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Abstract. We prove that a complete noncompact oriented strongly stable hypersurface 

M n with cmc (constant mean curvature) H in a complete oriented manifold N n+l with 

bi-Ricci curvature, satisfying b-R]c(u, v) > @ H 2 along M, admits no nontrivial L 2 

harmonic 1-forms. This implies if M n (2 < n < 4) is a complete noncompact strongly 
4 ( 2 n - 1 )  ,~ th ,=ro  stable hypersurface in hyperbolic space H n + t (_  1) with cmc H (H2 > ~ J . . . . . . .  

exist no nontrivial L 2 harmonic 1-forms on M. We also classify complete oriented 

strongly stable surfaces with cmc H in a complete oriented manifold N 3 with scalar 

curvature S satisfying infM S > - 3 H  2. 
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0. Introduction 

The Bernstein conjecture states that any complete minimal graph in R n+l is a 

hyperplane. It is known to be true for n _< 7 and false for n > 8. In [Si], Simons 

studied the stability of minimal hypersurfaces and concluded the nonexistence 

of  stable compact  oriented minimal hypersurfaces in a space of positive Ricci 

curvature. Since then, there have been a lot of  work in the stability of minimal 

and constant mean curvature hypersurfaces, For example, in [dCP] and [FS], 

do Carmo and Peng, and Fischer-Colbrie and Schoen independently proved that 

complete oriented stable minimal surfaces in R 3 are planes. But this result for 

higher dimensions is still not known. In [P], Palmer considered L 2 harmonic 
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forms on a complete noncompact oriented stable minimal hypersurface M in 
R n+l and proved that there exist no nontrivial L 2 harmonic 1-forms on such an 

M. According to Corollary 1 in [D](p.293), nonexistence of nontrivial L 2 har- 
monic 1-forms on M implies any codimension one cycle on M must disconnect 
M. Hence, Palmer's result gave some topological obstruction for the stability of 
M. This result has been recently generalized by Miyaoka ([M]) and Tanno([T]). 
In [M], Miyaoka obtained that there exist no nontrivial L2-harmonic 1-forms on 
a complete noncompact oriented stable minimal hypersurface in a complete ori- 
ented manifold N "+1 with nonnegative sectional curvature. In [T], this result was 
shown to hold for minimal hypersurfaces in an ambient manifold N n+ l with non- 

negative bi-Ricci curvature (See the definition of bi-Ricci curvature in w 1). Also, 
in [L], Li considered the case that M ~ (2 < n < 5) is a hypersurface with con- 
stant mean curvature. He proved that a complete noncompact oriented strongly 
stable hypersurface M ~ (2 < n < 5) with constant mean curvature in a complete 

oriented manifold N ~+1 of non-negative bi-Ricci curvature admits no nontrivial 
L 2 harmonic 1-forms. On the other hand, Anderson ([A]) proved that there is 
a rich class of complete area-minimizing graphs in hyperbolic space H n+l ( -  1) 
with certain (allowable) prescribed asymptotic behavior and hence the classical 
Bernstein theorem fails in H ~+1 (-1) .  Thus, it is natural to consider complete 
stable hypersurfaces with nonzero constant mean curvature in H ~+t ( -1) .  For 

example, da Silveira (IS]) obtained a result, similar to that in[dCP] and [FS], on 
complete noncompact stable surfaces with constant mean curvature in H 3 ( -1 ) .  

In this paper, we consider the relation between strong stability of hypersurfaces 

with constant mean curvature and existence of L 2 harmonic 1-forms on them. 
In Theorem 1, we prove that an n-dimensional complete noncompact oriented 

strongly stable hypersurface M ~ with constant mean curvature H in a complete 
oriented manifold N n+l with bi-Ricci curvature b-R]c, satisfying along M 

(n  - -  5 ) n  2 H2 
b-Ric(u, v) > (0.1) 

