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Abstract. This paper investigates the existence and uniqueness of solutions of some 
boundary value problems modeling the deformation of a membrane of revolution under 
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are nonlinear, although it assumes a linear stress-strain relation. 
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1. Introduction 

The goal of this paper is to study the solvability of a boundary value problem 
modeling the deformation of a membrane of revolution under the assumption of 
a fully nonlinear strain-displacement relation. The model we consider follows 
from E. Reissner's work on thin shells of revolution with negligible bending 
stiffness (see [5], [7]), assumes a linear strain-stress constitutive law, and consists 
of a coupled nonlinear system of three ODEs plus an edge condition. It has 
also been derived directly by Clark and Narayanaswamy [2] without reference 
to the shell theory. We study the case in which the external forces causing 
the deformation are rotationally symmetric, act normally on the surface of the 
membrane, and vanish on a neighborhood of the apex. This case applies to 
the inflation of a membrane of revolution against a rigid floor; on the contact 
surface the pressure of inflation cancels out the force exerted by the floor. By 
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206 JAIME ARANGO AND HANS GRABMOLLER 

well-known mechanical reasons we look for solutions of the boundary value 
problems granting nonnegative radial stresses. 

As in our previous papers on curved membranes of revolution under a partially 
vanishing vertical load [3], [4], we use the fact that an explicit analysis can be 
performed where the load vanishes; however we employ a completely different 
technique to treat the equations related to the loaded part of the membrane. 
Indeed, we apply a shooting argument to obtain existence and uniqueness results 
of the problem. 

This paper is organized as follows. In Section 2 we outline the derivation 
of differential equations modeling the stress state of a membrane of revolution 
under a radially symmetric surface load, and specialize this setting to the case 
in which the load vanishes on a neighborhood of the apex. In Section 3 our 
equations are transformed, appropriated mathematical assumptions are stated, 
and the boundary value problems to be studied in this paper are posed. In Section 
4 we develop the tools needed for the application of the shooting method to the 
boundary value problems we deal with. Though this is a somewhat technical 
section, we only use elementary results of the theory of ordinary differential 
equations. Section 5 states the main results of the article. 

2. The model 

In this section we introduce the equations and boundary conditions describing 
the deformation of a membrane of revolution subjected to an external, partially 
vanishing, normal load. The mechanical background of this is not novel; see for 

example [9] or [2] for a derivation. 
Let the middle surface of the membrane in its undeformed state be generated 

by rotation of the meridian curve r = r (s) ,  0 < s < sl, where r (s) is the radial 
distance depending on the arc length s. We denote by z(s) the vertical position 
and by ~b (s) the angle of  inclination (with respect to the radial direction) of the 
meridian curve. Since in our analysis we intend to consider deformations of 
dome-like shaped membranes, we assume in the following that r (s) is positive 

and smooth enough on (0, Sl], and r(0) = 0. 
Suppose that under an external axisymmetric load with intensity ~'(s) the mem- 

brane deforms again into a membrane of revolution (because of the symmetry of 
the loading). Thus, any meridian curve r = r (s) of the original state is deformed, 
with no changes in the circumferential direction, into a meridian curve (which 
by rotation generates the middle surface of the deformed membrane) with radial 
distance, depending on the arc length S, given by R = R (S), 0 < S _ $1. 
For the description of the deformed membrane it is of interest the vertical po- 
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sition Z ( S )  and the angle �9 (S) of inclination of the deformed meridian curve 
with respect to the radial direction. The vertical and radial components of the 
displacement are defined as 

if(s) ~= R(s )  -- r (s ) ,  ~ ( s )  = Z ( s )  - z (s ) ,  

respectively, and the meridional and the circumferential strains of the membrane 
as  

d S  
Er ~ - l + - -  

d s  ' 

d R  "ff 
ee --= - 1 +  - -  - 

d r  r ' 

respectively. Further, let S .  and Se be the the meridional and radial stresses re- 
spectively, and suppose they are related to the already defined strains by Hooke ' s  

l a w :  

1 
~| = ~ (S| - v S e ) ,  

1 
~e = - E s  (Se  - v S |  

where E > 0 denotes Young's modulus of elasticity, v the Poisson's ratio, and 
h > 0 the thickness of the membrane. 

According to R. A. Clark and O. S. Narayanaswamy [2] the state of the de- 
formed membrane is described by 

d d 
-~s (r S .  cos ~ ) - Se  + r h qr = O, ~s  (r Sc  sin ~ ) + r h qz = O, (1) 

and 

d 
d ~ - ( r S e ) = S r  c o s q b - v r h q , + E h  ( c o s ~ - c o s r  (2) 

It is worth to note that the mathematical treatment of the model can be sim- 
plified by restricting the analysis to the shallow deformations in which Ir is 
very small and therefore the approximation sin qb = q~ can be justified. Yet 
this simplification is not assumed in this paper; indeed, no assumption has been 
made regarding the strain-displacement relation. Thus, the model presented 
here applies to sufficient thin structures obeying a linear stress-strain relation 
and undergoing finite rotations. 
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On the other side, considerations of  stability show that Se and So have to be 
tensile stresses, i.e., S .  > 0 and So > 0, in order to prevent the membrane from 
wrinkling. 

