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Abstract. We review in this article central limit theorems for a tagged particle in the 

simple exclusion process. In the first two sections we present a general method to prove 

central limit theorems for additive functional of Markov processes. These results are 
then applied to the case of a tagged particle in the exclusion process. Related questions, 
such as smoothness of the diffusion coefficient and finite dimensional approximations, 

are considered in the last section. 
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1 Introduction 

In the early 80's Kipnis and Varadhan [6] proved an invariance principle for the 

position of a tagged particle in a symmetric simple exclusion process in equilib- 

rium. Their proof relies on a general central limit theorem for additive functionals 
of reversible Markov processes. Time reversibility and translation invariance of 
the system are the basic ingredients of this method, which in principle can be 
applied to any system with these two symmetries. Later it has been extended to 
non-reversible processes that satisfy a sector condition, [21], or a graded sector 

condition, [19]. 
The effective diffusion matrix of the limiting Brownian Motion is a function 

D(c~) of the density o! of the particles. These diffusion coefficients are usually 
expressed in terms of integrals of time correlation functions (Green-Kubo for- 
mulas), or as infinite dimensional variational formulas. They also appear in the 
diffusive equations that govern the non-equilibrium evolution of the conserved 
quantities of the system. In order to have regular strong solution to these diffusive 
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equations it is important to establish the regularity of these diffusion coefficients 
as functions of the conserved quantities. 

In this article we review some recent results on the central limit theorem for 
a tagged particle in the simple exclusion process and on the smoothness of the 
diffusion coefficient. 

In the next section, we present a general method to prove a central limit theorem 
for an additive functional of Markov ergodic processes and show that the proof 
is reduced to the verification of a bound in 9/-_1 for the solution of the resolvent 
equation. In the third section we show that this estimate can be deduced if the 
generator of the Markov process has some properties, called the sector and the 
graded sector condition. In the fourth section, we apply these results to prove a 
central limit theorem for the tagged particle for mean zero exclusion processes 
and for asymmetric exclusion processes in dimension d R 3. In the last section 
we show that the covariance matrix depends smoothly on the density of particles 
and we present some extensions. 

2 Central limit theorem for Markov processes 

The purpose of this section is to find conditions which guarantee a central limit 
theorem for an additive functional of a Markov process. The idea is to represent 
the additive functional as the sum of a martingale with a small term, that vanishes 
in the limit, and to use the well known central limit theorem for martingales that 
we now recall. 

On a probability space (f2, P, f ) ,  consider a square-integrable martingale 
{Mr : t >_ 0} which vanishes at time 0 and denote by < M, M >t its quadratic 
variation. 

Lemma 2.1. A s s u m e  that  the increments  o f  the mar t inga le  Mt are s ta t ionary  

and  that  its quadrat ic  var ia t ion  converges  in L 1 ( P )  to some  pos i t i ve  cons tan t  

0-2: f o r  every  t >_ O, n > l and  O <_ so < . . . < sn, 

(Ms,, - Mso . . . . .  Ms~ - Ms,,_~) = (Mt+s~ - Mt+so . . . . .  Mt+sn -- Mt+s,~_l) 

in d is tr ibut ion and  

l i m E [  < M , M > t  0 -2 ] = 0 .  
t-+ o<3 k I t 

Then, M t /  %/7 converges  in d is tr ibut ion to a m e a n  zero Gauss ian  law wi th  vari-  

ance  0-2. 
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In this statement E stands for the expectation with respect to P. The proof of 

this result is a simple consequence of the well known central limit theorem for 
sums of stationary and ergodic square integrable martingale differences. 

It follows from the stationarity assumption that a 2 = E[M~] because 

E [<  M, M >n] = Z E[<  M, M >j§  - -  <~ M, M >j]  
O<j<n 

= - Mj)  2] = ,E , [M2] .  

O<_j<n 

Consider now a Markov process Xt  taking values in a complete separable 
metric space E endowed with its Borel a-algebra 77. Assume that there exists a 
stationary ergodic state re. Denote by L the generator of the Markov process in 
LZ(zr) and by D(L)  its domain. Let L* be the adjoint of L in Lz(Tr). Since Jr 
is stationary, L* is itself the generator of a Markov process. Assume that there 
exists a core C C /3(L) N :D(L*) for both generators L and L*. We denote by 
I?~ the measure on the path space D(IR+, E) induced by the Markov process Xt  

starting from Jr and by Ez expectation with respect to 1?~. 
Fix a function V : E --+ IR in LZ(Tr). The object of this section is to find 

conditions on V which guarantee a central limit theorem for 

'f0' ,/-i V (Xs) as 

Assume first that there exists a solution f i n / ? (L)  of the Poisson equation 

- L f  = V .  (2.1) 

In this case a central limit theorem follows from the central limit theorem for 
martingales stated in Lemma 2.1. Indeed, since f belongs to the domain of the 
generator, 

f0' kilt = f ( X t )  -- f ( X o )  - ( L f ) ( X , ) d s  

is a martingale with quadratic variation given by 

f0' < M,  M >, = ds  { ( L f 2 ( X , )  - 2 f ( X , ) ( L f ) ( X , ) } .  

Since f is the solution of the Poisson equation (2.1), we may write the additive 
functional in terms of the martingale Mr: 

f0' 1 V ( X , ) d s  -- Mt f ( X o )  - f ( X t )  

, 5  47  + 
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Since f belongs to L2(jr)  and the measure is stationary, [ f ( X 0 )  - f ( X t ) ] / ~ / 7  

vanishes in LZ(~zc) as t 1" ec. It remains to check that the martingale Mt satisfies 
the assumptions of Lemma 2.1. 