4 

admits no nontrivial L 2 harmonic 1-forms on M. In particular we obtain the result 
corresponding to Palmer's result in hyperbolic space H ~+1 ( -1)  for 2 < n < 4 
(Corollary 1). In theorem 2, we show that M ~ has some geometric properties 
if M is a compact oriented strongly stable hypersurface with constant mean 
curvature H in a complete oriented manifold N ~+1 with bi-Ricci curvature b-Pdc 
satisfying (0.1) and if M admits a nontrivial harmonic 1-form (i.e. the first 
Betti number fll (M) # 0, by Hodge's theorem). Since not much is known 
about the stability of complete hypersurfaces with H 7L 0 in a general ambient 
manifold when n > 3, our results in theorem 1 and 2 give some topological 
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obstruction to it. Theorem 3 is a generalized version of Fischer-Colbrie and 

Schoen's theorem on complete oriented stable minimal surfaces in a complete 

oriented 3-manifold of non-negative scalar curvature. In this theorem, we give 
the classification of complete strongly stable oriented surfaces with constant 
mean curvature H in a complete oriented manifold N 3 with scalar curvature 

satisfying infM S > - 3 H  2. This theorem is also related to the result on 
complete weakly stable oriented surfaces with constant mean curvature H in a 
complete oriented manifold N 3 in IF]. In IF], Frensel proved the genus of M 
satisfies g < 3 when M is a compact oriented weakly stable surface with constant 

mean curvature H in a 3-dimensional complete oriented manifold N with Ricci 
curvature satisfying infM RqCN > - 2 H  2. By comparing this result with our 
theorem 3 (i), we obtain that if  infM RqCN > - -2H 2, then g _< 3 when M is 

weakly stable; and g < 1 when M is strongly stable. Both results are sharp. 

w Notations and statements of theorems 

Let N n+l be a complete oriented (n + 1)-dimensional Riemannian manifold. Let 
i : M ~ __+ N n +l be a complete oriented isometric immersion of  a connected 
manifold M. Denote by V and V the Levi-Civita connection of N and M respec- 
tively. Fix a point p e M and a local orthonormal frame field {e~, e2, �9 �9 , e~, 5V} 

at p on N such that {el, e 2 ,  �9 . .  , en} are tangent fields and 5V is a unit normal 
vector field at p on M. Define a linear map A : TpM --+ TpM by 

(AX,  Y) = (VgxY,.%f}, 

where X, Y are tangent fields. Define mean curvature of M as 

1 
H = - ( T r A ) .  

n 

Recall that M is said to be strongly stable if  

fM{lVhl2 - (R]c(SV, 5V) + IIAll2)h2}dv > O, (1.1) l(h) 

for every C ~ function h : M -+ R with compact support. Here Vh is the 
gradient of  h, and dv is the volume form. 

M is said to be weakly stable if (1.1) is true for every Coo function h : M --+ R 
with compact support satisfying fM f dv = O. 

To state our result we need to recall the definitions of L 2 harmonic 1-form and 
bi-Ricci curvature for a Riemannian manifold. 
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Definition 1.1. 
manifold M is said to be L 2 harmonic i f  it satisfies 

MCOA*CO<+O0, Aco = 0, 

where A = d3 § 2d is the Hodge-Laptace operator on M. 

By Proposition 1 in [Y], a 1-form co is L Z harmonic if  and only if  

MCOA*CO< +r 6 0 9 = 0 ,  ~CO=0. 

In a local orthonormal frame field {el, e2, . . .  , en} at p ~ M,  do) = O, 

are equivalent respectively to 

where 

A 1-form co on an n~dimensional complete orientedRiemannian 

& o = 0  

/1 

(Vicoj)(p) = (Vjcoi)(p),  i, j ----- 1 , . . .  , n; Z ( V i c o i ) ( p )  = 0. 
i=1 

/2 
Vico j = Veicoj ,  O) = Z COjQ9 j ,  

i=1 

and {~o t, ~o2, --. , ~o/2} is the coframe field dual to {el, e 2 , - - " ,  en} (See [W], 

p.302). 

Definition 1.2. Given N n+ l an (n + 1)-dimensional Riemannian manifold, and 

u, v two orthonormal tangent vectors, the bi-Ricci curvature in the directions 

u, v is defined as 

b-R~c(~, v) = ~ c ( ~ )  + Rqc(v) - k ( u ,  v). 