The radial and vertical displacements, from which the geometrical form of the 

deformed membrane can be obtained, are related to the stresses by 

(Se - v S| 
fi'(s) = e o r = r  , (3) Eh 

fos ( S~ - v S~ ) d~. (4) ~(s)  = ~ ' ( 0 ) +  - s i n ~ b + s i n ~  1 +  E h  

Equations (1) and (2) are quite general since they do not consider the nature 
of the external load. For the rest of this paper we carry out our analysis under 
the followings two assumptions on the external load 

�9 it acts normally on the middle surface of the membrane, 

�9 its intensity vanishes on a neighborhood of the apex the apex according to 

~ , , ( s ) = O  for O < s < s 0 .  

The first assumption means that the vertical and radial components of load be- 

come related to the intensity of  the normal load by 

A A A A A 

q , = 0 ,  q z = - q n c ~  q r = q n  s i n ~ ,  

As a consequence of this, equations (1) and (2) turn out to be independent of  the 

Poisson's ratio v. 
The second assumptions implies that the membranes flattens out where the 

external load vanishes. Indeed, from (1) it follows that (r S .  sin ~ )  has to be 
constant on 0 < s < So. Thus, ~ ( s )  = 0 for 0 < s _< so provided the stress 
S .  is finite. As a consequence of this, the vertical displacement is constant on 
0 < s < So. Because of (4) it readily follows that sin q~(s) = 0, on 0 < s < So. 
Now, if we think of the external forces as the cause of  the deformation, it is 
reasonable to assume the undeformed membrane, on which no external forces 
are acting, to be flat everywhere; that its to say 

sin ~b (s) = O, (equivalently r (s) = s) for all s c (0, sl). 

As an example, consider the inflation of a membrane of revolution against 
a rigid floor as indicated in figure 1. The membrane will touch the floor on 
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floor 2s0 

Figure 1" Inflation of a membrane against a rigid floor. 

�9 8 0 S1 

a circular section, say of radius So, on which the pressure exerted by the floor 
cancels out the pressure of inflation. On the rest of the inflated membrane, the 
resultant external force is exactly the pressure of inflation which acts normally 
to the surface of the membrane. In this example, the resultant external force is 
not continuously distributed, and despite of the physical evidence, it is not clear 
why the mathematical model predicts, as we shall show, a smooth deformation 
of the membrane. 

Now, if we know both the depth I of the floor and the radius So of the contact 
region, then the inflation problem is over posed since, apart of the necessary 
edge conditions (for example, fixed outer edge), we still have the additional 
(nontrivial) condition 

f l  '1 ( S r  d~. l =  s i n *  1 +  ~-~ 

3. The mathematical problem 

It is convenient to define the new variables: 

x(t) = t S,(s) cosqb(s), y(t) = t S,(s) sinq~(s), 

with 

S 
t = -- ,  and ~"(t) = sl~,~(s). 

S1 

Equations (1) and (2) become 

z ( t )  = t SG~(s), 

tx '( t)  = Z(t) + t 2~(t) s(x(t), y(t)), (5) 

t y' (t) = - t  2 ~(t) c(x(t), y(t)), (6) 

tz'(t) = x ( t ) + C t ( - l + c ( x ( t ) , y ( t ) ) ) ,  t e ( 0 , 1 ) ,  (7) 
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210 JAIME ARANGO AND HANS GRABMOLLER 

where '  stands for the derivative with respect to t, and 

x Y (x 2 + y2 > 0). 

y )  - - 7 ,  

Observe that the angle ~ as well as the horizontal and vertical displacements 
of  the membrane can be recovered from x, y and z as follows 

s l for s (x (~ ) 'Y (~) )  ( C ~ + ~ / x 2 ( ~ ) + y 2 ( ~ ) - v z ( ~ ) ) d ~ ,  (t sl) = ~(so) + ~ 

cosqb( t sL)=c(x( t ) ,y ( t ) ) ,  s i nqb ( t s l )=s (x ( t ) , y ( t ) ) ,  

s,( ; ) 
~ ( t s i ) =  ~ z ( t ) - v  x2(t)+ y2(t) , 

where to -- so 
s1 

We recall that tensile stresses (0 < S , ,  0 < So) are of  special interest, because 
they grant stably equilibrated states and prevent the membrane from wrinkling. 
Within the framework of  the new variables x, y and z the condition of  tensile 
stresses reads y > Oandz > O. If the rotation angle dO is restricted to O < ~ < ~- 

. . . .  2 5 

then stably equilibrated states are guaranteed if x, y and z are nonnegative. 

