the result follows from a slightly 
more general fact: 

H~ ~r[(L) | Os(nEi)) = H~ L), n > 1, 

which can be reduced to previous fact as follows. Define Ln := cri* (L) | 0 s (n El) 

and consider the exact sequence of restriction: 0 --+ Ln-1 := Ln | Os( -E)  --+ 
Ln --+ Ln If --> 0. Using the property cr?(L) �9 Ei = 0 we obtain L~ IE~ = 
Os(nEi) IE, and hence L~ IEi -~ 0c~1 ( -n ) .  From the exact sequence 0 --+ 
Ln-1 --+ Ln --+ 0c~1 ( - n )  --+ 0 we obtain, passing to the exact sequence in 
cohomology, H~ L~-I) ~-- H~ L,J. [] 

3.2 

We say that a holomorphic singular foliation f on M is deformable if there exists 
another foliation G on M such that T~ and T~ are isomorphic holomorphic 

line bundles. In Remarks 3.3.2 and 3.4.2 we give examples of non-deformable 
foliations. 

Proposition 3.2.1 If f is a deformable foliation on a projective surface, then 
to(M) <_ K(M, T~). 
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P r o o f  : If DFG denotes the divisor of  tangencies of  f and G, then 

N F @ T ~  ~-- O M ( D F G ) ,  

cf. w 2.1. I f F  is adeformable  foliation and T~ ~-- T~,thenOM(DFG ) ~_ N F |  

T ) ;  from T~ "~ KM | N F we obtain that T ~  | ~" OM(DFG ) | K M . Since 

DFG is an effective divisor, we obtain from properties a), b) of  D-dimension in 
w 2.2 that K(M, T ) )  > x(M, KM). [] 

3.3 

Afibration P of a surface M over a compact Riemann surface B means a surjec- 
tive holomorphic mapping p : M --+ B. We regard P as a singular foliation with 
holomorphic first integral. A generic (resp. critical) fiber of  P is the pre-image 
of  a regular (resp. critical) value of  p : M --+ B. We shall say that a fibration 
is connected if its generic fiber is connected. A fibration is said to be rational 
(resp. elliptic) if its generic fiber is the Riemann sphere CI? l (resp. an elliptic 
curve).  

The basic examples of  singular foliations transverse to a fibration P along 
generic fibers are given by Riccati foliations, when P is rational, and turbulent 
foliations, when P is elliptic (see [Br2]). In both cases, a finite number of  fibers 
C~ are F-invariant  and, for non-trivial Riccati foliations, SingF A Ci r 0. 

Next result is the foliated version of  the Fibering theorem of [I 1]: 

T h e o r e m  3.3.1 Let f be a foliation of a projective surface M. 

1) lf  K(M, T~) = 1, then there exists a fibration P of M; moreover, either 

f is transverse to the genericfiber of P or f = P is an ellipticfibration. 

2) Suppose that there exists a connected fibration P of M, with generic fiber 
C. If C is f -invariant and S i n g f  N C = 0, then ~c(M, T~.) < x(C) + 1. 

If f is transverse to C, then x (m,  Tffs) < 1. 

P r o o f  : 

I t em 1): Since x(M, T~)  = 1, there exist an integer no >_ 1 and sections 

s~,s2 ~ H~ T~ |176 such that ~b := s2s-~ . M -  --+ B is a meromorphic 

mapping onto a (singular) complex curve B (for notation brevity, let no = 1). 
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134 LUIS GUSTAVO MENDES 

After normalization r : B'  ---> B we obtain a compact Riemann surface B' and a 
meromorphic mapping 0 '  : M -  -+ B' such that r = r o r We assert that r  is 
well-defined on all M, i.e. there exists a fibration T given by r  : M --+ B'. In 
order to prove this assertion, let us suppose by absurd that I := (st)o A (S2)o 7 ~ 0, 
where (Sl)O, (S2)o denote the curves of  zeroes. After passing to the mobile 
part of  the linear system IT~I we can suppose that (St)o and (S2)o have no 

common component. Then I # 0 gives (st)o �9 (s2)o > 0 and hence (T5~)2 = 

(sl)o �9 (s2)o > 0. Let us show that this condition implies K(M, T):) = 2, 

a contradiction. Let A be any ample line bundle of  M. Since TS~ has global 

holomorphic sections, h~174 >_ h~174 forn  _> 1. By Sen'e's 

duality, h2(T~ | | A*) = h~ | A | T ?  n) and applying Riemann-Roch's  

theorem to TS~| | A* we obtain: 

n 2 
h~ | | A*) + h~ | A) >_ X(OM) H- ~--(T~) 2 + r(n), 

where r (n) is a linear function of  n, and (T~)2  >. 0 implies that h ~ (T ~  | | A*) > 

0 for n > > 1. Using properties a), b) of  D-dimension in w 2.2, we obtain 
K(M, T~) = K(M, T]: | | A* | A) > x(M, A) = 2. 