R e m a r k  1, From this definition we see that the nonnegativity of the sectional 
curvature of  N ~+I implies the nonnegativity of  the bi-Ricci curvature of  N/2+I . 

If  the dimension of  N is 3, the bi-Ricci is equal to the scalar curvature S, where 

= /~(el, e2) + / ~ ( e l ,  e3) + /~(e2, e3) 

for an orthonormal base {el, e2, e3} in TpN. The concept of bi-Ricci curvature 
was introduced in [SHY]. In their paper, they gave an estimate of the diameter of 
a closed stable minimal hypersurface in N n+l (2 < n _< 4), with b-R]c strictly 
positive. This is the generalization of a result of  Schoen and Yau [ScY] (that is 
valid for n = 2 ) when scalar curvature is replaced by bi-Ricci curvature. 

In our paper, we prove that 
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Theorem 1. Let M '~ be a complete noncompact oriented strongly stable hy- 

persurface with constant mean curvature H in a manifold N ~+1 with bi-Ricci 

curvature b-I~c, satisfying along M 

b-I~c(u, v) > (n - 5)n 2 H2" 
4 

Then there exist no nontrivial L 2 harmonic 1-forms on M. In particular, any 

codimension one cycle on M disconnects M. 

From this theorem, we have directly 

Corol la ry  1. Let M '~ (2 < n < 4) be a complete noncompact strong stable 

hypersurface with constant mean curvature H in hyperbolic space H n+ l ( - 1 ) .  

if 
4(2n - 1) H 2 > 
(5 - n)n 2' 

there exist no nontrivial L 2 harmonic 1-forms on M. 

R e m a r k  2. The hypersurfaces satisfying the condition of theorem 1 indeed 

exist. For example the horospheres (with constant mean curvature H -- 1) in 
hyperbolic space H 3 ( -  1) satisfy the condition of theorem 1. 

R e m a r k  3. Theorem 1 implies the conclusion in [L]. But in the case that 

2 < n < 5, b-R]c(u, v) is allowed to be nonpositive in our theorem, which results 
in corollary 1. Also, the result for H ---- 0 (i.e. M n is a complete noncompact 
stable minimal surface) in theorem 1 was proved in IT]. 

Theorem 2. Let M n be a compact oriented strongly stable hypersurface with 

constant mean curvature H in a manifold N n+l with bi-Ricci curvature b-t~c 

satisfying along M 

b-P~c(u, v) > (n - 5)n 2 H2" 
4 

I f  M n admits a nontrivial harmonic 1-form co, then co is parallel  and 

(1) When n -~ 2, M is umbilic, and the scalar curvature o f  N 3 is a constant 

= - 3 H  2 along M. I f H  = O, M is totally geodesic. 

(2) When n > 3, M has n - I principal curvatures which are equal and the 

other one is different i f  H ~= O. I f  H = O, M is totally geodesic. 

R e m a r k  4. When n = 2, the condition on the b-R]c curvature becomes S > 
- 3 H  2. For H = 0, the result in Theorem 2 was obtained in IT]. 
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Theorem 3. Let M 2 be a complete strongly stable oriented surface with con- 

stant mean curvature H in a 3- dimensional manifold N with scalar curvature 

~S satisfying on M infM S > - 3 H  2. Then there are two possibilities 

(i) M is compact. Then M is conformally equivalent to the sphere S 2 o r  

the torus T 2. I f  M is conformally equivalent to T 2, M is umbilic, flat and 

= - 3 H  2 along M. If~S > - 3 H  2 along M, M is conformally equivalent 
to S 2. 

(ii) M is noncompact. Then M is conformally equivalent to the complex plane 

C or the cylinder C\{0}. 

R e m a r k  5. When H = 0, Theorem 3 was proved in [FS]. In IF], Frensel obtained 
a result related to (ii) when M 2 is a complete noncompact weakly stable surface 
with constant mean curvature in a manifold N 3 with bounded geometry under 
the condition that infM R]CN > - 2 H  2, where R]CN(U) = ff2(vl, u) + K(v2, u), 
vl, v2 c TpM, u, vl, v2 orthonormal in TpN. Also, in [M], Miyaoka gave a 
proof  of  Fischer-Colbrie and Schoen's result using harmonic 1-forms. 

w Proofs of the theorems 

First we prove an algebra lemma. 