As the example of  inflation of  a membrane against a rigid floor shows, it is of  
interest to allow external loads modeled by: 

The function ~(t) vanishes on (0, to), is negative and smooth on 
(to, 1) and satisfies 

d 
- - -  (tq(t)) > O, 

dt 

where q - ~ (to,1)" 

A triptet (x, y, z) c C ([0, 1], R 3) is called a regular mild tensile solution, 
rmt-solution for short, of  equations (5), (6) and (7), if 

1. (x, y, z) (0.10) and (x, y, z) I*0,1) satisfies equations (5), (6) and (7) on 

(0, to) and (to, 1) respectively, 

2. x(t) > 0 andx2(t) + yZ(t) > 0 for all t c (0, 1). 
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A trot-solution (x, y, z) fulfilling the additional condition z(t)  >_ 0 is called a 
tensile or wrinkle free solution. In the sequel, interest will be focused on trot- 
solutions which are preconditions to stably equilibrated states on the deformed 
membrane. 

In order to determine the stress state of the membrane we need to prescribe 
either a horizontal displacement, an angle, or a stress component at the outer 
edge. This prescription leads to the boundary value problems defined by the 
differential equations (5), (6) and (7) and edge conditions of the following type: 

�9 Angular data: BVP-A 

c(x(1), y(1)) = cl, 

where the prescribed cl is the cosine of the meridional angle at the outer 
edge. 

�9 Radial displacement data: BVP-R 

Z(1) - v ~/x2(1) § y2(1) = Ul, 

where the prescribed u ~ is related to the radial displacement of the mem- 
C A 

brane fi'l by u 1 = ~ u 1. 

�9 Vertical and radial displacement data: BVP-RV 

Z(1) -- v ~ ( 1 )  + y2(1) = ul, 

ft I s(x(~),y(~)) ( C  ~ Jr- ~ / x 2 ( ~ )  -~- y 2 ( ~ ) - - 1 ) z ( ~ ) )  d ~  - c - s ~ ( 3 1 - 3 0 ) '  

where G1 and G0 stand for the vertical displacement of the membrane 
at the outer edge and at the apex respectively. In general, G0 is another 
unknown of the problem. 

The purpose of this article is to investigate the existence and uniqueness of 
trot-solutions of the boundary value problems stated above, but first we derive 
some general properties of rmt-solutions of equations (5), (6) and (7). 

Since ~ (t) and qb (t) both vanish on 0 < t _< to, equations (5), (6) and (7) 
restricted to (0, to) simplify to 

t x~(t) = z, y ( t )  = O, t z '( t)  = x,  t ~ (0, to). 

The components of their regular solutions Xr (t), which depend on a real param- 
eter r, are 

x r ( t ) = r t ,  y ~ ( t ) = O ,  z ~ ( t ) = r t ,  t 6 ( 0 ,  t0). (8) 
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212 JAIME ARANGO AND HANS GRABMULLER 

Notice that xr (0) = 0, xtr (0) = r, zr (0) = 0, z'r (0) = r. Since we are only 
interested in rmt-solutions we impose the condition r > 0. 

On the other hand, the deformation of the loaded part of  the membrane is 
modeled by 

1 
X t ( t ) = - M X ( t ) + F ( t , X ( t ) ) ,  t � 9  1), (9) 

t 

where X( t )  is the transposed of (x(t) ,  y(t) ,  z(t)),  and where F( t ,  X)  is the 

transposed of ( f l ,  f2, f3) defined by 

f t  (t, x, y) 

f2(t ,  x,  y) 

f3(t ,  x ,  y) 

:=  t q( t)  s(x ,  y), 

:=  - t  q(t)  c(x,  y) 

:= C (c(x, y) - 1), 

and M is a constant ( 3 x  3)-matrix such that equation (9) is the vector form of 
equations (5), (6) and (7) restricted to (to, 1). 

X �9 C 1 ((to, 1), R 3) f~ C ([to, 1], R 3) is called a regular mild tensile solution, 
rmt-solution for short, of  equations (9) if X solves (9) on (to, 1) and its first two 
components x and y satisfy, x( t )  > 0 and x2(t) + y2(t) > 0 for all t �9 (0, 1). 

T h e o r e m  1. Any trot-solution (x, y, z) of(5),  (6) and (7) satisfies 

1. z(t) ,  x( t )  and k(t) -- ~/x2(t) + ye(t) are smooth functions on (0, 1), 

2. 0 <_ k(t) - z ( t )  < C t f o r a l l t  �9 (0, 1], 

3. 0 < y(t) < - t 2  q(t)  on (to, l), and x( t )  > O on (0,1). I f  z(1) > O, 
c ~( t  sl) satisfies then z(t)  > O for  all t �9 (0, 1). Moreover, i f  u(t) =--- Sl 

u(1) > O, then u(t) >_ 0 on (0, 1). 