Let C = r  be a genetic fiber of  the fibration T: 0 '  : M --+ B'. By the 
previous reasoning, we obtain that T ~ .  C = 0. If  C is f - invar iant ,  then f = T 

and from (3) in w we obtain: T~-  C = - X  (C) = 0, i.e. C is an elliptic curve 
and T is an elliptic fibration. If  C is supposed not f - invar iant ,  we obtain from 
(2) in w T~ . C = tang( f ,  C) = O, i.e. transversality between f and T 

along C. 

Item 2): Suppose that T is given as p �9 M --+ B, where B is a compact 
Riemann surface. According to an Addition Formula [I2], 

K(M, D )  _< t z ( p - l ( x ) ,  Dlp-l(x)) + 1, 

for any holomorphic line bundle D over M and any regular value x E B. Let 
us apply this fact to D = T ) .  If  a generic fiber C : p 1 (x) is f - invar ian t  and 

SingJ: (3 C = 0, then (T~) lc  ___ T~ = Kc and thus x(M, T~) <_ x(C) + 1. 

If  we suppose now that f is transverse to a genetic fiber C, then (T)) fc  ~_ Oc 

and x ( M ,  T )  ) <_ 1. [] 
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Remark  3.3.2 An immediate corollary of item 2) of Theorem 3.3.1 combined 
with Proposition 3.2.1: if T is a fibration of projective surface M with x (M) = 2 
and .T is a foliation transverse to the generic fiber of T, then f is not deformable. 
For example, if M is the product of compact Riemann surfaces B and C with 
g(B), g(C) > 2, then the horizontal and vertical fibrations are not deformable 
foliations. 

Remark  3.3.3 We give examples of the equality x(M, T,fi) = to(C) + 1 = 2, 
for a connected fibration T with generic fiber C. First, we assert that: 

(6) 

where Cs = ~ i  n~i C~i is the decomposition of a critical fiber Cs in irreducible 
components. In fact, since T~ = KM | N T, we need to show that N T = 
p*(K~) @ Om(~-~,i(1 - n~i)C~i). In order to show this, consider t / =  f (z)dz a 
local non-singular holomorphic 1-form of B. Since T is connected, p*(o) has 
at most isolated singularities along M - U~C~ and p*(t/) has zeroes of order 
n~i - 1 along the regular part of Csi. Thus P*07) = 0 induces T as a foliation on 

M - tSsC~ and we obtain: p*(KB) = N~p | O M ( Z s , i ( 1  - nsi)fsi), as desired. 
Therefore, T~ = KM | p*(K~) holds for T having only reduced fibers (i.e. 

free of multiplicity). The line bundle WM/~ := KM N p*(K~) is called the 
relative canonical bundle or the dualising sheaf. If T is a semi-stable*, non- 
isotrivial* connected fibration, free from (-2)-curves contained in its fibers and 
such that its generic fiber C has genus g(C) _ 2, then COM/e is ample (cf. [Sz]); 
consequently to(T) = to(C) + 1 = 2. 

Remark  3.3.4 Let f be a reduced foliation on a projective surface M and 
suppose that there exists an entire map f : C -+ M tangent to .T with Zariski- 
dense image on M. We assert that x (M, T~)  _< 1. In fact, according to [Mc] 

there exists a positive closed current r associated to f : C --+ M, such that the 
cohomology class [r c HZ(M, R) verifies 

a) [r intersects non-negatively any curve and 

b) T~ �9 [r _< 0 (see also [Br3]). 

�9 A fibration is called isotrivial if  the analytic structure of the generic fibers is fixed. A fibration is 
semi-stable  if there is no exceptional lines (i.e. ( -  1)-curves) contained in its fibers and all critical 
fibers are reduced curves with at most nodal type singularities. 
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If  we suppose by absurd that to(M, T~:) = 2, then Tfr is ample out of a union 

of contractible curves and we get T~  �9 [qS] > 0. 

