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A real Riemann-Hurwitz theorem
Felice Ronga

Abstract. We prove a real version of the Riemann-Hurwitz theorem and apply it to
solve a problem of enumerative geometry in the real case: the number of plane projective
curves tangent to a line and passing through the appropriate number of points.
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1. Introduction

Let K = C or R and consider the following enumerative problem: let n be a
positive integer and set N, = w, which is the dimension of the projective
space [P, k of curves of degree n in the projective plane ]P)Hzg. Then, given 4 lines
£1,...,8, and N, — k points P, ..., Py, in general position in P2, there is
a finite number of curves of degree n which are tangent to £y, . .., £; and pass
through Peyq, ..., Py,.

If we are working over the complex numbers, then the number s;, of such curves
does not depend on the choice of the generic £’s and P’s; as we shall seein § 1, if
k is small enough so that there is no curve of degree n with a double component
through the P’s (i.e. k < 2n — 1), then it follows from the Riemann-Hurwitz
formula that s, = (2(n — 1))*. This is well known and easy to prove; it should
provide support for what follows.

The aim of this paper is to show that in the real case, for £ = 1, for any r such
that 0 < r < n — 1 there exist configurations of real points P», ..., Py, and a
line £ such that there are 2(n — 1) — 2r real curves of degreee n passing trough
P,, ..., Py, and tangent to £ at a real point. Our main ingredient is a real version
of the Riemann-Hurwitz theorem. Such questions have raised interest in recent
years (see for example [4]).
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176 FELICE RONGA

2. Reduction to the Riemann-Hurwitz theorem in the complex case

Let1 <N < N,. For P, ..., Py € P&. Set

One expects that if Pj, ..., Py are in general position, then Lp, _ p, has codi-
mension N in P, k. Proposition 1 below establishes that it makes sense to speak
of a “generic choice” of a line and points for our enumerative problem.

Proposition 1. Forall2 < N < N, the set

.....

is non-empty and Zariski—gpen in ]f”%g X (]P’HZQ)NAI-

Proof. Clearly, the set €2 is Zariski-open. In § 3, Proposition 5, we will show

explicit points Q», ..., O, and a line £ such that dim(Ly,¢,,.. 0, ) = 0, for
all Q € L. O
Solet (¢, P2, ..., Py,) € Q, and define

Z={(P,1f) Py xPug | Pl f(P)=f(P)=-= f(Py,)=0}.

We have the two natural projections

z s
-
Lp,,..py,

and m; is an isomorphism because (¢, Py, ..., Py,) € Q. Therefore, we can

define

¢:L— Lp . Py, ¢P)= nz(nfl(P)) = the unique curve of degree n
through P, P,,..., Py .

n

Clearly, P is a ramification point of ¢ if and only if the curve ¢ (P) is tangent to
£ at the point P. Assume now that K = C. According to the Riemann-Hurwitz
theorem the number of ramification points of ¢ equals

degree of ¢ x Euler characteristic of Lp, _ p, — Euler characteristic of £
=2n—-2=2(n-—1),
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A REAL RIEMANN-HURWITZ THEOREM 177

and so this is also the number of curves of degree n through P, ..., Py, and
tangent to £.
This also shows that, for 2 < N < N,, the subvariety of P2,

Lip,...py = {(Lf] € Pk | the curve f(x) = 0 is tangent to £
and f(Py) =--- = f(Py) =0},
has degree 2(n — 1). Then one is tempted to argue that, given & lines £y, ..., £
and N, — k points Pry1, ..., Py, in general position, the set
Lo.tiPipynpy, = {(Lf1 € Pk | fistangentto £y, ..., £
and f(Pr1) =--- = f(Pn,) =0}

consists of (2(rn — 1))* points, since

Loy, by Prgy Py, = ﬂ Lo Pyro Py - #)

However, this argument works only for & < 2rn — 1, because otherwise there is
acurve g of degree n through Py, ..., Py, having a double line as component,
and so g is tangent to any line in the plane (see [2]). In fact, this shows that
in (#) there might be a residual intersection to account for. For example, in the
case of conics, there are 2 conics through 4 points and tangent to one line, there
are 4 = 2% conics through 3 points and tangent to 2 lines, but the number of
conics through 2 points and tangent to 3 lines is not 2> = 8: it is 4, the same
as the number of conics through 3 points tangent to three lines, as one can see
by resorting to the dual conics. In [1] the case of cubics and in [5] the case of
quartics are considered, over the complex numbers.

