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Abstract. We study the singular fiat structure associated to any meromorphic quadratic 

differential on a compact Riemann surface to prove an existence theorem as follows. 

There exists a meromorphic quadratic differential with given orders of the poles and ze- 

ros and orientability or non orientability of the horizontal foliation, iff these prescribed 

topological data are admissible according to the Gauss-Bonnet Theorem, the Residue 

Theorem and certain conditions arising from local orientability or non orientablity con- 

siderations. Some few exceptional cases remain excluded. Thus, we generalize two 

previous results. One due to Masur & Smillie, which assumes that poles are at most 

simple; and a second one due to Mucifio-Raymundo, which assumes that the horizontal 

foliation is orientable. 
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phic differential. 

1 Statement of the result 

Consider a compact  Riemann surface M, and a meromorphic quadratic differ- 

ential r on M having poles and/or zeros at E = {Pl . . . . .  Pn}. A remarkable 

fact about the pair (M, r is that it provides a quite simple and natural geometric 

structure, namely, a flat metric in M \ E having singularities at E,  and whose 

associated holonomy group on M \ E can be either {Id] or {+Id} (this in turn 

gives rise to a geodesic singular foliation called horizontal foliation). 

It turns out that some other hypothesis on (M, r  arise as natural conditions 

for certain problems. For instance, in some celebrated approaches related to 
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dynamical considerations on surfaces (see [KMS]), one important assumption 
is that the total area of M, measured according to the flat metric given by qS, 
is finite. A detailed analysis of  this condition, shows that all poles should be 
at most simple (see [St] for a geometrical description of the singularities of  a 
quadratic differential). 

On the other hand, if  we assume, as in [MR], that the holonomy group is 
{Id], then we have that there exists a meromorphic Abelian differential co such 

that co | co = ~b. Moreover, in this case there exists a uniquely defined mero- 
morphic vector field X, that satisfies co (X) --= 1. Thus we can establish global 

correspondences q~ = co | co --+ co +-~ X. 
Note that the horizontal foliation of 4) corresponds to the real trajectories of  

the associated real vector field X + X. Given any q~, we will define �9 = +1 if  
its associated horizontal foliation is of the type described above, and �9 = - 1 
otherwise (i.e. if  this foliation is non-ofientable in the real sense). 

We consider in this note the general case. Let q~ be a meromorphic quadratic 
differential on a compact Riemann surface M, ~b having poles of order -ki at 

suitable points Pi E ~ C M for 1 < i <_ l, and zeros of order k j  a t  points 
pj G Z C M for l + 1 < j < n. Hence it determines certain local topological 
data, the orders of the zeros and poles, and a global one, the orientability of 
the horizontal foliation �9 = 4-1. Therefore, for each pair (M, qS), we have the 

following assignment (M, ~b) i ~ k :=  (kl . . . . .  kl . . . . .  k~; e), where the 
e n t r i e s k i o f k s a t i s f y k i  c Z - f o r l  < i  < 1 ,  kj ~ Z  + f o r l + l  < j  < n a n d  
e = 4-1 (the order of the entries is not important). In this case we say that the 
singular flat structure (M, 4)) realizes the data k or simply that k is realizable. 

A natural question, which will be solved by our main result, is the following 

Problem.  Under which conditions any prescribed topological data k :=  
(kl . . . . .  k,~; e) are realized by a meromorphic quadratic differential ck on a 

Riemann surface M. 
At first sight, we can describe some obstructions for realizing any k. Let us 

then analyze our necessary conditions. Assume that k is realized by a singular 

flat structure (M, q~). 
Consider the Gauss-Bonnet Theorem for singular flat metrics of finite area 

and without any holonomy assumption (see [GKS]), and also the Poincar6- 
Hopf Theorem. Both theorems relate local data about the metric or foliation 
singularities to a global datum, the Euler characteristic. Inspired in these two 
results, by translating adequately our local invariants, it is natural to propose that 
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k satisfies the following condition 

O" (k) := ~ ki  -~ 4 (g - 1) 
i=1 

where g is the genus of M. 
We also have some obstructions which arise from the local orientability status 

of the horizontal foliation associated to qS. First we observe that local non- 
orientability implies global non orientability, therefore whenever an entry ki of 
k is odd, e = - 1 .  