Lemma 2.1. Let A be an n • n real symmetric matrix with TrA =- n i l .  Then 

[IAII21IXII 2 - IIAXII 2 + n H  (AX,  X)  > 
n 2 ( n  --  5 ) H  2 

4 
IlXl[ 2, (2.1) 

for  any n-vector X ~ R n. Equality holds i f  and only i f  X = 0 or A = 0 or the 

following case occurs: 

(1) When n = 2, )~1 = )~2 = H; 

(2) When n > 3, there exists a unique j E {1, 2 , . . - , n }  such that 

Xj -- n(2-3) H, Ixjl = IlXr[ r 0, and )~i = 2 H, xi = O for the 
?Z 

other i ~ j ,  where )~I, "'" , )~n are the eigenvalues o f  A, X = Y~i=l Xi~  i' 

and ~1, ~2, "'" , ~n are the orthonormal eigenvectors of  A corresponding 

to ~,l, " "  , )~n. 
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P r o o f .  Deno te  F ( A ,  X) = ][AII2IIXII 2 - ]IAX[[ 2 + n i l  ( A X ,  X).  We  can choose  

an o r thonorma l  basis  ~1, " ' "  , G o f  R ~ such that  A~i : ) v i i i ,  i = 1, . . .  , n. T h e n  

we  can  express  

n n 

X = xi~i, A X  = E ) v i x i ~ i '  (Ax ,  x)  = Z Xix2i' 
i=1 i 1 i=1 

and 

V '  Z2x 2 Zix 2. F(A, X) = ( Z ) v 2 ) ) l X l [  2 - ~ z i q - n i l  

i=1 i=1 i=1 

Deno te  y2 = []XII2 - x ~ ,  1 < i < n. T h e n  Zin=l y2 = (n - 1)IIXII 2. We  have  

F ( A ,  X )  = 

i = l  i=1 
1l n 

= E ) 2 2 2 i  i q - n i l  E ) v i ( I I X I ] 2  - 2/2) 

i=1 i=1 
n 

= E O  ,2 - n H ) , i ) y  2 + n2H211Xl12 
i=1 

n n H  2 2 n2H2 n 
= E (  )vi ~ - )  Yi 4 E y ~  -+-n2H21lXl]2 

i=1 i=1 

'~ n H  2 9 n2( n -- 5) H 2  
= E O ~ i  2 - )  Y? - 4 IIX[12 

i=1 
n 

= ) }()vi - - 
i=1 

n 2 ( n  - -  

- 4 

n H  2 2 n2( n - -  5 ) H 2  
T - )  (IISll - x 2) 4 IlXll2 

5 ) H Z l I x I I 2  ' 

(2.2) 

It  is eas i ly  seen that  equal i ty  holds  i f  and only  i f  (Xi - E~)2(IIXII2 - x 2) = 0, 

i = 1, 2, . - .  , n. Then  equal i ty  holds  i f  and on ly  i f  e i ther  IIXII = 0 or there are 
the other  two possibi l i t ies ,  

(i) nH I f x  2 7~ tIXll 2, for  all i, then )~1 . . . .  )~n = -g-, it fo l lows f r o m  E n = l  ~,i = 
n H  that  n has to be  2 when  H ~k 0; Jr1 . . . .  ),n = 0 (A = 0) w h e n  

H = 0. This  impl ies  A = 0 or  (1) is true in the l e m m a  2.1. 
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2 (ii) If  for some j ,  x j  = IIXH 2 # 0, then xi = 0 for the other i r j .  Hence 

)~i ---- @ ,  i r j ,  and ~.j __ n(n-3)2 g .  

From the above, we see that the lemma holds true. [] 

Lemma 2.2 below might be kmown. Since we have not found a proper refer- 

ence, we give here a proof  for the sake of  completeness. 