The increments of the martingale Mt are stationary because Xt under l?~ is 
itself a stationary Markov process. On the other hand, since rr is ergodic, in 

view of the formula for the quadratic variation of  the martingale in terms of  f ,  
t I < M, M >t converges in LI(I?~), as t t ~ ,  to E , [ L f  2 - 2 f ( L f ) ]  = 2 < 

f ,  ( - L ) f  > . ,  where < .,- >~ stands for the inner product in LZ(Tt'). Since 

the martingale Mt vanishes at time 0, by Lemma 2.1, t - l /2Mt ,  and therefore 
t-1/2 fo V (Xs )  ds,  converges in distribution to a Gaussian law with mean zero 
and variance o -2 = 2 < f ,  ( - L ) f  >~. 

Of course the existence of a solution f in L 2 (zr) of the Poisson equation (2.1) 
is too strong and should be weakened. To state the main result of  this section, 
we need to introduce the Sobolev spaces 9/1, 9 /_  ~ associated to the generator 

L. 

2.1 The Sobolev spaces M-l, ~-~-1 

Consider the semi-norm II �9 I[~ defined in the domain of the generator :D(L) by 

I l f l l~  = < f ,  ( - t ) f  >~ . (2.2) 

Let ~1 be the equivalence relation in 79(L) defined by f ~1 g if  II f - g I11 = 0 
and denote by GI the normed space ( D ( L ) I _  l , H �9 I1~). It is easy to see from 
definition (2.2) that the norm II �9 [11 satisfies the parallelogram law so that M-l, 
the completion of G1 with respect to the norm II �9 II1, is a Hilbert space with inner 
product < -, �9 > ~ given by polarization: 

< f ,  g >~ = ~ h[f + gN~ - IIf - gll~ �9 

Notice that in this definition only the symmetric part of the generator, S = 

(1/2) (L + L*), plays a role because 

Ilfll ff = < f ,  ( - g ) f  >~r = < f ,  ( - S ) f  >~ . 

It is also easy to check that for any f ,  g in the domain of L, 

< f ,  g >1 =- < f ,  ( - S ) g  >~ 

and that [Ic]]l =- 0 for any constant c. 
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Associated to the Hilbert space H I ,  is the dual space H _  ~ defined as follows. 
For f in L2(zr), let 

li/ii2_, = sup {2 < f,g > .  -iigllT}. 
geD(L) 

Denote by G~ the subspace of  L2(rc) of  all functions with finite II �9 I I - i  norm. 
Introduce in G~ the equivalence relation ~ i by stating that f ~-1  g if I]f - 
g I1-~ = 0 a n d  denote by G 1 the normed space (G~ ~, I1" I1 l). The completion 
of  G-  1 with respect to the norm II �9 II a, denoted by H _  l, is again a Hilbert space 
with inner product defined through polarization. 

Before we state the main result of  this section, we summarize some properties 
of  the spaces H1 ,  _7-/_ 1 that will be repeatedly used. It is easy to check from 
the variational formula for the 9ac_l norm that for every function f in D ( L )  and 
every functions g in L2(sr) fG H _  1 

[ < f , g  >~  [ < Ilflll Ilgll 1. (2.3) 

The same variational formula permits to show that a function in D ( L )  belongs 
to H _  l if and only if there exists a finite constant Co such that 

< f ,  g >~ < Collgll~ (2.4) 

for every g in D ( L ) .  In this case, l] fl1-1 < Co. Finally, it is not difficult to show 
(cf. [ 15], Lemma 2.5) that a function f belongs to 9- /1  if and only if there exists 

h in the domain of  ~ such that .v/ZSh = f .  In this case IIfll-I = Ilhll0, 
which means that 

Ilfll~l = < h, h >~ = < ( - S ) - l / 2 f ,  ( - S ) - i / 2 f  >re = < ( -S )  l f ,  f >~r 

because S is symmetric. 
We may now state the main result of  this section. Fix a function V in L2(zr) f-) 

H _  j, )~ > 0 and consider the resolvent equation 

~.f~ - Lf~ = V .  (2.5) 

T h e o r e m  2.2. Suppose that 

IILAII-J < ~ .  s u p  
0<L<I 

(2.6) 
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Then, t -1/2 fo V (Xs) ds  converges in law to a mean zero Gaussian distribution 

with variance 
(72 = lim II/~112 . 

3~----~ 0 

Notice that 

sup I ILAII-1  < ~ if and only if sup II~AII-1 < ~ (2.7) 
0<)~<1 0<L_<I 

because V belongs to M--1. 
The proof of this theorem is divided into two parts. We first compute in the 

next subsection the limiting variance of  t -1/2 fo ~ V(X~) ds and show that it is 
bounded by a multiple of  the M-_ 1 norm of V. If  the generator is symmetric, 
i.e., if rc is a reversible measure for the Markov process, the limiting variance is 
equal to 211V IIZ_l. In subsection 2.3, we prove that a central limit theorem holds 

for t -1/2 fo V(X~) ds, V satisfying the assumptions of  Theorem 2.2, provided 
the following two conditions are satisfied: 

lim )~ I1 fz II 2 = 0 and lim II fz - f II1 = 0 
~--+0 ~.-+0 

for some f in M-l. Finally, in subsection 2.4, we show that the bound (2.6) 
implies the previous two conditions. 

2.2 The limiting variance 

We estimate in this subsection the limiting variance of  the integral fo W (Xs)ds  

for a mean zero function W in L2(rr). Let 

I(-5 f0' o'(W) 2 = l imsupE~  W ( X , ) d s  . 
t--> oo 

Denote by Pt the semi-group of  the Markov process Xz. Since 7c is invariant, a 
change of  variables shows that for each fixed t the expectation on the right hand 
side of  the previous formula is equal to 

 f0' 1'  f0' f0' - ds drE~r[W(Xis_r l )W(Xo)  ] = ds  dr  < Pis_rl W, W >~ 
t 7 

fo' = 2 ds [1 - (s / t ) ]  < PsW, W >~ . 