An immediate consequence on the projective plane: i f f  is a reduced foliation 
on CP 2 and there exists an entire map f : C --+ M tangent to f with Zariski- 
dense image, then d ( f )  < 1. Very similar to the situation in the projective 
plane, a Riccati foliation o n  C~ 1 X C ~  1 with x (CP 1 x CP 1 , T~)  = 0 can be 

represented in affine coordinates by xdy - )~ydx = 0, )~ c C, and the entire 
curve f ( t )  = (e t, e ~t) is tangent to f .  Consider now anAbelian surface M, i.e. 

a projective torus, with a linear foliation H induced by a holomorphic 1-form 
w = ) ~ d x + I z d y o n C  2,)~,/~ 6 C. It is easy to see that N ) I  c = OM and 

T3~ 1 = OM, i.e. tc (M, T:~() = 0. For genetic values 3.,/z the leaves of H are 
transcendent and isomorphic to C. There are also examples of turbulent foliations 

G with K(M, T~) c {0, 1}, for which all genetic leaves are transcendent and 

isomorphic to C (a construction is due to A. Lins Neto). 

3.4 

We recall that a projective surface M has Kodaira dimension x (M)  = - e c  if  
and only if  M is ruled, i.e. birationally equivalent to CP 1 x B, where B is a 
compact Riemann surface (M is called rational if B _~ CP 1). 

The anti-Kodaira dimension is defned  as the dimension tc (M, K/v/) (cf. w 2.2). 
For rational surfaces, K(M, K~)  > 0 holds for instance if M is 

a) a Del Pezzo surface, i.e. ~ 2  blown-up in at most 8 points in general 

position, 

b) a Hirzebruch surface En, i.e. a holomorphic CP 1-bundle over CP 1 having 

a holomorphic section on with self-intersection (o-n) 2 = - n ,  or 

c) a Hirzebruch surface E,, blown-up in at most 7 points, if  n _< 3, or at most 
n + 4 points if n > 4 (cf. [Sal]). 

Theorem 3.4.1 I f  f is a foliation on a projective surface M with x(M,  T~)  = 

-oc ,  then f is birationally equivalent to a rational fibration or F is not de- 
formable. I f  additionally M is supposed to be a rational surface with 
x(M,  K'M) > O, then f is birationally equivalent to a rational fibration. 

R e m a r k  3.4.2 If  P is a rational fibration, then x(M,  T~) = - c ~  and P is 
not deformable. In fact, suppose by absurd that there is a non-trivial section 
s ~ H~ Try| for 1 > 1, and denote (s)0 the divisor of zeroes. If  F is a 
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generic fiber of  P,  then (s)0 �9 F > 0; but from (3) w we obtain (s)0 �9 F = 

Tj~ | F = -21 ,  a contradiction. Suppose now by absurd that there exists G # f 

with T~ _~ T~.  Then a generic fiber F of  7 ) is not G-invariant and from w 2.1 

we obtain T ~ .  F = tang(G, F) > 0; but also we have T ~ .  F = T,fl. F = - 2 ,  

contradiction. 

Next fact (cf. [Mc]) is fundamental for the proof  of  Theorem 3.4.1: 

L e m m a  3.4.3 (Miyaoka ' s  Semipositivity Theorem.) Let f be a foliation on 

a projective surface M. I f f  is not birationally equivalent to a rational rational 

fibration, then T ~  is pseudo-effective, i.e. T~: intersects non-negatively any 

ample divisor of  M. 

For generalizations of  the next lemma we refer [Sa2]: 

Lemma 3.4.4 Let D be a pseudo-effective divisor* of  a rational surface M. I f  

K m +  D is pseudo-effective, then K (M, KM + D) > O. 

P r o o f  (of L e m m a  3.4.4.) The Zariski decomposit ion (cf. [F]) asserts that any 

pseudo-effective divisor L has a unique decomposit ion L = P + N such that 

i) N = Y~i qi Ni is an effective Q-divisor and either N = 0 or the quadratic 

form represented by the matrix (Ni �9 Nj )  is negative definite and 

ii) P is a nef  Q-divisor with P .  Ni = O, gi. 