It would be desirable to know in addition that for a generic choice of
¢, Py, ..., Py,, the curves through P,, ..., Py, tangent to £ are simply tangent
to £ (no double tangents, no inflection points, nor worse), which amounts to say
that the map ¢ has only ordinary ramification points, with distinct values. This
can be done by studying more closely the family of maps ¢, p, Py, » Where now
£, Py, ..., Py, are movable parameters. In § 3 we will satisfy this desire by
exhibiting £, P, ..., Py, such that the corresponding ¢ has 2(n — 1) distinct
ramification points, which must therefore be ordinary ramification points, with
distinct values.

3. A real version of the Riemann-Hurwitz theorem

Let
SI:{(x,y)€R2|x2+y2—1:O}
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178 FELICE RONGA

denote the topological circle. We shall say that the (disjoint) subsets F, ..., Fy
of S' are non interlaced if there exist open, disjoint subintervals I;,i =1, ...,k
of S'suchthat F, c I;,i =1, ..., h.

Proposition2. Let f: S' — S' bea C! map whose fibers are all finite. If there
are distinct y1, ..., yu € St such that f~'(y1), ..., £~ Y(y) are not interlaced,
denoting by n; the number of points in f~1(y;), there are at least

h

Zni —-h

i=1

points where the derivative of f vanishes. More precisely, if f~(y;) C I, where
the I;’s are disjoint intervals, and

i
n;

f'l(yl-) = {all',...,a;,_} with ai <. e <a
for some ordering of the interval I;, then there is at least one ramification point
between aj. anda;ﬂ,forj =1,...,n; — 1

Proof. f maps I; into '\ {y1,..., Yi-1, Yit1, - - - » Y}, Which is diffeomor-
phic to a subset of R. Then it follows from Rolle’s theorem that for all j €

{1,...,n; — 1} there exists c, a§ <c< a§+1, with f'(c) = 0. O

Corollary. Let ® = [F : G]: PR! — PR!, where F(x,t) and G(x,t) are
homogeneous polynomials of degree n without common non-trivial zeroes. Let
N =1[1:0]and S = [0 : 1}, and assume that @ (N) = {Py,..., P,},
O 1S) = {0y, ..., 0.} and that these 2 sets are not interlaced. Then © has
exactly 2(n — 1) ramification points. More precisely, after perhaps renumbering
the P;’s and the Q;’s, we can choose Z & PR! \N{P1,..., P, Q1,..., O} and
an omlerofIP’R1 \ Z such that Py < --- < P, < Q1 < -+ < Q. Then for
i=1,...,n—1there exist A;, B;, P, < A; < Piy{, Q; < B; < Qj41, such
that ®'(A;) = ®'(B;) =0.

Proof. Proposition 2 ensures the existence of ramification points as stated.
There cannot be more, for otherwise ® = 0 and ® would be constant. |

On the opposite end, we have:
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Proposition 3. Let ®@ = [F : G, F(x,t) and G(x, t) homogeneous of degree

n without non-trivial common zeroes, be such that ® ' (N) = {Py,..., P,},
O 1(S) = {Qi,..., 0.}, and assume that each component of PR!\
{Q1, ..., On) contains exactly one of the P;’s (and hence each component

of PR \ {Py, ..., P,} contains exactly one of the Q;’s). Then ® has no real
ramification point.