On the other hand, on the sphere, observe that the holonomy can be calculated 
just by making parallel transport along each loop going around each singularity 
on the sphere. Thus it turns out that local orientability implies global orientability 
of the horizontal foliation, i.e. whenever a (k) = - 4 ,  and ki c 2• for every i, 
then E = +1.  

Furthermore, consider ~b having a single pole of order 2 and being the square 
of a meromorphic differential co. Then co has only one simple pole, which is 
not possible according to the Residue Theorem for the associated meromorphic 
differential, (see [MR] Theorem 2.1). Therefore, if k = ( -2 ,  k2, . . .  , k~; ~) 
where ki C 2Z] + for 2 < i < n, then e = - 1 .  

Finally, there are some topological data that, at the first glance, have no appar- 
ent obstructions, nevertheless they can not be realizable. These data, which we 
call exceptional, are (4; - 1 ) ,  (1, 3; - 1 ) ,  ( - 1 ,  1; - 1 ) ,  ( ; - 1 ) .  The impossi- 
bility for each one is provided in [MS] by using suitable arguments of complex 
geometry. 

Our main result is: 

Theorem 1. Let k = (kl . . . . .  kn; ~) be topological data where ki E Z \ {0} 
and ~ c { - 1 ,  1 }. Then k is realizable by a meromorphic quadratic differential 

on a compact Riemann surface M, if  and only i f  the fol lowing conditions are 
satisfied 

1) G ( k ) = 4 ( g - 1 ) w h e r e 0 < g 6 Z ,  

2) whenever an entry ki  o f k  i s  o d d ,  ~ = - 1, 

3) whenever ~ (k) = - 4  and ki E 2Z  for  every i, e = +1, 

4) k is admissible according to the Residue Theorem, 

5) k is not exceptional. 
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This is just the generalization of the special cases in [MS] and [MR] so that now 
we are able to give a complete description of the necessary and sufficient existence 
conditions without adding any hypothesis on the poles or on the holonomy group. 
Thus, we can deal with the problem of flat singular structures yielding infinite 
a r e a .  

As a remaining problem, we do not know the obstructions that can arise when 
we consider the realization problem stiffening a complex structure on a compact 
surface. Since by using Theorem 1, we can not assure the existence of a flat 
structure that realizes certain given topological data on each conformal class. 

The author wants to thank J. Mucifio-Raymundo for his encouragement and 
comments along the preparation of this paper. 

2 General idea of the proof 

Our basic object is going to be the set K of all topological data that are admissible 
according to conditions (1) to (4) in Theorem 1. In addition, we are going to 
assume the following hypothesis on the elements of K .  

6) For every k c K ,  there exists an entry ki of  k, such that k i ~ --2. 

If the topological data k are such that every entry k i of k satisfies ]s ~ - -  1, 

then it satisfies the conditions of the main theorem given in [MS], and Theorem 
1 holds for this case. 

Remark  1. Assumption (6) implies that there are no exceptional data in K .  
Therefore if k 6 K ,  then k satisfies also condition (5) of Theorem 1. 

The main idea of the proof consists of two steps. First the reduction of the 
problem by giving a partial ordering to the set K ,  in such a way that if tc 6 K 
is realizable, then any other element k which is greater than x (according to this 
ordering) is also realizable. This adequate partial ordering can be inferred from 
few cut-paste constructions, these operations allow us to change the order of 
certain singularities in the singular flat structures that realizes K, getting one that 

realizes k. 
Once we show the minimal elements of the partial ordering we have given 

to K ,  we show that these minimal elements are realizable by directly giving 
an explicit singular flat structure for each one. In fact, these minimal elements 
correspond to the cases on the sphere and some other cases on the torus. 