Consider now the Zarisld decomposit ion KM + D = P + N.  Since N is an 

effective Q-divisor, in order to obtain K (M, KM + D) > 0 it is enough to prove 

that h~ > 0 for n > >  1 (and such that nP  and n N  are divisors). On a 

rational surface we can suppose that - P  is not pseudo-effective: otherwise we 

show that P is numerically trivial and P = 0, i.e. h~ > 0, as desired. We 

assert that h~ - nP)  = 0 for n > >  1. In fact, let A be an ample divisor 

such that - P  �9 A < 0. If h~ - nP)  > 0 for a sequence n --+ + c o ,  then 

E,~ :=  ! K  M -- P is an effective Q-divisor and from A.  En > 0 we conclude that 
1I 

- P  �9 A > 0, a contradiction. 

Since X(OM) = 1 and h2(np)  = h~ - nP)  (Serre's duality), we obtain 
1~ 2 ~ 2  from Riemann-Roch's  theorem: h~ > 1 + g(n r - n P  . KM), i f n  > >  1. 

�9 Along this section we use the correspondence between line bundles and divisors on projective 
manifolds. By a Q-div isor  D = Y~,i q iCi  we mean a finite formal sum of irreducible curves C i 
with rational coefficients; D is effective if qi -> 0 Vi. A divisor (Q-divisor) D is pseudo-ef fect ive  
(resp. neJ) if D .  C >_ 0 for all ample divisors C (resp. all curves C) of M. 
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A fundamental fact on nef divisors is the inequality (nP) 2 > 0 (cf. [R]). In the 
case p2 > 0, we obtain h~ > 0 for n > >  1, as desired. Therefore we can 
suppose that p2 = 0 and it is enough to show that P .  KM < 0. After intersecting 
w i t h P w e o b t a i n P - ( K M + D )  = P . ( P §  = 0, s i n c e P . N  = 0, i.e. 
D �9 P = - P  �9 KM. Roughly speaking, nef divisors are limit of ample divisors 
and therefore D- P > 0, since n P is nef and D is pseudo-effective (we refer [R] 
for a proof of this fact); the proof is completed. [] 

Proof (of Theorem 3.4.1.) Supposing that ~(M, T~)  = -cx~ and that F is 

deformable, let us show that F is birationally equivalent to a rational fibration. 
Suppose by absurd that f is not birationally equivalent to a rational fibration. 
Then Miyaoka's Theorem (Lemma 3.4.3) implies that T~ | is pseudo-effective. 

As in the proof of Proposition 3.2:1, we obtain the isomorphism T~r | ~ KM | 

OM (DFG), where DFG is the divisor of tangencies between f and G ~ F 
with T~ --~ T~. Since DF G is an effective divisor, we obtain the contradiction 

K(M, T~) = K(M, KM | OM(DFG)) >_ 0, using Lemma 3.4.4, provided that 

M is a rational surface. 
We assert that, since f is a deformable foliation and h~ | = 0, then M 

must be a rational surface. Let us prove this assertion: if M is not rational, 
then either h~ 2) > 0 or h 1 (O~) > 0, according to Castelnuovo's criterion 

[B-P-V]. For G ~ F with T~ -~ T~, we have T~ | _~ KM | O(DzG). If 

h~ ~ > 0, then h~ | = h~ 2 | O(DFG) | > 0, a contradiction. If 

hi(| > 0, then h ~  = hi(| > 0, i.e. there exists a non-trivial global 
holomorphic 1-form f2 on M. Since F ~ G, then ~2 induces a (non-trivial) 
global section either of T~r or of T~. But T~ _~ T~ and, from the hypothesis, 

h~ = 0, a contradiction; hence M is rational. 

For proving the second part of the theorem, let us suppose that K (M, T~) = 

- ~  and that M is a rational surface with ~c(M, K~) >_ 0. If by absurd we 
suppose that F is not birationally equivalent to a rational fibration, then T~ 

is pseudo-effective, according to Lemma 3.4.3. Since x(M, K~) >_ 0, then 
K~ is pseudo-effective and we conclude that N F ~_ T~ | K~ is pseudo- 

effective. Using Lemma 3.4.4 we obtain x(M, T~) = K(M, KM | N f )  >_ 0, a 

contradiction. [] 
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3.5 

The aim of this section is to introduce another bimeromorphic invariant of fo- 
liations, which is the foliated analogue of the geometric genus of curves on 
surfaces. 