Denote by a + the positive part of  a: a + = max{0, a}, so that 

f0 o'(W) 2 = 21imsup ds [1 - (s / t )]  + < PsW, W >~ (2.8) 
t ---> (x) 
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In the general case, it is not clear whether this limsup is in fact a limit or wheter 

it is finite without some restrictions on W. However, in the reversible case, the 

sequence is increasing in t because < PsW, W > ~ = <  Ps/zW, P~/zW >~ is a 
positive function. Hence, in the reversible case, by the monotone convergence 
theorem, 

f0 ~(W) 2 = 21im d s [ 1 - ( s / t ) ]  + < P ~ W , W > ~  

= 2 ds < PsW, W > ~  

In the general case, one can show that ~ (W) 2 defined in (2.8) is finite provided 

the function W belongs to the Sobolev space M-- l  there exists a universal 

constant Co such that 

~ ( w )  2 _< Co lfgl121 (2.9) 

for all functions W in 9T_1 A L2(rr). The main difference between o-(W) 2 and 

II W ll 2 is that while in the second term only the symmetric part of the generator 
is involved, in the first term the full generator appears. Formally, 

or(W) 2 = 2 < P~W, W >~ = 2 <  W, ( - L ) - I W  >~ 

= 2 <  W , [ ( - L )  I ] ~ W > ~ ,  

and lIWl121 = < W, ( -S) - lW >~ 

In this formula and below, M ~ represents the symmetric part of the operator M 
and A = (1/2)(L - L*) is the asymmetric part of the generator L. Since, 

{ / '  [ ( -L ) - J ]  s = - S  + A * ( - S ) - l A  > - S  , 

we have that [ ( -  L) - 1 ]~ < (_ S) - I, from what it follows that r (W) 2 < 211W If z J- 
We now present a rigorous proof of this informal argument. 

Lemma 2.3. Fix T > 0 and a function f "  [0, T] • E -+ R. Assume that 
f (t, .) belongs to LZ(rc) for  each 0 < t < T and that f (., x) is smooth for  each 
x in E. There exists afinite universal constant Co such that, 

1o 2 fo E~[ sup ( f ( s , X , ) d s )  ] < Co ds l l f (s , . ) ]]2~.  
L. O<t<_T 
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The proof  of  this lemma relies on a representation formula for an additive 
functional of a Markov process by forward and backward martingales. The 
proof  can be found in [3], Lemma 4.3 or in [19], Theorem 2.2. This lemma 
applied to the function f ( s ,  .) = W(.) proves (2.9). 

Remark 2.4. We just proved the existence of  a universal finite constant Co 
such that a ( W )  2 <_ Coil W ll2_l �9 It has been proved ([18], Theorem 1.1) that for 
the asymmetric simple exclusion process in dimensions 1 and 2, there are local 

functions W not in : i f 1  and for which a ( W )  2 < oc We suspect that a central 
limit theorem holds for  these functions with the usual scaling t -1/2. 

2.3 The resolvent equation 

We assume from now on that V belongs to 34"_ 1 D L2(jr). Taking inner product 
with respect to f~ on both sides of  the resolvent equation (2.5), we get that 

3. < f~, fz > .  + Ilfx[I ff = < V, fz > (2.10) 

Since fx belongs to :D(L) and V belongs to Le(a  -) A M_I ,  by Schwarz inequal- 

ity (2.3), the right hand side is bounded above by IlVll l l[f~lll. In particular, 

I l l ,  Ill ___ IIVl[-~ so that  I lWll-~llAIll  _< IlWll2_t and 

)~ < fx, fx >~ + IIf>,ll ff _< I[Vll2_l �9 (2.11) 

Therefore, 

lim)vf>~ = 0 inL2( rc )  and sup I l l ,  Ill < ~ �9 (2.12) 
~.-->0 0<)~<1 

The purpose of  this subsection is to show that a central limit theorem for 
t - 1/2 Jo V (Xs)ds holds provided we can prove the following stronger statements: 

lim;~ IIf~l[ 2 = 0 and lim L I f ~ -  f i l l  = 0 (2 .13)  
)~--+ 0 L--+0 

for some f in 9-(1. 

Proposition 2.5. Fix a function V in L2(Tr) f) 2k/-_ 1 and assume (2.13). Then, 
t-1/2 Jo V (Xs) ds converges in law to a mean zero Gaussian distribution with 
variance 

o ( V )  2 = 21im [If~ll~ - 
L-->0 
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It follows from (2.13) and (2.10) that 

a ( V )  2 = 21im IJfzlf 2 = 21im < V, fx >~ . (2.14) 
)~-+0 )~--~ 0 

The idea of the proof of Proposition 2.5 is again to express Jo V (X~) ds as the 
sum of a martingale and a term which vanishes in the limit. This is proved in 
(2.16) and Lemma 2.7 below. We start taking advantage of the resolvent equation 

(2.5) to build up a martingale closely related to fo V(X~) ds. 
For each fixed )~ > 0, let M, z be the martingale defined by 

fo 
t 

M, ~ = f~(X, )  - f)~(Xo) - (L fx ) (X~)ds  

so that 

/o' V ( X s ) d s  = M )  + f)~(Xo) - f z ( X t )  + X f )~(Xs)ds .  (2.15) 

L e m m a  2.6. The martingale M~ ~ converges in L 2 (Jr ), as )~ $ O, to a martingale 

Mt and )~ .fo f fz  (Xs) ds vanishes. 