3 Trivial case on the sphere 

Suppose k = (kl . . . . .  kn; E) c K where ~ (k) : - 4 ,  we have to provide the 
Riemann sphere CI? ~ with a metric that is flat except in a finite number of points. 
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Let z l , .  �9 �9 , z l , .  �9 , z~ be n distinct points in C, then the quadratic differential 

(Z___ Zl+l)kI._...~ +'_ .-:(_Z__--_Zn)kkndg 2 

( Z  - -  Zl) kl " " ( Z  - -  Zl) - 1  

on C can be extended to CI? 1, in such a way that c~ is a regular point of  O. 

We have taken into account the condition (3) of  our theorem. Obviously this 

quadratic differential realizes k. 

4 Reduction of the problem 

4.1 Partial ordering 

Definit ion. Take K = (kl . . . .  , kl, ki+~ . . . . .  kin; e )  6 K ,  where k i ~ --2 for 

i _< l, and k j  >_ - 1 for I + 1 < j _< m. We will write K ~ k, if  k can be written 

as follows: 

k = (k l  . . . .  , k l ,  kl+l + 4 h i  . . . . .  k~  + 4h~_1, km+l . . . . .  kn; r 

wherehi  are non-negative integers, i = 1 , . . .  , m - l ,  k j  _> - 1  for m + l  < j < n 

and 

~ k i > O .  
i m§ 

Remark 2. We have obtained a partial ordering ( K ,  ~ ) ,  such that every chain 

has a minimal element. Obviously o- is a monotone function in (9s ~ ) ,  i.e., i f  

K ~ k then o- (x) _< o- (k). The entries that are less or equal to - 2  are the exactly 
same for tc and for k. 

4.2 Basic constructions 

Given K, k e K where K is realizable and x ~ k, we want to conclude that k is 

also realizable. In order to support our claiming, in the next paragraphs we give 

a series of  simple constructions that will allow us to reach a singular flat structure 

that realizes k f rom one that realizes K by means of  cut-paste local operations. 

Construction 1. If  (kl . . . . .  km; r 6 9s is realized by a singular flat structure 

(M, qS) and i f  kin > - 1 ,  then (k] . . . . .  k in - I ,  k , ,  + 4; r is also realizable. 

Let  ql 6 M be a zero having order km or a simple pole (this is the case if  

km = - 1 ) .  Consider a geodesic segment o~ i n s o m e  critical trajectory starting 
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q l ~ q 2  q 

Figure 1 

from the ql and ending in a different point q2, let d(ql, q2) = d < r be the 
distance between these two points. Slit M along el. As a next step we identify 
ql and q2 obtaining a surface homeomorphic to a new fiat surface minus two 
open disks (fig. 1), both with perimeter d. Finally, we glue both boundaries of 
the disks to the boundary circles of a finite fiat cylinder Sd 1 X [0, 1] (S 1 denotes 
a circumference having perimeter d) to form a handle. In the new singular fiat 

structure ql ---= q2 is a zero of  order km+ 4. 

Construction 2. If  ( k l  . . . . .  kin; e) E .7s is realized by a singular fiat structure 

(M, ~b), then ( k l  . . . . .  kin, 4; e) is also realizable. 

To produce an isolated zero of order 4, take a segment of geodesic a : [0, d] --+ 
M, with c~ (0) = ql, ~ (d) = q2, and without singular points along it. Cut along 
c~ and identify ql and q2 to form a surface with two boundary circles of  perimeter 
d, joined at ql = q2- Attach a finite flat cylinder Sd 1 x [0, 1], to get a handle. In 

the new singular flat structure, p is a zero of order 4. 

Construction 3. If  ( k l  . . . . .  km; e) E 9s is realized by a singular flat structure 

(M, ~b), then (kl . . . . .  kin, 2, 2; e) is also realizable. 