If f is a foliation on a compact complex surface M and f on &r is a reduced 
foliation bimeromorphically equivalent to f ,  we define 

1 
x(y  := x(o ) +  rf. ( r f  | Kd,). 

We remark that if G on N is obtained from f by a blow up o" at p c/1~r then 

r ;  . ( r ;  | K ; )  = r S  . ( r  f | - rap(rap - (7) 

where mp is the vanishing order of o-* (co) along o--1 (p), for a 1-form co inducing 
f around p. Since the singularities of .T are reduced, then mp E {0, 1} and 
we conclude that TF*. (TF* | K~) = T f  . ( T f  | K~). After this remark, 

using the fact that X (On) is a bimeromorphic invariant of surfaces [B-P-V] and 
adapting the proof of Theorem 3.1.1, we conclude that g (.T) does not depend on 
the particular reduced foliation f and that g ( f )  is a bimeromorphic invariant of 
F. 

The variation in (7) motivates the following definitions. Denoting by :R(5 c) a 
reduction of singularities o f f ,  given as a sequence of blow-ups ~b = ol o...oo-~ : 
M --+ M with f = qS*(f), let us define the set S i n g R ( f ,  p) as the union of 
the singularity {p] and all singularites of o-~(f),  (o1 o o'2)*(.Y), �9 �9 �9 , f which 
belong to q5 -1 (p), and put 

@ ( f )  :-~ Z 
qESingJ~(f  ,p) 

m q ( m q  -- 1) 

We obtain from (7): g ( f )  : X (OM) + 5_ T~: . (T~: | K;4 ) - y~.p @ ( f ) .  

Example 3.5.1. On the projective plane, g ( f )  = � 8 9  + 1) - 
~ p  @(F) ,  since x(Or = 1 and T~c = Oc~,2(d(2T) - 1), where d ( f )  is the 

degree. Consider now the standard quadratic transformation Q : CI? 2 -  --+ CI? 2, 
given as Q(xo : xl : x2) = (xlx2 : xoxe : X0Xl), which is a biholomorphism 
when restricted to C17 2 - A, where A := {xoxlxz = 0}. The transformation 
Q factorizes as a composition of three blow ups on the vertices of A followed 
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by blow downs of (the strict transforms of) lines {xi = 0} to points Pi E C]P 2, 
i = 0, 1, 2. We can verify that Q transforms smooth conics containing the three 
vertices of A into straight lines not passing by Pi. Let us suppose, for simplicity, 
that f is a reduced foliation and that A is chosen in generic position relatively to 
f .  Under these hypotheses, let us consider the transformed foliation (Q L). ( f ) .  
Thanks to the properties of the tangency index t a n g ( f ,  C, p) (cf. w 2.1), we 
easily verify that if C is a generic smooth conic containing the three vertices of 
A and L is its transform by Q, then tang(G, L) = tang(F,  C). By definition 
diG) = tang(G, L) and from the fact tang(F,  C) = 2 d ( f )  + 2, we obtain 
d(G) = 2d(F)  + 2. The generic choice of A implies that the singularities Pi 

of G, i = 0, 1, 2, do not give rise to other singularities under a blow up; from 
this we obtain rnp~ = d ( f )  + 2 and 6pi = l ( d ( F )  + 2 ) ( d ( f )  + 1). Then 

g(G) = �89 + 2 ) ( 2 d ( f )  + 3) - y~/2__ 0 3pi = g(F) .  

Theorem 3.5.2 I fP  is a connected rationalfibration of M over B, then g(P)  : 
g(B) - 1. If P is a connected elliptic fibration of M, then g(P) < X(OM). 

Proof : First, we assert that if P is any connected fibration of M over B, then: 

2X(OM) -- 2g(P) = x ( B ) x  (F) + E [X ((F~)r~d) -- x (F) ]  
s 

(8) 
Det (P) + E 28p (fl), 

P 

where F denotes a genetic fiber, (F~)r~d denotes the underlying reduced analytic 
set of a critical fiber F,, Z ((F~)red) is the topological Euler characteristic and 
Det (P) is the sum of indices appearing in Baum-Bott's formula (4) w 2.1. 