Proof. Any rmt-solution (x, y, z) of  (5), (6) and (7), restricted to (0, to), co- 
incides with Xr(t)  for an uniquely determined r > 0. Moreover, k(t) > 0 on 
(0, 1], hence c(x( t ) ,  y(t))  and s(x( t ) ,  y(t))  are continuous on (0, t )  and 

0 < c(x(t) ,  y(t))  <_ 1, 0 < s(x( t ) ,  y(t))  < 1. 

The smoothness ofz  (t) and x (t) at t = to is easily checked in equations (5) and (7) 
noticing that X(to) = z(to) = r to, c(x(to), y(to)) = 1, and s(x(to), y(to)) = O. 
Regarding k(t),  observe that 

k'(t)  - z(t)  x ( t ) ,  (lO) 
t k ( t )  
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and thus limz~t+ k ( t )  ----- limt__,t ~ k( t )  = r. 
To prove the second claim, we use (10) together with (7) to obtain 

d c ( x ( t ) ,  y ( t ) )  
d t  (k ( t )  - z ( t ) )  - t ( z ( t )  - k ( t ) )  § C (1 - c ( x ( t ) ,  y ( t ) ) )  . 

This can be seen as a first order linear differential equation in k - z with a nonneg- 

ative independent term. Since k(to) - z(t0) = 0, we conclude after applying the 
z(t) formula of  variation of  parameter that z ( t )  - k ( t )  > 0, or equivalently, 1 > k~5 

on (0, 1). Now again from (10) and (7) we obtain 

x(t) 
k ' ( t )  < -- z ' ( t )  + C (1 - c ( x ( t ) ,  y ( t ) ) ) ,  

t 

and k ( t )  - z ( t )  <_ C t on (0, 1) after integrating on both side of  the above 
inequality. 

As for third claim, we start with 

Z 0 _< y(0 _< -~  q(~) d~, 

d and observe that t 27d ( - t q ( t ) )  _> 0 i m p l i e s - t q ( t )  -< 27 ( - t a q ( t ) )  , which 
gives 0 < y ( t )  < - t Z  q ( t ) .  

Now, if x ( t )  vanishes at some interior point ~ c (to, 1), then x '(~) = 0 and 

x" (~ )  > 0 (recall that x ( t )  > 0 on (0, 1)). Yet if we evaluate the expression 

x(t) 
t x " ( t ) + x ' ( t )  --  - -  + C  ( 1 - c ( x ( t ) , y ( t ) ) ) +  

t 

d d 
t2 q ( t )  - ~ s ( x ( t ) ,  y ( t ) )  + s ( x ( t ) ,  y ( t ) )  -~  ( - t 2  q ( t ) )  

at t = ~, and notice that 

d - t  2 q ( t )  k ( t )  - y ( t )  z ( t )  
~ s ( x ( t ) ,  y ( t ) )  = c ( x ( t ) ,  y ( t ) )  t k 2 ( t )  , (11) 

we reach a contradiction since 

d t=~ 
~ x "(~) = - C  + -~  (t2 q ( t ) )  < O. 

The last part of  the third claim is proved in a similar way: we first get an 

expression for x" ( t )  (respectively u ' ( t ) ) ,  and then rule out the existence of  a 
negative minimum of  z (respectively u) at some interior point ~ r (to, 1). We 
recall that q is negative on (to, 1) and that 

u( t )  = z ( t )  - vk ( t ) .  (12) 

[] 
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Theorem 1, apart from being an important tool for further results in this paper, 
reveals some interesting facts of relevance from the mechanical point of view. 
Observe that claim 1, despite of an eventually non continuous load, guarantees 
the smoothness of both the stresses, S, ,  So and the displacements (radial and 
vertical), the continuity of angle of deflection q5 (t sl), and thus the smoothness 
everywhere of the shape of the deformed membrane. 

Claim 2 implies 

So < S~ < So + E h, 

which is by no means obvious from the statement of the problem. Moreover, 

since 

__d ( ~ )  = z ( t ) x ( t ) - k 2 ( t )  < O, 

dt t 2 k(t) - 

we can see that the stress S| decreases along the meridional curve. 
The first inequalities in claim 3 assures, in view of (11), that the angle of 

deflection increases along the meridional curve of the deformed membrane. 

4. The shooting method 

For r > 0 let us denote by X (t, r) the unique solution of the initial value problem 
IVP defined by equation (9) and initial data Xr (to) at t = to, where X,. (to) is 
given by (8). It is seen, that any rmt-solution of (5), (6) and (7), restricted to 
[to, 1], coincides with an uniquely determined X(t ,  r). Therefore, for a given 
edge condition B(X) = B1, the problem of existence and uniqueness of the 
correspondingly boundary value problem, within the class of rm-t solutions, 
reduces to the existence and uniqueness of an r > 0, such that X(t ,  r) is rmt- 
solution of (9) and satisfies the equation in r given by B(X(t ,  r)) = B1. This 
shooting approach is natural, yet it hides some difficulties, since we have no hints 

about neither the nature of the set 

Ip= {r >0,] X(t,r) isarmtsolutionof(9)}, 

nor the dependence of X (t, r) on the parameter r. 