Proof.  We prove first that M, ~ is a Cauchy sequence in L2(zr). Indeed, for )~, 
)~' > 0, since rr is an invafiant state, the expectation of the quadratic variation of 
the martingale Mr z - M) '  is 

E~[ f'ds {Lf)~,~,(X,)2- 2fx,)/(X~)Lf~,~,(Xs)]] 
= 2t < fz  - f~', ( - L ) f x ( X s )  - f~, >~ = 2t [If~ - f~']l 2.  

In this formula, f~,x, = f~ - fx,. By assumption (2.13), fx converges in M-I. 
In particular, M)  is a Cauchy sequence in L2(yr) and converges to a martingale 
Mr. This proves the first statement. The second assertion of  the lemma follows 
from (2.12) and Schwarz inequality. [Z 

It follows from this result and from identity (2.15) that f x (X t )  - fx(Xo)  also 
converges in LZ(Tt ") as )~ .~ 0. Denote this limit by Rt so that 

fo t V ( X , ) d s  = Mt + R t .  (2.16) 
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L e m m a  2.7. t-1/2Rt vanishes in L2(~) as t "~ oc. 

Proof. Putting together equation (2.15) with (2.16), we get that 

Rt 1 /0' - [ , tM-M, + f (Xo) - + Z f (xs)dsj.I (2.17) 
47 47 

We consider separately each term on the right hand side of this expression. 
Since M_~ converges in L2(rr) to Mr, 

1E~r M e - M r  : - l i m E ~  MtZ-Mr  . 
t t )~'-~ 0 

In the previous Lemma, we computed the expectation of the quadratic variation 
of the martingale Mtx - M~'. This calculation shows that the previous expression 
is equal to 

lim Ilfz - fzllff = Ilfi~ - i l l  2. 
;~:--->0 

In the last step we used assumption (2.1 3) which states that fz converges in 9~Cl 
to some f .  

We now turn to the second term in (2.17). Since Jr is invariant, the expectation 
of its square is bounded by 

2t 1E~[f)~(X,) 2] + 2t-~I~[f),(Xo) 2] = 4t -111f~]l 2 . 

On the other hand, by Schwarz inequality, the expectation of the square of the 
third term in (2.17) is bounded by t)~ 2 II f~ II0 2. 

Putting together all previous estimates, we obtain that 

1E . [R~]  _< 3 Ilfz - flL~ + 3(4t -~ _~2)Ilfzl l2 
t 

for all L > 0. Set s = t -1 to conclude the proof of the lemma in view of 
hypotheses (2.13). [] 

We may now prove Proposition 2.5. Recall equation (2.16). By the previous 
lemma the second term on the right hand side divided by 47  vanishes in L2(rc) 
(and therefore in probability) as t 1" cx~. On the other hand, by the martin- 
gale convergence theorem, Mt/47 converges in law to a mean zero Gaussian 
distribution with variance 

0-2= E~[M~] = l imE~[(M~) 2] 
L-->0 

= l imE~[<  M z, M z >~] = 21im Ill, lift �9 
~.-+0 )~->0 

The last identity follows from the computation of the expectation of the quadratic 
variation of the martingale M~ performed in the proof of Lemma 2.6. 
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2.4 An H_I estimate 

In the previous subsection we showed that the central limit theorem for the 
additive functional t -1/2 fo V (X, )ds  follows from conditions (2.13) if V belongs 
to L2(Jr) N H _ I .  In the present section we prove that (2.13) follows from the 
bound (2.6) on the solution of the resolvent equation (2.5). 

Lemma 2.8. Fix a function V in H _ I  N L2(Tr) and denote by {fz, ~ > 0} the 

solution of  the resolvent equation (2.5). Assume that supz>o I I L fz  II- 1 < Co for  
some finite constant Co. Then, there exists f in H1 such that 

l i m ) ~ < f z ,  f ~ > =  0 and l imfz  = f 
L-~O L-~O 

strongly in H b  

Proof. We already proved in (2.11) that 

sup IlAIll ~ IIVII ~ and sup Z < A,  A > ~ IIg[12-1 - 
0<)~<1 0<)~_<1 

In particular, )~fx converges to 0 in L2(:rt'), as )~ .~ 0. 
Since supx>o II Lf~ I1 I is bounded, for any sequence )~n $ 0, there exists a 

subsequence, still denoted by )~n, such that Lf~,, converges weakly in H _ I  to 
some function U. We claim that the weak limit is unique and equal to - V .  
Indeed, fix a function g in L2(zr) f) H I .  Since g belongs to H1 and Lf~, 

converges weakly to U, < U, g > ~ =  limn < Lf~,, g >~. On the other hand, 
since f~ is the solution of the resolvent equation, limn < Lf~ n, g >= - < 
V, g > § limn < )~n fx,, g >. This latter expression is equal to - < V, g > 
because g belongs to L2(zc) and ;.f~ converges strongly to 0 in L2(Tr), as )~ $ 0. 
Thus, < U, g > =  - < V, g > for all functions g in L2(rc) f~ H1. Since this set 
is dense in H I ,  U = - V ,  proving the claim. 

In the same way, since sup)~> 0 II )5. II1 is bounded, each sequence )~,, $ 0 has a 
subsequence still denoted by )~n, for which f~, converges weakly in H i  to some 
function, denoted by W. We claim that any such limit W satisfies the relation 
][ W [[ 12 = < W, V >. To check this identity, through convex combinations of the 
sequences f~,,, Lfx,,  we obtain sequences v,,, L vn which converge strongly to W, 
- V ,  respectively. On the one hand, since v, (resp. Lvn) converges strongly in 
H1 (resp. H_~) to W (resp. - V ) ,  < vn, Lv~ > converges to - < W, V >. On 
the other hand, since - < v~, Lv,, > =  [[vn 112, it converges to II Wll2. Therefore, 
lIW[I 2 = <  W, g >. 
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We have now all elements to prove the first part of  the lemma. Suppose by 
contradiction that )~ < fx, fx > does not converge to 0 as )~ ~. 0. In this case 
there exists e > 0 and a subsequence )~,~ -1. 0 such that ),,z < fz,,, fz,, > > e for 
all n. We have just  shown the existence of  a sub-subsequence )~n' for which fx,, 
converges weakly in H1 to some W satisfying the relation < W, V > =  I lw[ l~ .  