In fact, 2X (OM) - 2g(P) = -T2~. (T2) | K~) + ~ 26p(P) and by Baum- 
Bott's formula: 

(OM) -- 2g(P) = c2(M) - Det(P)  + E 2@(P), (9) 2X 
p 

where ca(M) is the Euler number of M. Since 

c2(M) = x ( B ) x ( F )  + ~ [ X  ((Fs)r~d) -- x(F)] 
s 

(cf. [B-P-V]), the assertion is proved. 
Let us suppose now that P is a rational fibration. It is known (cf. [B-P-V]) 

that there exist a sequence of blow downs E : M ~ M' and a regular rational 
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fibration P '  of  M'  over B such that P = E*(P ' ) .  Since X(OM) = x(Om')  = 
(1 - -  g(B))  (cf. [B-P-V]) and g(P)  = g(P ' ) ,  the result follows immediately 
from remark (8) applied to P ' .  

Suppose now that P is an elliptic fibration. Since X (F)  = 0 and @ (P)  > 0, 
(8) gives: 2X(OM) -- 2g (P )  > }--~ x((F~)red) - Det(P) .  Let us consider a 
restriction of P to an open set Us containing exactly one critical fiber/7,; we want 
to show in this local setting that r ( s )  :=  X ((F~)~ed) -- }-~pc~ Det(P,  p)  >__ O, 
for each s, which proves the proposition. 

Case  i): Fs does not contain exceptional lines. In this case, Fs is described in 
Kodaira's list (cf. [B-P-V]). Suppose that Fs is not a multiple fiber. By inspection 
of  the list, we obtain (in the usual notation) r ( s )  = 0 if Fs = Ib>_O, I I ,  I I I ,  IV ,  

and r (s )  = 2 if F~ = I~>_o , II*,  I I I* ,  IV* and we are done. If  F~ is a multiple 

fiber, i.e. F~ = k F  for some k > 2, then/~  = Ib>_0 (cf. [B-P-V]); again we 
obtain r (s) = 0. 

C a s e  i i ) :  Fs contains an exceptional line. In this case, Fs is obtained by blow 
ups from a critical fiber described in Case i). It is easy to verify that r ( s )  is 
invariant by blow-ups in all cases considered in Case i), except for fibers of  type 
I I I  and IV .  A blow up at the triple point of  a fiber of  type I V  increases r (s) ;  
a blow up o- at the singular point of  a fiber of  type I I I produces a triple point at 
c r - l (p) ,  i.e. we obtain a fiber of  type I V  and we are done. 

There are examples of  pencils of  elliptic curves f on the projective plane with 
g ( f )  c { -  2, - 1, 0, 1 } (examples with g ( f )  = - 2  were constructed by A. Lins 
Neto), but we don't  know if there exists a lower bound to g(F) .  We can assert 
that any foliation on the plane with g ( f )  < 0 has a singularity with an infinite 
number of  local separatrices, what is proved in the next proposition: 

Propos i t ion  3.5.3 Let F be a foliation on a compact complex surface M with 

g ( F )  < X (Ore) - �89 Then there exists a singularity o f f  with an infinite 
number of local separatrices. 

P r o o f :  Let if: be a reduced foliation obtained from F by means of  a reduction of  
singularities R ( f ) .  The hypothesis and remark (9) applied to f imply Det ( f )  - 
~-~p 2 @ ( F )  < 0. Let ~ R ( F )  (resp. ~ R ( F ,  p))  denote the number of  blow ups 
in R ( F )  (resp. in the reduction of  p ~ S ingF) .  
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Since the Euler number C2 (M) increases by one under a blow up, we obtain 
from Baum-Bott's formula (4) w 2.1: D e t ( f )  - y ~ p  2@(F)  = Det(J:) - 

~ R ( F )  and hence ~SingJ: - ~ R ( F )  < 0, where ~SingJ: denotes the number 
of singularities. Let Dp be the tree of rational curves introduced in the reduction 
of a singularity p. If we suppose by absurd that each singularity p o f f  has a finite 
number of local separatrices, then each component of Dp is J'-invariant. Since 
Dp has ~ R ( F ,  p) - 1 intersection points of its components, then ~(SingJ: N 
Dp) > ~R( F ,  p) - 1; but, in fact, the existence of a local separatrix at p (cf. 
[C-S]) implies ~(Sing~" 7~ Dp) > ~ R ( F ,  p), that is, ~Sing(F - ~ R ( F )  > 0, a 
contradiction. [] 
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