To produce two zeros of  order 2, slit M along a nonsingular geodesic segment 
: [0, d] --~ M, ce (0) = q~, o~ (d) ----- q2, obtaining a new surface homo- 

morphic to M minus an open disk. Slit also a nonsingular fiat torus T along a 

geodesic segment fl : [0, d] -+ T, /3 (0) = Pl,  fl (d) = P2, of the same length 
d(pl,  p2) = d. Glue each side of the cut in M adequately to each side of the 
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ql 

Figure 2 

q2 

cut in T, identifying Pl with ql, and also P2 with q2. In the new singular flat 
structure, p~ = ql and P2 = q2 are two new zeros whose order is 2. 

Cons t ruc t ion4 ,  If(k1 . . . . .  kin; E) E 9s is realized by a singular flat structure 
(M, qS), then (kl, . . .  , kin, 1, 1, 2; - 1 )  is also realizable. 

Slit M along two adjacent nonsingular geodesic segments o~, 13 : [0, d] --~ M, 

suppose that oe(0) = Pl,  o~(d) = P2, and 13 (0) = P2 ,  13 ( d )  = P3 .  Attach a 
handle to the remaining boundary of two circumferences that touch each other 

in P2. It turns out that, P2 has become a zero having order two and Pl and P3 
have become simple zeros. 

Construction 5. If  (kl . . . . .  km; e) c 9(7 is realized by a singular fiat structure 
(M, ~b), then (kl . . . . .  kin, 1, 1, 1, 1; - 1 )  is also realizable. 

Slit M along two not intersecting nonsingular geodesic segments of the same 
length. Suppose that these segments have extreme points Pl,  p2 and qi, q2; 
attach a suitable handle to both cuts, obtaining four simple zeros at these four 
points. 

Cons t ruc t ion  6. If  ( k l  . . . . .  kin; E) c 9s is realized by a singular flat structure 
(M, q~), then (ka . . . . .  kin, - 1 ,  - 1 ,  2; - 1 )  is also realizable. 

Slit M along a nonsingular geodesic segment oe : [0, 2d] -+ M, ee (0) = 
pl ,  ct ( d )  = P2, ol (2d) = P3. On each side of  the cut, take the midpoints ql, q2 
(note that ql, q2 are both identical to P2 if we do not slice M). Glue identifying 
Plq l  with P3ql and Plq2 with ~--~. After we have made the identifications, 
Pl = P3 become a zero having order 2, q1 and q2 become simple poles (fig. 2). 
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P 

1 

P 

Figure 3 

q2 

I 
ql  

Cons t ruc t ion  7. If  K = ( k l  . . . . .  kin; e) ~ :K is realized by a singular flat 
structure (M, ~b), then (kl . . . . .  km, - 1 ,  - 1 ,  - 1 ,  - 1 ,  4; - 1 )  is also realizable. 

Cut along o~ : [0, 4d] --+ M, a(0)  = Po, a(4d)  = P4. In each of both 
segments that we have obtained and whose extremes are Po and P4, take three 
points Pl,  P2, P3 in one of  them and three points ql, q2, q3 in the other one in 
such a way that each one of the original segments is now divided in four segments 

of the same length d. Then do the following gluing operations or identifications: 

PoP1 to PIP-2 identifying Po with P2, P2P3 to ~ identifying P2 with P4, Poql 
to 0]-0S identifying po with q2, q2q3 t o  ~ identifying q2 with P4. Thus we have 

simple poles at Pl,  P3, ql, q3 and a zero of order 4 at Po = P2 = q2 = P4. 

Cons t ruc t ion  8. If K = (kl . . . . .  kin; e) E 9(  is realized by a singular flat 

structure (M, q~), then (kl . . . . .  kin, - 1 ,  1; - 1 )  is also realizable. 