Since fx is solution of  the resolvent equation, 

limsup]lf~,,~[[~ < l imsup[)~,[[fx, ,] l  2 + []f~,,,]12] 
I~r ---+ OO /~I ~ OO 

= l imsup < fx , , , ,V > = < W , V  > = IlWl]l < l imsup Ilfx,,,][ 2" 
/,//---~ O O /t / ---> OO 

This contradicts the fact that )~,, < f~,, f)~,, > > e for all n, so that lim)~__,0 k 

< A , A > = 0 .  
It follows also from the previous argument that f~,,, converges to W strongly 

in H1 .  In particular, all sequences )~,, have subsequences )~, for which f~,,, 
converges strongly in H I .  To show that fx converges strongly, it remains to 
check uniqueness of  the limit. 

Consider two decreasing sequences ),~,/,~, vanishing as n j" oc. Denote by 
WI, W2 the strong limit in H i  of  f),,,, f, , , ,  respectively. Since fx is the solution 
of  the resolvent equation, 

<)vnfx , , - I z , , f , z , , , f )~ , , - f~ , ,  >~r + ] ] fx , - f~ , , l ]~  = 0 

for all n. Since f~,,, f#,, converges strongly to Wl, W2 in H I ,  

lim I l fx .  - f ~ . l l  2 = IIW, - w21l~. 
11--~ OO 

On the other hand, since )~tt f~, ]]z vanishes as )~ ,~ 0, 

lim < ) ~ A , , - t z ~ f ~ , , , f ) ~ , , - f ~ , ,  >~ 

Each of  these terms vanish as n 1" re.  Indeed, 

)~ < fx,,,f~,,, >,r = ) v z , < f x , , , f u , , - W 2 > , ~  + ) v , , < f x , , , W 2 > ~ r  

By Schwarz inequality (2.3), the first term on the right hand side is bounded 
above by l])v,,fx,, II-1 [lfl,,, - Wzl]I, which vanishes because )vfx is bounded in 
9-/_ 1 and fu,, converges to W2 in H1.  The second term of the previous formula 
also vanishes in the limit because W2 belongs to H I  and L f), converges weakly 
to 0 in H _  i. This concludes the proof  of  the lemma. [] 

Theorem 2.2 follows from this lemma and Proposition 2.5. 
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3 Some examples 

Fix a function V in L2(n -) N H-1 .  In this section we present three conditions 
which guarantee that the solution f~ of the resolvent equation (2.5) satisfies the 
bound (2.6). 

3.1 Reversibility 

Assume that the generator L is self-adjoint in LZ(:r). In this case, by Schwarz 
inequality, 

I < L f , g > ~  [ < [If[Ill[gill. 

Therefore, in view of the variational formula (2.4) for the H _  j norm, for any f 
in L2(Tt ") (3 HI,  L f  belongs to H-1  and 

IILfll-i < Il f l l I .  

In particular, in the reversible case (2.6) follows from the elementary estimate 
(2.12). 

3.2 Sector condition 

Assume now that the generator L satisfies the sector condition 

< f ,  Lg >~ < Co < f , ( - L ) f  > ~ < g , ( - L ) g  >~ (3.1) 

for some finite constant Co and every functions f ,  g in the domain of the gener- 
ator. In view of (2.4), for any function g in D(L),  

I[Lgll-~ < Co[Igll~ 

and condition (2.6) follows from estimate (2.12). 
The previous inequality states that the generator L is a bounded operator from 

HI  to H _  I. Since S, the symmetric part of the generator, has certainly this 
property, L is bounded if and only if A, the asymmetric part of the generator, is 
a bounded operator from H j  to H _  l, i.e., if 

< g, A * ( - S ) - I A g  >~ = [/Agl[2_l < C0[Igll~ = Co < g, ( - S ) g  >~ 

for all functions g in D(L).  Hence, the sector condition requires that 

A * ( - S )  IA < Co( -S )  
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for some finite constant Co. This inequality states that the asymmetric part of 
the generator can be estimated by the symmetric part. Furthermore, in this case, 
in view of the computations performed just after (2.9), 

( - S )  < ( - S )  + A * ( - S ) - I A  < (1 + C o ) ( - S )  

so that 
C 7 l o - ( V )  2 < IlVl12_l < C l o - ( V )  2 

for some finite constant C1. This means that under the sector condition, the 
limiting variance is finite if and only if the function belongs to H-1 .  

3.3 Graded sector condition 

Now, instead of assuming that the generator satisfies a sector condition on the 
all space, we decompose L2(yr) as a direct sum of orthogonal spaces A~ and 
assume that on each subspace A~, the generator satisfies a sector condition with 
a constant which may be different on each A , .  