Lemma 2. The set Ie contains an unbounded interval of  positive real numbers. 
Moreover, if7` E Ip, then either x(1, r ~) = 0 or there exists 8 > 0 such that 
(F"- 8,7" + 5) C Ip. Proof. For all r > 0 Piccard's Theorem assures the 

Bol. Soc. Bras. Mat., VoL 31, No. 2, 2000 



MEMBRANES OF REVOLUTION 215 

existence of a non-void (maximal) interval L C [to, 1] and a unique solution 
X(t ,  r), t c Ir, of IVP (X( t ,  r) is not necessarily a rmt-solution). Standard 
results assure also that the solutions X (t, r) depend smoothly on r, and either the 
interval of definition is L = [to, 1] or /r  = [to, tr), with lim inft_+t;7 k2(t, r) = O, 
where k2(t, r) --- x2(t, r) + y2(t, r). Moreover, if for a particular 7"we have 
I7~ = [to, 1] and liminft_+l- k 2 ( t , ~  > 0, then there exists 8 > 0 such that i) 
L = [to, 1] for all r ~ (7"- 6,7"+ 3), and ii) the solutions X(t ,  r), t ~ [to, 1] 
depend smoothly on r 6 (7"- 6,7"+ 6). 

For a given r > 0 suppose that the corresponding solution X(t ,  r) satisfies 
x(t ,  r) >_ 0 on It. We are going to show that/,, = [0, 1]. Indeed, from equa- 
tion (6) we obtain that y(t,  r) is a strictly increasing function of t on Ir, thus 
liminfr_+t,r k2(t, r) > 0, which in turn implies that L = [0, 1]. 

The formula of variation of parameters applied to equation (9) with initial data 
x(to) = r to, y(to) = 0 and z(to) = r to yields (for t c It), 

x ( t , r )  = r t  + (J+f l ) ( t )  + (J_ f3)(t) ,  L' 
y ( t ,  r)  = f2(~, r )  d~,  

(13) 

(14) 

(15) 

where 

fo 
t t 2 i ~ 2 

(J• : =  

and where for short we use the notation f j(~, r) ~ f j(~, x(~, r), y(~, r)), 
(j  = 1, 2, 3). Since 

l f l (~ ,  r)[ _< - ~  q(~), [f2(~, r)[ < - ~  q(~), If3(~, r) 1 < 2 C .  

we can readily conclude that x(t ,  r) > 0 on L provided, 

f o l (  1 + ~ 2  1-_? 2 )  r >_ - ~  q(~) - - ~  § C d~ 

and as we have already remarked, for such r we have L = [0, 1]. 
Now suppose that?" ~ lp and that x(1,7) > 0. According to claim 3 of 

Theorem 1, there exists e0 such that x(t ,  r) > e0 > 0 on [to, 1]. Since solutions 
X (t, r) depend continuously on the parameter r, there exists 6 > 0 such that 
x ( t , r )>_Oon[ to ,  1 ] f o r a l l r ~ ( 7 " - & 7 ` + 6 ) , t h u s ( ~ ' - & 7 ` + 6 ) C I p .  [] 
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Let J be any interval (not necessary included in Ip) in which we can guarantee 
the smoothly dependence on r and / r  = [0, 1], for r �9 J .  Recall 

X(to, r) = r to, y(to, r) = O, Z(to, r) = r to, 

3 O 0 
- -X( to ,  r) = to, =-y(to,  r) = 0, =-y(t0,  r) = to. 
Or O r -  O r -  

Differentiation of  equations (5), (6) and (7) with respect to r yields 

t ( O x ( t ,  r ) ) '  -- 0 or Z + t2 q ( t ) O s ( t ,  r), 

0 
t ( ~ r Y ( t ,  r ) )  0 = - t  2q(t)-~rc(t ,  r), 

0 0 
t ( O z ( t , r ) ) '  -- Or x + C t ~ r c ( t , r ) ,  

where on the fight hand side we write for short 

t �9 (to, 1), 

(16) 

(17) 

(18) 

x = x (t, r), 

y = y(t ,  r), 

Z = Z(t, r), 

s(t ,  r) = s (x ( t ,  r), y(t ,  r));  

c(t, r) = c(x( t ,  r), y(t ,  r)). 

A straightforward computation yields 

0 y a x - x ~ y  
-~re(t, r) = s(t ,  r) 

X2 q- 72 (19) 

O y a x - x a y  
~rS( t ,  r) = - c ( t ,  r) 

x 2 + y2  

It is easily seen that equations (16), (17) and (18) are a linear ODE system for 
the unknowns ~ x ( t ,  r), o_ % ~ z ( t ,  r), x = x 57rYt r) and . provided that (t, r) and 
y = y (t, r) are considered as known functions. 