Let us consider the following cases: 

C a s e l .  There is an entry ki < - 3 . T h i s m e a n s t h a t t h e r e i s a p o l e p o f o r d e r a t  
least 3, i.e., ifo: is a geodesic critical trajectory joining p to different regular point 
ql, d(p ,  ql) = cx~, where d(p ,  ql) is the length measured along the geodesic 
oe, ~ : [0, cx~) --+ M, a(0)  = ql, l imf_,~ o~(t) = p. Cut M along oe from p 
to ql. Take two consecutive points q2 and q3 on one side of the cut in such a 
way that both segments qlq2 and qS-q~, have the same length. Glue isometrically 
this two segments identifying ql with q3, after this we get a simple pole of order 
- 1 in q2. As a second step glue isometrically the two sides of the infinite cut 
which goes from qt = q3 to p. It turns out that, ql becomes a simple zero, and 
p remains as a pole having the same order as before (fig. 3). 
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Case 2. There is an entry ki = - 2 .  Let p be a pole having order 2, locally we 
have trivial holonomy so we can think it as a sink, a source or a periodic center 

of  a vector field. In the first two cases we have infinite geodesics that reach 
the extreme of the cylinder in an infinite arc-length; in the last situation we have 
finite closed geodesics. In both cases we have the geometry of an infinite cylinder 

S~d x [0, ec), the singularity corresponds to the infinite end of this cylinder. Cut 
this cylinder along a circumference that is a closed geodesic (in the first case 
this geodesic is one of the geodesics given as usual by our horizontal foliation, 

in the second case this geodesic is transverse to the infinite geodesics that reach 
the pole), suppose that this circumference has perimeter 3d, take three points 

Pl,  P2, P3 cyclically in it such that 

d (p i ,  p j )  = d  for i 7 ~ j .  

Glue the segments Pl P2 and ~ identifying pl to P3, P2 becomes a pole of 
order one and the resulting surface has a circumference of perimeter d as its 

boundary. Glue a cylinder S~ x [0, ec) to this circumference (the foliation can 

be conveniently extended). Thus Pl = P3 becomes a zero having order 1 and 
we have again a pole having order two at the infinite end of the cylinder. 

Now we are ready to prove the following 

L e m m a  1. Suppose  K, k ~ K .  I f  K ~ k and  tc is realizable, then k is also 

realizable. 

Proof.  Let k = ( k l ,  . . .  , k~; e) be in K ,  suppose that x = (kl . . . . .  kin; e) 

is realizable and such that x ~ k (assume the notation as in the definition of the 
partial ordering). Let ri be the number of  entries kj  o f k  ( j  = l + 1, . . .  , n) such 

that k j  =-- i (mod 4), for i = - 1, 1, 2, 4, and let si be the number of entries kj  of 
tc ( j  = l + 1 . . . . .  m) with the same property. 

Construction 1 implies that we have to consider only the problem of  obtaining 
ri - si singularities of order i, for i = - 1, 1, 2, 4. Furthermore, by using con- 
struction 2 we can have r4 - s4 zeros of  order 4. Therefore we only need to get 
rz - si singularities of order i, for i = - 1, 1, 2. 

We claim that constructions 3 to 8 are enough to have the required number 
of singularities of order - 1 ,  1, 2. The claim is true since with the operations 
described in the given constructions we are able to construct any number of 
singularities of these orders. 
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We summarize the whole process in the following diagram. 

Applying 

constructions x c K a ( z )  

(k l  . . . .  , k,n; ~)  4 g "  - 4 

6 , 7 , 8  .~ 

( k l  . . . . .  km,  - 1 . . . . .  1, . . . ,  2 . . . . .  4 . . . .  ; E) 4 g "  - 4 

2 , 3 , 4 , 5  ,~ 

(kl . . . .  , kin, - 1  . . . . .  1 . . . . .  2 . . . . .  4 . . . .  ; E) 4 g '  - 4 

( k l  . . . . .  kin,-1 + 4 h i  . . . . . . . . .  4 + 4h~-m; e) 4g - 4  

O< hi C ~, g~t < g~ < g .  []  

4.3 Realization of minimal data 

Let  us give a more precise characterization of  the minimal elements just by an 

arithmetical observation. 