Assume that L 2 (~) can be decomposed as a direct sum q)n_>0A~ of orthogonal 
spaces. Functions in An are said to have degree n. For n _> 0, denote by 7r~ the 
orthogonal projection on A~ so that 

f = ~ 7 r ~ f  and srnf c A n  
n>_0 

for all n > 0, f in L2(yr). 
Suppose that that the generator L keeps the degree of a function or changes 

it by one: L" D(L)  C3 An --+ An- i  tO A~ tO An+l. Denote by L_ (resp. L+ 
and L0) the piece of the generator that decreases (resp. increases and keeps) the 
degree of a function. Assume that L0 can be decomposed as R0 + B0, where 
-R0  is a positive operator bounded by - C o L  for some positive constant Co: 

0 <_ < f , ( - R o ) f  >~ < Co < f , ( - L ) f  >~ (3.2) 

for all functions f in D(L).  
Since -R0  is a positive operator, repeating the steps of Subsection 2.1 with R0 

in place of L, we define the Sobolev spaces H0,b H0,-1 and the norms I[ �9 110,1, 

I[ �9 N0,-1 associated to R0. Since R0 keeps the degree of a function, 

f l l~ l  = < f, ( -Ro) f  >,~ = < ~ ~nS, (-Ro) ~ - , , f  >,~ 
n>0 n>0 

= = II . f l l 0 , 1  �9 
n>0 n>0 
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for all functions f in the domain of the generator. By the same reasons, for a 
function f in L2(7I), 

It/ll~_l - sup {2 < f,  g >~ Ilgl102~} Z 2 - -  - = II~, ,f i l0 _1 - 
g~D(L) n>0 

In terms of the new norm J] �9 Jjo, 1, (3.2) translates to 

[L f[Io,  l < , ~ 0 0  I[f[[ l  

for all function f in the domain of the generator and some finite constant Co. 
It follows from this inequality and from the variational formula for the M'-I, 
H0, - i  norms that 

[Ifll-~ _ ~00[Ifl[o,-~ (3.3) 

for all function f in L2(zr) and the same finite constant Co. 
Suppose now that a sector condition holds on each subspace An with a constant 

which depends on n: there exists/5 < 1 and a finite constant Co such that 

< f,  ( - L + ) g  >~ < Co n2fl < f ,  ( - R o ) f  >~ < g, ( -Ro)g  >~ , 
(3.4) 

2 < C0nZg < f ,  ( - R o ) f  >~ < g, ( -Ro)g  >~ < g, ( - L _ ) f  >~ 

for all g in D(L)  • An and f in D(L)  N A~+I. It follows from the previous 
assumptions and from the variational formula for the U �9 -1.0 norm that 

L + g [ [ 0 - ,  <_ ~ 0 n  f Ilglr0,1 , H L - / [ [ o , - i  _< ~ 0 0 n / ~ l l / ] 1 0 , j  (3 .5 )  

for all g in D(L)  A A .  and f in D(L)  • An+l. The proof of Lemma 3.1 below, 
due to [14], [19], shows that the restriction g < 1 is crucial. 

Lemma 3.1 Let V be a function in L2(7c) such that 

n>O 

Denote by f~ the solution of  the resolvent equation (2.5). There exists a finite 
constant Ca depending only on g, k and Co such that 

n>O n>O 
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Proof. Consider an increasing sequence {tn " n > 0}. to be fixed later, and 
denote by T" L2(zr) --+ L2(jr) the operator which is a multiple of the identity 
on each subspace An: 

T f  = Z t : c ~ f  " 
n >0 

Apply T to both sides of the resolvent equation and take the inner product with 
respect to Tfx  on both sides of the identity to obtain that 

)~ < Tf)~, Tf)~ >~r - < Tf)~, L T f ~  >~ 

= <  T f z ,  T V  > - < T f z , [ L , T ] f z  >~ 

In this formula, [L, T] stands for the comutator of L and T and is given by 
L T  - T L .  By assumption (3.2), the left hand side is bounded below by 

Co I ColHTfzl l21 c o  I 2 
< Tfx ,  ( - R o ) T f x  >~r = -~ E t n  [[zc, fz . 

n>O 

Let ~ > 0. We now estimate the scalar product < T f z ,  [L, T] f~  >~ in 
terms of 2 H Tf)~ I]0,1- Since T commutes with any operator that keeps the degree, 
[L, T] = [L+ + L_, T]. To fix ideas, consider the operator [L+, T], the other 
expression being estimated in a similar way. Since L+ increases the degree by 
one, by definition of the comutator, 

zrn[L+, T ] f  = L + T z r ~ _ I f  - TL+Jr , , _ l f  = ( t n - i - t ~ ) L + r c n  I f  

for all functions f in 79(L). Therefore, 

< Tf~ ,  [L+, T]f~ >~ = E < r6,Tfz ,  Try[L+, T]f~  >~ 
n>O 

= E ( t ~ _ l  - t.)tn < zr,~fz, L + z r ~ , _ l f ~ ,  >Jr . 

n>_O 

By (3.4) and since the sequence t~ is increasing, the previous expression is 
bounded below by 

E ( t ~  - tn-1)tnCon ~ ]lzr,~ fz II0,111Jr.-1 f~l[0,1 
n>0 

1 
< - E ( t n  - t,~-l)t~fon~ll:rr,,fx I~ 1 
- 2 

n>O 

1 
+ 2 E (tn -- tn_l)tnCon~Hrr,,_lfzH~,l �9 

n>O 
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Since fl < 1, there exists ni = n 1 ( C o , / ~ ,  8 ,  k) such that 

C0n/~{1 (n-1)2kn2 ~- } < 3 ,  Con/3[(n_l)2knak 1}(nZ[)2kn2k _< 3 

~k for all n > ni. Fix n2 > n l  and set t,~ = n 7 l{n < hi} + n2kl{nl < n < 
n2} + n2kl{n > n2}. With this definition, we obtain that the previous expression 
is bounded by 

2 v 8~-~t,,llsr,,fxll6,~ = 3 IlTfxll~,~ �9 
n >_0 

Itremains to estimate < Tfx,  T V >~r. By (2.3), and since 2ab < A - l a  2 + A b  2 
for every A > 0, 

< Tf )~ ,TV > ~  
: Z: '17  , 

n>O n>_O 

n>0  n>_0 

= 311rfx l l2!  + <~ ~ I ITV l I~_~ .  