Proof. PR!\ {N,S} = I U J, where I and J are disjoint intervals. For
y € I near N, ®~!(y) has still n distincts preimages, one in each component of
PR! \ {Q1, ..., Qn}; therefore, as we move y € I towards S, it cannot happen
that 2 distinct preimages come together. If yg is the first critical value that we
encounter, then, since © is proper, ® !(yp) also has one preimage in each
of the n components of PR' \ {Q1, ..., Q,}, and one of these preimages has
multiplicity, a contradiction. 0J

In order to produce a morphism ®: PR! — PR! with any number of ram-
ification points of the form 2(n — 1) — 2r, 0 < r < n — 1, we want to use
the old trick that consists in joining a morphism ®,,; with 2(n — 1) ramifica-
tion points to a morphism &y, with no ramification points, through a “generic”
path in the space of morphisms. Such a generic path will encounter 2 kinds of
catastrophes: F and G can acquire a non-trivial common zero, or © can have
a ramification point of order 2. One hopes that when crossing a catastrophic
situation, the number of ramification points changes by +2, which ensures that
all values 2(n — 1) —2r, 0 < r < n — 1 are taken when moving from ®,,, to
Omin. The details are provided by Proposition 4.

We may assume without loss of generality that F (1, 0) # 0, G(1, 0) # 0 and
that [1 : 0] is not a critical point of ®. Then the morphism ® can be written in
affine coordinates as follows:

@

9()() = (—g(T), f(x) = x”—}—alx”_] + .- ~-§-Cln7 g(x) e x”~}—-b1an1 +. "+b11-

Letp(x, f,8) = f'(x) - g(x) — f(x) - g'(x), so that §'(x) = ¢(x)/g(x)*. Note
that f'(x) - g(x) and f(x) - g’(x) have same leading coefficient, therefore ¢ (x)
has degree 2(n — 1). The zeroes of ¢ are exactly the ramification points of
when f and g have no common factor, and vanishes for x = « if f and g have
x — o as a common factor.

We denote by A, the space of polynomials of degree < n in x with real
coefficients and leading coefficient 1; thus f, g € A,.
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Proposition 4. Assume n > 2. There exists an algebraic subset Z C A, X A,
of codimension at least 2 such that if (f, g) ¢ Z, then

dg . 9%
ox, f,8) = —(x, f,g) =0 implies that —=(x, f,g) # 0.
dx dx2

Proof. Firstletn =2, f =x>+ax +b, g = x>+ cx +d. Then
o(x, f,8) = x%(a — ¢) +2x(b — d) + bc — ad,

9 e, f.8) = 2x(a— o) + (b — d),
dx

3%
5:x_2(x7 f» g) = 2(Cl - C)v

so that g—f(x, g = Z—i%(x, f, &) = 0 implies that f = g. If, forn > 2, we
take Z; to be the Zariski closure of the set

{(f,g) € A, x A, | f and g have at least 2 common roots},

then Z; has codimension at least 2 in A, x A, and so for n = 2 we can take
Z=12Z.
Let now n > 3 and consider

9 92
W= {(x,f,g> €R x Ay X 4, cp(x,f,g>=£(x,f,g>= a%(x,f,g>=0}.

If (x, f,g) € W and g(x) # 0, we take the derivatives of the 3 equations
defining W in the direction of a vector of the form (0, f,0) € R x A, x A, and
obtain:

@) px. f.8) = /() g(0) — f() g =0 —  F(x)-gk) -
FG) - g@) =0

b) §(x, f,8) = f'(x) - g(x) = f(x) - g") =0 B
— T g - Fx) - g'®) =0

c)

32§0 1774 14 / ! " H
ﬁ(x,f,g) =f"x)-gx)+ X x)— fx)-g'(x)— fx)-g 7 (x)=0
— ) g+ ) g = x) -8 x) — fx)-g"(x) =0
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Since f is of degree at least 3, we can find f such that:
a) f(x) =0, F (x) # 0, which does not satisfy a) above
a-b) F(x) = f (x) =0, f (x) # 0, which satisfies a) but not b)

atb-c) f(x) = f(x) = F (x) =0, F (x) # 0, which satisfies a) and b) but
not ¢). -