L e m m a  2.2, Let co be a 1-form on M n. Then Kato 's inequality holds on M in 

sense o f  distributions, i.e., 

IlVll~ol1112 < IlVcoll 2. (2.3) 

where, Vco is covariant differential o f  co and Vllcoll is the gradient ofllcoll. More- 
over, equality holds if  and only ifVicoj (p)  = Xi (p)coj (p), for  all p c M, where 
~i (P) is a constant depending only on i and p. In addition if  co is a closed and 
co-closed 1-form, then equality implies that co is paralleI and Ilcoll - constant. 

Proof. 

11Vllcol1112(P) - -  

/1 n 

I}09112 Z ( Z  coj Vicoj)2(p), 
i=1 j = l  

It follows from Cauchy-Schwartz inequality that 

(S(-ojVi(oj)2(p) ~ (~092)(p)[Z(Viogj)2](P) 
j = l  j = l  j = l  

Then 

Jl 

= Ilcoll2(p)[~fi-~(Vicoj)2](p), 
j=l 

117o)112 = ~ (Vicoj)2(P) �9 
i,j=I 

for all i = 1, --- , n. 

(2.4) 

namely 

n n n 

~_,(~_, cojvicoj)2(p) <_ Ilcoll2(p)[ ~ (Vicoj)2](P), 
i=1 j = l  i,j=l 

IlVllcollll2(p) ~ IlVcoll2(p). 

(2.5) 

(2.6) 

Observe that equality in (2.6) holds if and only if  the equalities hold in (2.4) for 
all i = 1, . . .  , n. Then Vicoj(p) = Xi(p)coj(p) ,  where Xi(p)  depends only on i 

and p. 
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In the following, suppose co is closed and coclosed. Then 

n 

F_,(Vicoi)(p) = O, (Vicoj)(p) = (Vjcoi)(p),  'v'i, j = 1 , . . .  , n. (2.7) 
i=1 

We will prove Vco = 0 if equality holds in (2.6). If  ;vi (p) = 0, for some i, then 
Vicoj (p) = 0, for all j .  If  )vi (p) # 0, for some i, it follows from the above, that 

)vi (P)co.i (P) = ;-J (P)coi (P), and 

n 

0 = E Vjcoj (p) 
j = l  

17 

= E ) U ( P ) C O ] ( P )  
j = l  

t2 

= E '~J (p) " ,kj (p) co,  , )vi(p) i~p) 
j = l  

(p) co, 
_ Ej=I  )2 (p ) .  

Zi(p)  

Then col (P) = 0, and Vjcoi (P) = Xj (P)coi (P) = 0, for all j ,  
Thus Vicoj (p) - Vjcoi (p) = 0, for all j .  We conclude that Vicoj (p) = 0, for 

all i, j .  i.e. (Vco)(p) = 0. This means that co is parallel, and since in the sense 
of distribution, 

[[vl lcoll l l  2 _< I lvcoi l  2 = O. 

Thus, ]]co[[----constant. [] 

Let co be a nontrivial L 2 harmonic 1-form on M. Suppose X is the vector 

field dual to co. Then X is a nontrivial L2-harmonic vector field on M. It is well 
known that 

(-A)llcol[ 2 = 2(llcoll(-A)[[co]l + Ilg[[colIll 2) 

holds on M (In the sense of distributions at the zeros of co), where A denotes 
Hodge-Laptace operator on M. Since co is a harmonic 1-form, the WeitzenbSck's 
formula yields (see [W], p.307), 

(-A)llcoil 2 = 2(Ric(X, X) + IiVcoll2). 

Then 

Itool[(-A)[[ooll = Ric(X, X) + IlVo)ll 2 - [Ivlla)[[ II 2 = Ric(X, X) + P(co), (2,8) 
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where P(a)) = [[VwH 2 - [IV[Ioo][ [[ 2. For any function f ~ Co~(M), we choose 
the test function h = f[lw][ in (1.1). Then we have 

,(h)_- fM -fllc~176 -- R q c ( N , N ) f  2ll~oll 2 - IIAll2f 211oo][ 2 

-- - fM f2{llc~176 + RIo(N, N)llcol[ 2 + IIArl211oof[ 2} 

- fM2 fllooll(V f, Vlla~[l) - fM fllool[2(-A) f, 

-- fM f2{l[c~176 + R]c(N,  N)[[coll 2 + [[Al[2[[col[2)} (2.9) 