Putting together the previous three estimates, we obtain that 

-1  2 9 1 9 
C0 IIT/~llo.~ _< 331fTfzllg,~ + 8 IITVII& 

so that 

[ITfxllo,~ < 16cg[ITVII~. ~ 

if we choose 8 = 1/4C0. Recall the definition of  the sequence &. This estimate 
holds uniformly in n2. Let n2 1" oc and definite T' as the operator associated to 

' n2~l{n > nl } + n~kl{n < nj }, to deduce that the sequence t~, where t,~ = 

~--~ n2klljrn A II0,1 
1I >0 

, 2 2 
5 ~--~(t1i) rfzrnfx[Io, i 

n>0  

2 < 16CgE( t , , ) r l r cnVl l~_ ,  
n>0  

< 16Cgn~ k ~n2kHzr,,V]]2,_, . 
n >0 

To conclude the proof of the lemma, it remains to recall that we fixed 3 = 1/4C0 
and that n I = n I (Co, k, fl, 8). [] 
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Assume now that L0 ----- R0 + B0 satisfies a sector condition on each subset 

An: 

2 <_< Con2Y < f ,  ( - R o ) f  >~ < g, (--Ro)g >~r (3.6) < g, ( - L o ) f  >Jr 

for some y > 0 and all functions f ,  g in 79(L) A A~. Notice that we do not 
impose any condition on y. By the variational formula for the norm II �9 [[0, l, 

[[Lof[]o,-1 < ~ o n Y l l f l l o ,  l (3.7) 

for all functions f in D(L)  f3 A~. 

for some k >_ ( f i v  V ). 
T h e n ,  

Lemma 3.2. Suppose that the generator L satisfies (3.2), (3.4) and (3.6). Fix 
a function V such that 

En2~[l:rnVll~, i < cx~ 
n>_O 

Let fx be the solution of the resolvent equation (2.5). 

sup IILf~llo,-i  < ~ .  
0<4_<1 

Proof. It follows from (3.3) that 

[ILf~[[2_l _< IILA 2_1 = ~[I~nLAI[~,_~-  (3.8) 
n>0 

Fix n >_ 0. Since 7vnLA = L - ~ n + l A  + Lo~nf~ + L+~rn-lA, by (3.5), (3.7), 

IlrcnLfxl]o,-1 < liL-rcn+~f~llo,-1 + IILorr~Allo,-1 + [IL+zc,,-lfxllo,-i 

< Con~llTr,,+lf~llo,1 + ConYll~nfxllo,1 + Con~lllrn-lAllo,1. 

In particular, by Schwarz inequality, by Lemma 3.1 and since k _> (/3 v g), the 
right hand side of (3.8) is bounded above by 

cl _< Cl En  ll ov 02_, 
n>_0 n>0 

for some finite constant Cz depending only on Co, 13 and ?/. This proves the 
lemma. [] 

Therefore, to prove a central limit theorem for an additive functional of a 
Markov process, it is enough to check whether its generator satisfies the graded 
sector conditions (3.2), (3.4) and (3.6). 
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4 Tagged particle in simple exclusion process 

We prove in this section a central limit theorem for the position of a tagged particle 
in the simple exclusion process with the method presented in the previous section. 

Among the simplest and most widely studied interacting particle systems is 
the simple exclusion process. It represents the evolution of random walks on 
the lattice Z d with a hard-core interaction that prevents more than one particle 
per site and may be described as follows. Fix a probability measure p(-) on Z d 
and distribute particles on the lattice in such a way that each site is occupied by 
at most one particle. Particles evolve on Z d as random walks with translation- 
invariant transition probability p ( x ,  y )  = p ( y  - x ) .  Each time a particle tries to 
jump over a site already occupied, the jump is suppressed to respect the exclusion 
rule. 

This informal description corresponds to a Markov process on Xd = {0, 1} ~d 
whose generator L is given by 

( L f ) ( r l )  = S q(x)[1 - O(x + z)] p ( z )  [f(~x,~-+zO) _ f (0 ) ]  �9 (4.1) 
x,ZEZ d 

Here, 0 stands for a configuration of Xd so that 0(x) is equal to 1 (resp. 0) if 
the site x is occupied (resp. unoccupied) for the configuration 0- f is a cylinder 
function, which means that it depends on 0 only through a finite number of 
coordinates, and crx'y0 is the configuration obtained from r/by interchanging the 
occupation variables 0 (x), 0 (Y): 

[ ~(z) i f z # x , y ,  
(o-~'Yo)(z) -- r/(y) i fz  = x , 

O(x) i f z - - - y .  

The simple exclusion process is said to be symmetric if the transition probabil- 
ity is symmetric ( p ( z )  = p ( - z ) )  and to be mean zero if the transition probability 
is not symmetric but has zero average: x~ z z p ( z )  ---- O. All other cases are said 
to be asymmetric 

To avoid degeneracies, we assume that the transition probability p(.) is irre- 
ducible in the sense that the set {x �9 p(: l :x)  > 0} generates Z d, i.e., that for any 
pair of sites x, y in Z d, there exists M > 1 and a sequence x = Xo . . . . .  XM = y 

such that p(x i+l  - xi)  + p ( x i  - x i+l)  > 0 for 0 < i < M - 1. We also suppose 
that the transition probability is of finite range: there exists A0 in N such that 
p ( z )  = 0 for all sites z outside the cube I-A0,  A0] d. 