The sign of  the quantity g, 

0 0 
g(t ,  r) -- y - - x  - x - -  

Or Or y' 

is crucial for further analysis. 

L e m m a 3 .  For all r �9 J there exis ts8  > O such that g(t ,  r) > O f o r t  �9 

(to, to + 8). 
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Proof .  From c(to, r) = 1 for all r r J ,  it is readily concluded that 

O 
c(~,  r) = 1 + O(~  - to), ~ c r  r) = O(~ - to). 

Equations (6) and (17), along with y(to, r) = 0 and ~y(to, r) = 0 respectively 
yield 

y (t, r)  = - / [  

therefore 

q (~) c(~, r) d~, y ( t , r )  = - 8q(~)~rC(~ , r )d~ ,  

g(t, r) = --~ q(~) c(~, r)~rX(t ,  r) - x(t, r) c(~, r) d~. 

Next, observe that the expression c(~, r) ~ x  (t, r ) -  x (t, r) ~c (~ ,  r) is positive on 
a non-void interval (to, to + 3) C (to, 1 ]. The claim follows now from the integral 
expression o f g ( t ,  r) and from the assumption that q is negative on (to, 1). [] 

0 )  and for some integrable right 
1 \ 

L e m m a  4. Given the matrix A := 1 0 hand 
/ 

side R(s) the vector initial value problem 

1 
X ' ( s ) - -  A X ( s ) =  R(s) >_O, s c (to, l),  

s 
X(to) = (x(to), z(to)) r _> o, 

withx(to)+Z(to) > O. Thenanyregularsolutionsatisfies X(t)  > O, t �9 (to, 1), 
where the orderings ">"  and " >" in IR 2 have to be understood component by 
component. 

1 (ln 1 on both Proof.  For t > to and any s �9 (to, t) an application of  E 7 A) k 
sides of  the differential equation does not influence the above ordering because 
we have A 2j = M and A 2j+l = A for any j = 0, 1 . . . . .  Summation over k 
leads to 

e AIn ~ ( X ' ( s )  --  - 1 A X ( s ) )  = e A l n t L ( e  Alnss(s)) 
S ds 

= e Alra ~ R (s) > O, s ~ (to, t). 
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Integrating over s this finally gives 

Aln L 
X (t) > e ,o X (to) = 

= ~ - " - - ~  In + - - l n - -  > 0  
j=o to/ z(to) 2 j  + 1 to X(to) 

for all t r (to, 1). [] 

L e m m a  5. I f  r c J and X (t, r) is an rmt-solution of(9), then, for  all t in (to, 11, 
g(t, r) is positive and 

~rX(t ,  r) > O, z(t, r) > O, 

0 
-~rk(t, r) > O, 

0 
-~r c (x (t, r) , y (t, r) r) > O. 

0 ! Proof. Replacing x', y!, (~,.y), and (~rX)' in 

( ) d + y O  x _ 0 
~ g ( t , r )  = y x x -~ry -x '~--~y 

by their respective expressions (16), (6), (17) and (5), we obtain 

0 0 
t g ( t , r )  = - t Z q ( t )  ~ / x T + y 2 + y ~ r Z - Z - ~ r y .  

It is convenient to define the auxiliary expressions b and k as follows: 

b(t, r) = - 2 t  q(t)  z - C ~rY,  k(t,  r) =-- v / -~  + y z. 

Again, we differentiate with respect to t in order to obtain 

dt \ at  Or dt \ 
o o)  

+ Z Y o r Z -  Z or y " 
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Combined with 

Y or Z - Z Orr Y = t y - - x - x  Or -~r y + t q(t) z ~rC(t, r) + C ~ry  

- c ( t , r ) (C  O O O ~ry  + t q(t) ~rZ)y  + C y ~rC(t, r) 

and 
d 0 

- 

O ~k(t, r) = 

we get 

d / t  d t 

Analogously we have 

O d k O ( c ( t , r ) z ]  z O 
0 n ( ~ ) = ~  t / = t ~  c ( l ' r ) + -  

0 O 
s(t, r ) ~ r y  + c(t, r)~rX, 

c(t, r) O 

t Or z' 

g(:, ~') 
= b(t ,r)  c(t, r) + - -  

t 

+ C y - - c ( t , r ) + - - y  . 

, 8  
(t~ q(/))  ~rk(t ,  r) 

d 0 0 0 
-d~b(t, r) = - 2 q ( t )  ~r x - C t q(t)~rC(t,  r) 2(t q(t)) '  

After these computations we are ready to proceed with the proof. From the 
assumption on q and the fact that X (t, r) is rmt-solution is clear that 

x(t, r) >_ O, c(t, r) >_ O, y(t, r) >_ O, s(t, r) >_0. 

Observe that for any interval (to, tl) C (0, 1] on which g(t, r) is positive we have 

0 0 
-~rC(t, r) > 0, - ~ r S ( t ,  r) >_ O, 

and consequently ~,.y(t, r) > 0. This, together with Lemma 4 applied to equa- 
tions (16) and (18), implies 

~rX(t, r) > O, z(t, r) > O. 