It follows that the three equations defining W are of maximal rank at (x, f, g).
If g(x) = 0and f(x) # 0, the above argument can be repeated with the roles of
f and g exchanged. We set

Wi = {(x, f,g) € W | f and g have no real common root}

and let Z, be the Zariski closure of p(W)), with p: R x A, x A, — A, X A,
the natural projection. Then, since W has codimension 3in R x A, x A,, Z»
has codimension at least 2 in A, x A,,.

Assume now that f and g have one real common root«: f (x) = (x — ) f1(x),
g(x) = (x —a)gi(x), but fi and g, without common root. Then

o, f,8) = (x —a) fi(x)(g1(x) + (x — @) g} (x))
— (i) + (x — ) fi(x) (x — ) g1 (x)
= (x —a)o(x, fi, 81)-

We know by Equation a) of the first part of this proof that gj%(x, fi.g1) #0
or %(x, f1,81) # 0. Consequently, the Zariski closure Z3 of the set of pairs
(f, ) € A, x A, having a common real root ¢, for which ¢ (e, f1, g1) = 0, has
codimension at least 2 in A, x A4,,. Since 327‘2’(01, f>8) = 2¢(a, f1, g1), the set
Z = 71U Zy U Z5 will have the required properties. 0]

Corollary 1.  There exists an algebraic subset Zy C R" x R of codimension
at least 2 such that for ({1, ..., &), (B1, ..., Bn)) € R x R"\ Z, if we set

fx) = (x —a;), g(x) =

i=l,...,

i=1,...,

(x - /3!) and(p(xva7 13) = (D(X, f? g)1
then

B 2
o, o, B) = 2 (x,a, f) =0 implies —2(x,a, B) 0.
ax ax2
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Proof. Themap N :R* — A, N(ai, ..., ) =[], ,(x —0;) has finite
fibers, and so Zy = (N x N)~! (Z) has codimension 2 and has the required
properties. il

Corollary 2. Foranyr, 0 <r < n — 1, there exist 2n distinct real numbers
Oy .., Oy, Pl - -, Bu such that the morphism

Oa, B) = [ [] G-aty: [] - ,Bit)]: PR! — PR!

i=1,...,n i=l,..,n

has exactly 2(n — 1) — 2r ordinary real ramification points.

Procf. Take amu = {—n,..., —1}and Bnax = {1, ..., n}, and take oy, =
2k -1, k=1,...,n} and By = {2k, k=1,...,n}. Then O(omax, Bmax)
has 2(n — 1) real ramification points by Propostition 2, and 0 (¢yin, Bmin) has
no real ramification point according to Proposition 3. If we take a path that
joIns (Gmax, Pmax) 10 (Umins Bmin) and avoids the subset Zy of corollary 1, the
corresponding ¢ (x, o, B) will have at worse a double root at x € R, so that the
number of roots will change by £2 along this path. g

4, Configurations with the maximal number of real solutions

Consider in P2 two sets of n distinct lines in general position, {€¢, ..., £} ,}

and {£3,.... £ _,}. Set A, j = £/ N £2.
Proposition 5. Let £ be a line not containing any of the A; ;’s. Then the line
£ and the points:
A jwherei+ j<nand0 <i,j<n-1,

are in general position in the sense that for all P € £, there is exactly one curve
of degree n through P and all the A, ;.
Proof. Setl ={({ j)|i+j<n,0<i j<n-—1}. Then

I={G)1i+j<n 0<ij}\{(#n 0),0,n)}.
Furthermore, the cardinality of [ is, as expected,

Dt nmt3)

—1=N,—-1.
2 2
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Assume first that P ¢ U/ £}, Let [¢; ;] € I?’]%, (i, j) € I, be the equation of
a line such that ¢; ;(A; ;) = 0 and ¢; ;(Ay ;) # O for (i, j) # (', j/) and such
that ¢; ;(P) # 0. Let v; be the equation of £

The curves H?:O ¢o,j for 0 < h < n — 2 go through Agy, ..., Ag, but no
other of the A; ;’s, nor P, and v goes through A, ..., Ag ,—1., but no other of
the A; ;’s, nor P.