Proposition. I f x  ~ K is a m i n i m a l  e l e m e n t  t h e n  a ( K )  c { -4 ,  0}. 

Proof .  Take tc = (k l  . . . . .  km; ~) and that o- (x) _> 4, we will show that ~c is 

by no means minimal. 

If km >_ 3, then we claim that (kl . . . . .  k m -  4; e) satisfies all conditions (1) 

to (5) o f  our main Theorem and therefore belongs to K .  Furthermore 

(kl . . . . .  k i n - 4 ;  e ) ~ x  

and therefore tc is not minimal. 

So let us take 

x = (kl . . . . .  kl, - 1  . . . . .  - 1 ,  1 . . . . .  1, 2 . . . . .  2; e) 

where ki _< --2 for i = 1 . . . . .  l. Define n-1 _> 0 as the number of  entries of  K 

that are equal to - 1, define nl and n2 in the same way. Then, our first assumption 

states that 

l 

--n-1 + nl + 2n2 + E k i  = ~(tr > 4 

i=1 
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hence 

2n2 + n l  > 4  

which implies nl >_ 2 or n2 _> 2. 

I f  n1 > 2 and n2 > 1 then K = (kl . . . . .  ki . . . .  k,~-3, 1, i ,  2; c). Then we can 

check that (kl . . . . .  kz . . . .  k,,-3; e) E K and 

(kl  . . . . .  kl . . . .  km-3; 6)  ~ Ir 

I fna  _> 2 and na = 0, then nl > 4 and therefore 

K = (k l ,  . - .  , k t ,  . . . k i n - 4 ,  1, 1, 1, 1; 6) 

then (k l  . . . . .  kl . . . .  kin_4; 6) c K and 

(k~, . . .  , k l ,  . . .  k , , - 4 ;  c )  ~ x .  

If  n2 > 2, then K = (kl  . . . .  , kl  . . . . .  k in -2 ,  2, 2; 6) ,  and again we have a 

new element (k l ,  . . .  , kl . . . .  k in-2;  6) E J(. 

(kl  . . . . .  k l , . . . k m - 2 ;  6) ~ K. 

In any case, x is not minimal. [] 

L e m m a  2. E v e r y  m i n i m a l  e l e m e n t  tc = (kt . . . . .  kr,; 6) c .7s is real izable .  

Proof .  Since K is minimal o-(~) = - 4 ,  0. 

Case 1. o- (x) = - 4 .  We have the realization problem on the Riemann sphere, 
and we have already solved it. 

Case 2. cr (to) = 0. If  c = +1,  then we conclude that the only minimal case 

that occurs on the toms is ( - 2 ,  2; + l )  but this element (and all that are greater 

than this) presents an obstruction by the Residue Theorem, therefore it does not 
belong to K .  Hence e = - 1 .  

We want to construct all the singular flat structures on the torus, considering 

structures on the sphere. The difficulty in this approach arises when, in certain 

cases, we want to change the orientability of  the horizontal foliation. In order to 

solve this problem let us consider the following additional basic constructions. 
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q q 

Figure 4 

%r 
v 

P 

Construction 9. If  a singular fiat structure on the sphere (CP 1, qS) realizes 

(kl . . . . .  kin; e) where kl <_ - 2 ,  then 

(kl . . . . .  kin, 4; - 1 )  

is also realizable (on the torus). 
Le tq  c C P  1 be apole  of  o rde r -k1 ,  andlet  a : [0, oc) ---> C]I :~1 be ageodesic  of  

the horizontal foliation such that ce (0) = p is a regular point, and limt--,oo oe (t) = 
q. Cut along oe, on one side of  the cut take two consecutive points Pl ,  P2 such 
that both segments PPl,  PiP2 have the same length d. Identify p, Pl and P2. 
Glue the other side of  the cut to de infinite lengthened segment that goes from 
the previous identification point to q (fig. 4). Attach a cylinder S~ x [0, 1] to 
the remaining boundary components tangent at p. We have thus obtained a zero 
of  order 4 at p = Pl = P2. It can be checked that the resulting singular flat 
structure has non orientable horizontal foliation. 