Everything considered, we see that b(t, r) >_ 0 and 

d d [ \ 

Now, let [ be the largest tl such that g(t, r) > 0 for all t in (to, q) C (0, t]. 
Lemma 3 assures there is such a non-void interval. We claim that [ = 1. If not, 
then g(t, r) has to be positive and to have a maximum in (to, D- As inequality 
(20) remains valid for tl = i, we have reached a contradiction. [] 
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Lemrna  6. IF = [7, ~x~) with ~ '> 0 and x(1, r ~) = O. 

Proof.  If Ip were not an interval, there would exist an ? > 0 and two sequences 
(rn) and (?~) such that 

rn C Ie,  rn --+ ?, Fn ~ Ip, rn ---> ?, rn < ? < rn. 

It is not difficult to prove (by a reasoning analogous to that in the proof  of  Lemma 
2) the existence o f a  3 > 0 such that L = [to, l ] and such that the solutions X (t, r) 
depends smoothly on r, r ~ (? - 8, ? + 5) according to equations (16), (17) and 

(18). 
Since x( t ,  r,) > 0 for all t ~ [to, 1], we conclude that x(t ,  ?) >_ 0 and hence 

? c Ie.  Moreover, from Lemma 5 we know that ~ x ( t ,  ?) > 0 for t c [to, 1]. 
From this, there exists 60 > 0 such that 

x(t ,  i" + 6) > x( t ,  ?) > O, 

for any 0 < ~ < e0 and for any t 6 [to, 1]. Yet this implies ? § e 6 Ip for any 
0 < e < e0, which in turn contradicts ?n ~ Ip. This proves that Ip is an interval. 

Let us denote 7` = inf Ie.  As we did for ? we can easily show that x (1,7) = 0 
if 7" > 0. Suppose 7" = 0 and let rn --~ 0 be a decreasing sequence in tp. 
From Lemma 5 we know that X(-, r~) is a decreasing sequence of  functions 
(the ordering in ~3 has to be understood component by component); moreover 
c(., rn) (respectively s (., r~)) is a decreasing (respectively increasing) sequence 
of  continuous functions. Because of  the integral representation o f x  (t, r), y (t, r)  
and z(t,  r) in (13), (14) and (15) and well known results of  the Lebesgue theory 

we have 

fot  t2 q-~ 2 fro tt2-~22t-~ Y'(t) = 2 ~ q ( ~ ) ~ ' ( ~ ) d ~  + C  ( - 1 + ~ ) )  d~, 

s ~'(t) = - ~  q(~)cA(~) d~, 

~'(t) = 2t q ( ~ ) s ~ ) d ~  + C 2t---f- ( - 1  +~'(~))  d~, 

where Y, ~, ... are the corresponding limits of  x(t ,  r~), y(t ,  r~) .... as n goes to 
~ .  Now, since x(t ,  r~) > 0 on [to, 1], we obtain x _ 0 on [to, 1], and from the 
above integral representation of  Y" that (recall q _< 0) 

ft0 ~ t 2 + ~ 2  t ~tl t t2-~2 -2t~ = o, c ( - 1  = o,  
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It follows now that cA(~) = 1 and~"(~) = 0 a.e. on [to, 1], which contradicts the 

fact that ~"(t) < c(t, r) < 1 for all r > 0 and all t E (to, 1]. [] 

5. E x i s t e n c e  a n d  u n i q u e n e s s  re su l t s  

So far we have seen that rmt-solutions of the boundary value problems stated in 
Section 3 are to be sought in the set of functions 

x ( . , r ) ,  r E [7", or 

Let us estimate X(1, r) for r > F. From the integral representation of x(t ,  r), 
y(t ,  r) and z(t,  r) in (13), (14) and (15) we obtain for r > ? 

r t o - c o n s t  < x(1, r), 0 < y ( 1 ,  r) < const,  r t o - c o n s t  < z(1, r), 

and from this follows 

lira x ( 1 ,  r) = lira z (1 ,  r) = cx~, 
z(1, r) 

lira - -  - 1. 
r-,cv x(1, r) 

From x ( 1 , ~  = 0, (13) and (15) we h a v e T  = - ( J + f l )  (1) - ( J - f 3 )  (1), and 
z(1,7) = T +  (J+f3) (1) + ( J - f1 )  (1). The equation for z(1,7) is equivalent to 

it0 
1 

z(1,'~) = ~ ( - ~ q ( ~ ) s ( ~ , 7 ) - C ( 1 - c ( ~ , ~ ) ) d ~ .  (21) 

any us > Ftl = (1 - v) ft~ - ~  q(~) d~ the boundary Theorem 7. For value 
problem BVP-R possesses exactly one tensile solution. 
For any us >_ Ftl and any w~ the boundary value problem BVP-RV possesses 
exactly one tensile solution. 