Next, for 0 < h < n—2, Yo - ]—[3’.20 ¢1,; goes through Agpo, ..., Ao -1,
Aig, ..., Ay, but no other of the A;;’s, nor P, and v - ¥ goes through
Ao, -+, Aon-1, A0, ..., Ay n—1, but no other of the A; ;’s, nor P.

Ingeneral, forO0 <r <n—-2and0<h <n—r—2,%g----- 1,//,.~]_[§f:0¢r+1,j
will go through Ao, ..., Aru—r, A1 1, ..., Ari1n, but no others, nor P, and
Yo - -+ - Y4 through A(),(), ceey Ar,n—m Ar+1,1, Ceay Ar+1,n7r—la forr +1 <
n — 1, but no other of the A; ;’s, nor P; the total degree will always be at most
r+l4+m—r—-2)+1=n.

This proves that

Pn,R ;:t) £A0,0 % ‘EAO,O:AO;I 2 s £A0,0 ----- Agn-1

D) >
;ﬁ ‘. ‘£A0,0:~-sAn—L0 = ‘CAo,o ,,,,, Ap-11 22 £Ao,0 ,,,,, Ap-1,1.P

If P e U ¢!, then P ¢ U'_}¢? and we can repeat the above construction with
the roles of {£] } and {¢?} exchanged. So, in any case,

dim (LA()’(),A.,,A,,,Ll,P) = dlm(Pn,R) - #(I) - 1= O,

as required. U

Note. A similar argument shows that the points,
_ k+1 _ _
o= {0g,...,0p) e N for jo| =ap+ - - -y =n,

impose linearly independent conditions on the vanishing of homogeneous poly-
nomials of degree » in k + 1 variables. This was conjectured in [3].

Theorem. Let {, £}, €3 € 3 be lines in general position. Let €}, .. £\ | be
close enough to E(l) and 03, ..., 55—1 close enough to K%, so that the two sets of

points {By =£N4£}, h=0,....,n—1}and {B} =tN&, h=0,...,n—1}
are not interlaced in £. Then, perhaps after moving the line £ slightly, there
are 2(n — 1) distinct non singular curves of degree n through A; ; = N Zf,
i+j<n0<ij<n-—1andtangentto{.
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1 2
oo o : 9% R e e

) C}- Cl' . ? —1 Emax 5 n——12 ;Sg 21 o

o & b Gy O, o oo &5 66
Figure 1
More precisely, let I, I, be intervals such that
B),....,B ,CI, andB},..., B>, C L

choose orders on I, I, and assume Bé < e < Bnl_1 and Bg < e < B;z“,l.

Then there exist points C,i, Ch2 cb,h=1,...n—1, with B,i_l < Cé < B,f and
B,f_l < Cﬁ < Bizl, such that for each B} or B,f there exists a curve of degree n
throughthe A; ;,0 <1i,j <n—1,i+j <n, tangent to L at Bé or B,f. Perhaps
after moving the line £ slightly, these curves are non singular and distinct.

Proof. Set7 ={(,j)|i+ j<n, 0<i,j<n— 1} Consider the map,

¢o: £ — L{Ai‘j}(- - ¢;(P) = the unique curve through P
N and the A4; ;s for (i, j) € .

Denote by f; the curve constituted by the union of n lines, £ U--- U £} _,, and

by f» the curve constituted by £3 U --- U ¢2_|;then fi, f>» € L{Aivj}(i,j)el and

n—1°

¢, (f)=1{Bg..... By}, ¢, (f)={B].,..., B._,}.