1 2 L ( v f 2 ,  v]]o) l ,2 , -~L ,,o)],2{(-zx) f2  - 2 ] ]vf  112}, 

= f2{llooll(-A)[Icoll + R]c(N,  N)ll~oll 2 + IIAII21IXII2}+ 

+ fM 11~~ 

It follows from (2.8) that (2.9) becomes 

I(h) = - fM f2{Ric(X' X) + [IWoll 2 - IIV[Icoll I12 + ~ c ( N ,  N)llooll2+ 
(2.10) 

+ IIAII21IXII2} + fM ll~ 

By the Gauss equation 

Ric(X, X) = R]c(X, X) - (AX, AX)  - ( 'R(X,  N ) X ,  N )  4-nil (AX, Xi ,  (2.11) 

(2.10) becomes 

l(h) = - fM f2{R]c(X' X) - (R(X, N ) X ,  N )  - [[AX][ 2 

+nH {AX, X> + R]c(N,  N)I]X]I 2 + ][AIlgIIX[[ 2 + ]]Vcoll 2 

- IlVllcoll II 2} + JM Ila~ll211Vf[12 (2.12) 

= - fM f 2 { b - R ] c ( X '  N )  + P(o9)  + IIAII211XII 2 - IIAXI[2+ 

nn  (AX, X)} + fM 110~II211VflI2' 

where 

b-Rqc(S, N )  = Rqc(X, X) + P.qc(N, N)IIXII 2 - (,~(X, N ) X ,  N ) .  
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From Lemma 2.1, we have 

l (h)  < - .~A/2{b-Rqc(X' .77") + P(co) 

+ s [Ic~ 

We are now ready to prove our theorems. 

n 2 ( n  --  5 ) H  2 ilXll2}+ 
4 (2.13) 

P r o o f  o f  T h e o r e m  1. Assume for the sake of contradiction that there exists a 
nontrivial L 2 harmonic 1-form co on M. Suppose X is the vector field dual to co. 
We choose the C ~ function f satisfying: 

(1) 0 _< f < 1, 

(2) f = 1 on B(2),  and f =- 0 outside B(r) ,  

(3) []VfU < s where C is aposi t ive constant. - -  r ' 

Then, 

0 < I ( h )  

{b-R]c(X, .TV)+ P (o0)n2(n-5)H24 llXll2} + ~5c/; 0-) [[c~ (2.14) 

where, by Kato's inequality, P(co) = ]]Vcoll 2 - ]lglIcolll[ 2 > 0. By letting 
r -+ or the second term of (2.14) tends to zero because of  L 2 integrability of  
co. By hypothesis, along M 

n2(n -- 5) H2 
b-Ric(u,  v) > 

4 

Hence the integrand of  the first term of (2.14) must be identically to zero and 
equalities must hold in all inequalities we have used. Thus, 

P(co) = o, (2.15) 

n 2 ( n  5 ) H  2 
b-RIo(X, 5V) - IIXll 2 = 0, (2.16) 

4 

f lAl l211Xll  2 - t I A X H  2 -47 r t H  ( A X ,  X)  - -  n2(n - 5) H2tlXI12. (2.17) 
4 
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From P (o9) = 0 and Lemma 2.2, it follows that II og]l =constant  and o9 is parallel. 
Hence, by (2.8), Ric(X, X) = 0. By Gauss equation (2.11), we have 

I~c(X,X)-IIAX[[2-(_~(X,  3V)X, JV-)+nH (AX, X) =O. (2.18) 

Then, by the definition of  bi-Ricci curvature, (2.18) becomes 

b-R]c(X, YV) + ([IAjj2lrXll 2 - IrAX]l 2 -+- nH (AS, X)) 
(2.19) 

- R ] c ( N ,  N)IIXII 2 - Ilarl2llXll 2 = 0, 

By (2.16) and (2.17), we obtain 

R]c(:Ac, 5V)IIXII 2 + IIAI/2IIXII 2 = 0, 

By IIXr[ 2 = Ilogll 2 = Constant 7~ O, we have 

flAIl 2 + R~c(3kc, .W) --- 0. (2.20) 