Proof.  The existence and uniqueness of a rmt-solution of BVP-R is equivalent 
to existence and uniqueness of a zero of the application 

r --+ u(1, r) - U l ,  r > r_ 

where u(t, r) -~ z(t, r) - v k(t, r). Moreover, any mat-solution (x, y, z) of BVP- 
R with ul > 0, must fulfill z(1) > 0, and according to Theorem 1 z(t) > 0 for 
all t c [to, 1]; hence any rmt-solution of BVP-R with Ul _> 0 has to be a tensile 
(wrinkle free). Regarding the BVP-RV problem the vertical displacement wl 
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can be arbitrary prescribed; however this prescription detm~nines the maximal 
deflection of  the membrane at apex w (0). 

The uniqueness of  the zero obviously follows from a&u (1, r) > 0, for all r > ~" 
and for all t c [to, 1]. Let r > 7"given. Observe that ~u(t,  r) > 0 on some 
interval [to, to + 31 with ~ > 0. We use equations (5), (6), (7), (16), (17) and (18) 
to obtain after a some computation that 

- -  u = - - x +  C -  - - c - - c l z .  
dt 7 0r -f- Or t Or 

Now suppose a u  = 0 at some interior point ~ E [t0, 1]. Then, at t = ~ we have 

8 O 0 O 
~-Tr z = v - - k  = v c - - x  + v s  Or Or -aTr y" 

Replacing this in the expression for ?7 \ ~  ] yields at t = 

d ( O  ) ( v z ) O  c O y ~ x - v 2 x ~ y  
-dt-~r u = C - - 7 -  Or +(1--v2)  c2-oTrX+Y tk  2 

( vz)  O c a h a  
_> C -  T g + ( 1 - v 2 )  c 2 ~rx+Tor--C 

= (1--V2) C 2 L X  ( C @ t  ( k - z ) )  L c 
Or + > 0, t Or 

where use have been made of  Theorem 1 and equation (19). The inequality 

at \0r ] > 0 wherever a~u = 0 and the fact that ~ u  Or > 0 on some interval 

[to, to + 3] with ~ > 0 obviously imply a~u > 0 on [to, 1]. 
Now the problem is to estimate infr>~-u(1, r) = u(1 ,7)  and l i m r ~  u(1, r). 

First, from the definition of  u and the fact that limr__,~ z(1,r) _ 1 we easily get x(l,r) 
l imr_,~ u(1, r)  = oo. Second, notice that 

u ( 1 , ~  < (1 - v ) k ( 1 ,  r'F) _5< (1 - v )  - ~  q (~ )d~ .  

[] 

A slightly different existence result for BVP-R and BVP-RV can be obtained 
from expression (21) �9 

1 

u ( 1 , ~  _< z( l ,  r~ < q(~)d~. 

From this inequality we have existence for any ul > .s _~2 q (~) d~. 

Theo rem 8. For any 0 < cl < 1 the boundary value problem BVP-A possesses 
exactly one rmt-solution. Moreover, the solution is tensile if ~ > 1 
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Proof.  We see that the application r --+ c(1, r),  r > r A, is smooth, strictly 

increasing, and satisfies c O , f )  = 0, l i m r ~  c(1, r) = 1. 
Regarding the tensile solutions, expression (21) is the key to determine whether 

a solution is tensile (recall again Theorem 1). Observe that s (~, 7) is exactly the 
sine of the angle of inclination �9 (~ sl), of the deformed membrane determined 
uniquely by the boundary condition x (1) = 0. Thus 

--~ q(~) s(~, r) -- C(1 - c((, r)) = - ~  q(~) sin qb(~ sl) - E h (1 - cos ~(~ s1)). 

and 1 - cos q5(~ sl) < sin ~(~  sl), we get Since 0 _< qb(~ sl) < 7 

fro 1 z(1 ,~  _ s(~) (-~ q ( ~ ) -  E h) > 0, 

provided -tq(t)  > 1 for all t c [to, 1]. --s - 
[] 

6. C o n c l u d i n g  r e m a r k s  

We have established existence and uniqueness of solutions of some boundary 
value problems which model the stress state and deformation of a rotation mem- 
brane under partially vanishing normal load. This kind of loading is by no 
means artificial; it is not far from applications and appears in real settings like 
the inflation of  membrane against a rigid floor. 

Our uniqueness results are quite sharp. Yet the same cannot be said about the 
existence results for the radial displacement, for our estimative concerning them 
do not depend on the elasticity module. Moreover, the criterium we developed 
to guarantee tensile solutions (wrinkling free solutions) of  the boundary value 
problems-the important ones from the mechanical point of  view-is very restric- 
tive. A better criterium as well as a better estimative for the radial displacements 
are still open problems. 

Our analysis set up the necessary tools to solve the more difficult problem of 
finding the contact area of the inflated membrane against a rigid floor as function 
of the pressure and the material constant. 
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