So we can apply Proposition 2 to infer that ¢, has 2(n — 1) critical points
cl,....cl |, C?...,C* ,withBl | <C} < Bland B2 | < C} < B?

forh =1,...,n — 1 (see Figure 1).
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Among the curves through the A; ;’s, (i, j) € I, there is only a finite number
of singular ones. Also, the space of lines of Pi{ that are tangent at 2 or more
distinct points of one of these curves is of dimension 1. It follows that, perhaps
after moving the line £ slightly, ¢, has distinct critical values, corresponding to
non singular curves. These are 2(n — 1) distinct non singular curves through the
A;;’s, (i, j) € 1, tangent to £. O

5. Configurations with an intermediate number of real solutions

Proposition 6. There exist configurations of points Py, ..., Py, and a line £
such that there are exactly 2(n — 1) — 2r curves of degree n through Ps, . .., Py,
tangent to £.

Proof. The case r = 0 was done in the previous section. Forr = n — 1, we
can take the line £,;, shown in Figure 1; the points of intersection of £y, with
the two sets of lines £, ..., £]_, and £2,..., £2_, are alternate, and it follows
from Proposition 3 that the corresponding morphism ¢ : £y — £ {4} er
has no real ramification points.

There remain the cases 1 < r < n — 2; for these, we must invoke corol-
lary 2 of Proposition 4. Take the affine line £ = R x {0} ¢ R x R and
Oy ensenes Oy, Bi, ..., By € £ such that the corresponding morphism,

@(a,m:[ 1

i=1,...,n

@—an, [] «- ,3,-:)] : PR' — PR!

1,....n

has 2(n—1) —2r real ramification points exactly. Choose lines in general position
€y O 05, 2 With €I NE =0y, 20 L =By, i =0,...,n—1,

* -1

and set A;; = £/ N E%,i, +j <n,0 <i,j <n— 1. Then the corresponding

morphism¢y: £ - £ {40} e e has exactly 2(n — 1) — 2r real ramification points
I3 f)e

and we can argue as in the proof of the theorem of § 3 to conclude. il

Remark. The mutual positions of the «;’s and B;’s determine a lower bound
for the number of real ramification points. Namely, working in PR! rather than
in R, say '

PR\ {B1,...,Bu} =L U---UI,, and PR! \{og, ..., 0, = U---U J,
where the I;’s are disjoint intervals, as well as the J,,’s. Then, if

mhz#(lhﬂ{ocl,...,cxn}), I’Lh2#(Jhﬂ{,31,...,ﬂn})f0rh:1,...,1’!,
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oy ag Ba B2 az Pz o Qg B Bo=03 B3
a g J3) asz B2 B85 oa Qg B a3 Ba Bs
Figure 2

it follows from Proposition 2, or directly from Rolle’s theorem, that the number
of ramification points is at least,

Omin = Y (mp— 1)+ Y (np— 1), ©)

mp>1 np=1

Only in the two extreme cases (the corollary of Propositions 2, and Proposition
3), can we deduce the exact number of real ramification points from the mutual
positions of the ¢;’s and §;’s.

In fact, it is easy to produce explicitly all possible values for the Formula ()
in the situation of Proposition 5. On Figure 1, we start with the line £,,;, and let it
rotate with center at the point O. Then the line will cross successively the points
Ay11, Ap—ap, ..., A ,—1 and at each crossing the number op;, increases by 2.
Howeyver, it is not at all clear how the number of real solutions to our enumerative
problem will vary. Figure 2 shows an example with

ap <oy < Py < B <oz < B

the o’s are represented by circles, the 8’s by crosses and the graph represents
¢{(x, a, B). Then o3 decreases, coincides with 8;, then takes its place between §;
and B;. When a3 = $,, the graph is simply tangent to the x-axis, in accordance
with Proposition 4. But when it decreases still alittle bit, 2 additional ramification
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points (or zeroes of ¢) appear between p; and «s; they disappear when the o’s
and §’s are distributed more evenly.
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