Construction 10. Suppose that singular fiat structure on the sphere (CP 1, ~b) 
realizes (kl . . . . .  kin; e), ~b having a pole q of  order --kl >_ 2, a zero of  order 
km >_ 0 and a geodesic of  the horizontal foliation connects p and q. Then 

(k l  . . . . .  km 1, k m +  4; - 1 )  

is also realizable (on the torus). 
Let o~ : [0, oc) --+ C P  1 be a geodesic of  the horizontal foliation such that 

tz (0) = p and limt-+oo oe (t) = q. Cut along o~ and proceed as in the previous 
construction in order to get a zero of  order k m +  4 at p.  

Construction 11. If  a singular flat structure on the sphere (CP ~, 4)) realizes 
(kl . . . . .  km; ~) where kl _< - 2 ,  km >_ 0, then 

(kl . . . . .  kin-l, km + 4; --1) 
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is also realizable (on the torus). 

From the previous construction we see that the only thing we need to achieve 
this construction, is to give a particular singular flat structure on the sphere such 
that there exists a pole q of order - k l  connected to a zero p of order kin, by 
means of  a geodesic of the horizontal foliation. Suppose that (kl . . . . .  kin; e) = 
(k~ . . . . .  kl . . . .  , k,~; e) where ki ~ 2~- for i = 1 . . . . .  1 and kj c Z + for i = 

l + 1 . . . . .  m. Take a2 < a3 < . . .  < am < al real numbers in C, an take the 
following quadratic differential (given in the affine chart) 

(z  - a l + l )  kz+~ �9 . .  ~ - ,kin 
. . . . .  S~___am ) d z  2. 
( z - a 1 )  k ' .  ( z - a l )  '~' 

It can be easily verified that this meromorphic quadratic differential on the sphere 
satisfies the hypothesis of construction 10. 

Cons t ruc t ion  12. If ( k l , . . .  , k,,, - 2 ;  e) is realized by a singular flat structure 
(M, r then 

(kl . . . . .  k~, 2; - 1 )  

is also realizable. 

Cut the cylinder S~a x [0, ec) which produces the order two pole along a 
closed geodesic of length 2d (not necessarily of the horizontal foliation). Take 

two points p an q on the boundary we have just obtained, in such a way that they 
divide it into two segments of the same length d. Identify p with q and attach a 
handle where necessary. Thus instead of the pole of order 2 we get a zero having 
order 2. 

Now that we have developed these tools (constructions 9 to 12), let us continue 
now with the proof of lemma 2. We remind the reader that our purpose is to solve 
the realization problem on the torus under the hypothesis that the prescribed that 
the horizontal foliation is non orientable. Since K = (kl  . . . .  , k in-1 ,  k,~; - 1 )  c 

:K and a ( x )  = 0, we can assume that kl _< - 2  and k,, _> 1. Consider 

(kl . . . .  , k,,-1, k;,; e') where k~ : =  k m - 4, and e' ---- +1 if km and ki a r e  

even for each i or ~' = - 1 otherwise. Observe that we have defined topological 
data that belong to LK. Furthermore, this new element is realizable on the sphere. 

If  k m >  4, then k',~ >_ 0 and by applying constructions 9 and 11 we have a 
singular flat structure that realizes x. 

If  km ----- 3, then k,',, = - 1, e' = - 1 and therefore by applying construction 2 
(which does not change the orientability status of the foliation), we have that x 
is realizable. Moreover, in this case x is not minimal. 
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P l  P2 

Figure 5 

If  km = 2, then according to construction 12 x is realizable. 