For any tangent vector ~ on M, from Gauss equation (2.11) which holds also for 

anY ~, 

Ric(~,  ~) = R]c(~,  ~) - IIa~l] 2 - ( k ( ~ ,  5Nc)~, :~g) + nH {a~, ~) 

= n H  {A~,~) - IIA~II 2 + IIAI[2II~II2+ 

+ b-R]c(~, 5V) - R~c(N,  5V)ll~ll 2 - IIAII21I&II 2 

By Lemma 2.1, 

n 2 ( n  --  5) 
Ric(~, ~) > H2 II~ II 2 + b-R]c(~, :N c) - R]c(SV, ;No)II~ II 2 _ II AII 2 II~ II 2 

4 

By hypothesis and (2.20), we obtain 

Ric(~, ~) ~ - l ~ c ( . ~ ,  :~f)]]~]l 2 - IlAll2][~[] 2 = 0. 

We conclude from [Y] that the volume of M is infinite because M is com- 
plete noncompact with nonnegative Ricci curvature. Since o9 is an L ~ 1-form, 
]]ogii =constant  and vol(M) = oo, we have HogH has to be zero which is a con- 

tradiction. [] 
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Proof of Theorem 2. Suppose that co is a nontrivial harmonic 1-form on M n 
and X is the vector field dual to co. We can choose f --: 1 in (2.13), Similar to 
the proof  of  Theorem 1, the strong stability of  M implies �9 

IlVcoll e = IlVllcoll II 2, 

n2(n -- 5) 
b-Ric(X, N)  H21IXII z = 0, 

4 
n2(n  5) 

IIAII211XII 2 - IIAXII ~ + n H  (AX, X) -- H211XII 2. 
4 

Then the conclusion can be obtained from Lemma 2.1 and 2.2. Observe that 
when n = 2, b-Ric of  N is equal to the scalar curvature of N. [] 

Proof of Theorem 3. Suppose that {el, e2, LNc} is an orthonormal frame field 
of  TpN at p 6 M, where {el, e2, } is an orthonormal frame field of  TpM and 5V 

is a normal vector field at p 6 M. Since b-Ric(el ,  e2) - S, then (2.13) becomes 

O~l(h)~--fMf2{SllXll2+p(w)+3H21lXll2}+fMl[Coll2[IVf[12. (2.21) 

(i)When M is compact, choose f = 1 in (2.21) 

o ~ I(h) ~ - fM(~S[IXII 2 + P(co) + 3H2]IX[12). (2.22) 

If  Ilcoll ~ 0, i.e. there exists no nontrivial harmonic 1-form on M, then the 
first Betti number/3l (M) = 0. This implies M must be conformally equivalent 
to a sphere ([FK], p.73, Corollary 1). Otherwise, i.e. there exists a nontrivial 
harmonic 1-form on M, then it follows that, from Theorem 2, M is umbilic, 
is a constant S = - 3 H  a along M, and co is parallel. Parallelity of  co implies 
K ~_ 0, i.e. M is flat. By the Gauss-Bonnet formula, X ( M )  = 0. Thus M has 
to be conformally equivalent to a torus. ([FK], p.90, Corollary 1). 

(ii) When M is noncompact, choose f as in (2.14). Then (2.21) becomes 

f~ c ~ ilcoll2. (2.23) 0 <_ I(h) <_ - {SItXII2 + P(co) + 3H21lXII2) + ~ (r) 
(;_-) 

Let M be the universal covering of M. Then 57I is conformally equivalent to 
the complex plane C or the disk D. Since the strongly stability of  surfaces with 
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constant mean curvature is defined by compactly supported variation, 31 is still 
a complete noncompact strongly stable surface in N (The argument is similar 
to that in [dCP]). Hence by Theorem 1, there exist no nontrivial L 2 harmonic 
1-forms on M. But we know there exist nontrivial L 2 harmonic 1-forms on disk 
D ([D]), thus ~ /mus t  be conformally equivalent to C. Hence M is conformally 

equivalent to either C or C\{0}. ([FK], p. 193). [] 

Acknowledgment. The author wishes to thank Professor Manfredo do Carmo 
for his encouragement and orientation. 
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