If  k m =  1, we can assume that every entry of  tc is less or equal to 1. Let  n 1 the 

number of  entries of  x that equal 1. 

If  nl > 4, then we can write K = (kl . . . . .  k i n ,  1, 1, 1, 1; - 1 ) ,  take a new 

element (kl, . . .  ,km; e') 6 9s realizable on the sphere (e' defined as above). 

Then apply construction 5 to conclude that x is realizable. 

If  n~ = 1 we can not have an entry less or equal to - 2 .  Therefore this case is 

not tenable. 

If  n l = 2 or 3, then by the minimallity of  x, we have few cases to consider, 

namely ( -  2, 1, 1, - 1), ( - 3, 1, 1, 1; - 1) both are realizable as it is shown below. 

( - 2 ,  1, 1; - 1 )  : Consider a flat cylinder $41d X [0, CO), and take Pl ,  P2, P3 

and P4 in the boundary circle in such a way that we form segments of  the same 

length 1 ~ [  = [fi4-p~-[ = d, i = l ,  2, 3, glue P l P 2  to P3P4,  identifying Pl 

to P4 and Pz to P3. Attach a suitable handle in the boundary circles that still 

remain. Thus we have formed two zeros of  order one at Pl = P4 and P2 = P3, 

we also have one pole of  order 2 (fig. 5). 

( - 3 ,  1, 1, 1; - 1 )  : Take the Riemann sphere CP 1 = C U {oc} and take the 

quadratic differential q~ - 1 near 0 in the affine chart of C. In order to get an 

admissible parameter for this differential in a domain that contains e~, apply the 

inversion z ~ > ~ = ~; then we can see that the transformation rule yields 

Thus we have a pole of  order 4 at ~ ,  and the geometry of  the foliation is 

given by taking the inverse image, under the stereographic projection, of  the 

usual horizontal foliation in C. Any horizontal trajectory is critical has infinite 

length with both rays tending to ~ .  Cut C~  1 along one of  these trajectories ot : 

( - o c ,  oc) --+ C P  1, say along the one that corresponds to {(x, 0) I x E R} C C 
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-3 

3 

Figure 6 

under stereographic projection; assume ol (0) = 0 c CI? l . After we cut we have 

two hemispheres. Take one of these hemispheres, we can parametrize its geodesic 
boundary with o~ as above. Identify o~ (t) with o! ( - t )  along the boundary, for 

t 6 [ 1, 2] U [3, (x~). Note that the border of  the new surface has two components 
of  the same length (fig. 6), attach a suitable cylinder to them. Then we have a 
regular point at c~ (0) and three zeros of order 1 at o! (1), ee (2) and ol (3), and a 
pole of order 3 at the point that corresponds to limt-+o~ c~ (t) .  

We showed that in any possible case x is realizable. 
A more concise approach is given by the following diagram. 

Applying 
constructions ~ c :K a (~) 

(kl  . . . .  , km  1, km; ~ )  - 4  

11 ,9 ,5  1 1 / "  5 5  "-... 9 

resp. (kl . . . . .  k i n + 4 ; - 1 )  -l. (kl . . . . .  kin, 4 ; - 1 )  0 
(kl . . . .  , kin, 1, 1, 1, 1; - 1 )  0 

(k~ . . . .  , km, - 1; - 1) - 4  
2 ,l- 

(kl  . . . . .  km, 3; - 1 )  
(Not minimal) 0 

(kl  . . . .  , k i n , - 2 ;  ~') - 4  

12 -l. 

(ka . . . . .  k,~, 2; -1 )  0 
By hand ( - 3 ,  1, 1, 1; - 1 ) ,  ( - 2 ,  1, 1; - 1 )  0 

From lemmas 1 and 2 we conclude the following 

[] 
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Corollary 1. I f  k c K ,  then k is realizable. 

As we observed, Theorem 1 follows from this corollary and from the main 

theorem in [MS]. Therefore, the proof  is complete. 
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