Notice that the total number of particles is conserved by the dynamics. This 
conservation is reflected in the existence of a one parameter family of invariant 
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measures. For 0 < o~ < 1, denote by v~ the Bernoulli product measure of param- 
eter o~. This means that under v~ the variables {r/(x), x E Z d } are independent 
with marginals given by 

v ,{ t l (x )=  1} = ee = 1 - v ~ { r ] ( x ) = 0 } .  

An elementary computation shows that the Bernoulli measures {v, , 0 _< oe < 
1} are invariant for simple exclusion processes. Denote by L* the generator 
defined by (4.1) associated to the transition probability p*(x) = p ( - x ) .  L* is 
the adjoint of L in L2(v~). In particular, symmetric simple exclusion processes 
are self-adjoint with respect to each v~. 

For t > 0, denote by Ot the state at time t of the Markov process. Among all 
particles, tag one of them and denote by Xt its position at time t. Xt by itself is 
not a Markov process because its evolution depends on the position of the other 
particles. However, (0t, Xt) is a Markov process on Xd x Z d. 

Denote by {rx, x c Z d} the group of translations on Xd. For x, y in Z d and a 
configuration 0 in Xd, (rx0)(y) = rl(x + y). The action of the translation group 
is naturally extended to functions and measures. 

Denote by ~t the state of the process at time t as seen form the tagged par- 
ticle: ~t = rx,~t. Notice that the origin is always occupied because ~t (0) = 
(rxtOt)(0) = ot(X~) = 1. In particular, we can consider either ~ as a configura- 

tion of Xd with a particle at the origin or ~ as a configuration of XS = {0, 1} z*~, 
where Zd. = Z d - {0}. We adopt here the latter convention. It is also not difficult 
to show that ~t is a Markov process on X~ with generator s given by 

( s  = E p(y  - x)~(x)[1 - ~(y) l[ f (ax,y~)  _ f (~)]  

x,ycz~ (4.2) 

+ ~ p(z)[1 - ~(z)l[f(O,~) - f ( ~ ) ] .  

The first part of the generator takes into account the jumps of the environment, 
while the second one corresponds to jumps of the tagged particle. In the above 
formula, 0y~ stands for the configuration where the tagged particle, sitting at the 
origin, is first transferred to site z and then all the configuration is translated by 
- z :  for all y in Z~ 

(Oz~)(y) = / ~(z) i f y  = - z ,  
[ ~ ( y + z )  f o r y T ~ - z .  

* the Bernoulli product measure on X~, by s the For 0 < o~ _ 1, denote by v, 
generator defined by (4.2) with the transition probability p*(y) = p ( - y )  in 
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place of p and by < . ,  �9 >u the inner product in L2 ( ~ ) ,  for a probability measure 
#. An elementary computation shows that v~ is an invariant state for the Markov 
process ~t and that its adjoint in Lz(v*) is s In particular, s is self-adjoint in 
the symmetric case. 

We have seen that the M-I plays an important role in the investigation of the 
central limit theorem. For the simple exclusion process as seen from a tagged 
particle, a simple computation shows that for any function f in the domain of 
the generator, 

(f, ( - L )  f ) ~  

= (1/2) ~ p(y - x) ] 8(x)[1 - ~(y)] [f(~r~'s~) - f (~ )12 dv* 
d x,yeZ~ 

+ (1/2) ~ p ( z ) / [ 1  - 8(z)] [f(ez~) - f (~)12dv2.  
d 

(4.3) 

The first question on the asymptotic behavior of the tagged particle concerns 
the law of large numbers. For 0 < ee < 1, denote by IP~g the measure on the 
path space D(R+, X~) induced by the Markov process with generator s starting 
from v~*. Saada proved in [17] the following result. 

Theorem 4.1. For every 0 < ~ < 1 

lim--Xt = [ l - c ~ ] ? /  

in I?~ probability, where V = ~zez~ zp(z). 
To investigate the central limit theorem, denote by Zt the re-scaled position of 

the tagged particle: 
Xt - t g (1 - ol) 

Z t 
47 

For each z such that p(z) > 0 and for s < t, denote by N~.t I the total number of 
jumps of the tagged particle from the origin to z in the time interval [s, t]. Let 
N~ = N(0,tl" It is not difficult to check that that 

f0' f0' Mf = N ~ -  p ( z ) [1 -~s ( z ) ]ds  and (MZ) 2 -  p ( z ) [ 1 - ~ ( z ) ] d s  

are martingales vanishing at t = 0. In the same way, for y, z in Z~ such that 
p(z - y) > O, s < t, denote by NI!~.'~ 1 the number of jumps of a particle from y 
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to z in the interval [s, t]. Let N y'z y,z = N[0,t ]. As before 

f0  t M y'z = N y'z - p ( z - y ) ~ , ( y ) [ t - ~ ( z ) l d s  

f/ and (MY'Z) 2 - p(z  - y ) ~ ( y ) [ 1  - ~,(z)] ds 

are martingales. 
Since {M[, p(z )  > 0}, {Mi y'y+z y E Z d p(z)  > 0} are pure jumps martin- 

gales and do not have common jumps, they are orthogonal in the sense that the 
product of  two such martingales is still a martingale. 

To obtain the position at time t of  the tagged particle, we just  need to sum the 
number of  jumps multiplied by the size of  the jumps: Xt = ~ z  zN[  so that 

: ' ,  : Z = B zMz + 
ZEZ d Z~Z d 

In particular, for any vector a in R d, 

M7 
( a .  Z , )  - 

,/7 

fo 
t 

3-'~ ds z p ( z ) [ 1  - ~ , ( z ) ] .  

ZE~ d 

'i0' + - ~  Va(~s )ds ,  

where M~ is the one-dimensional martingale defined by 

M; = ~_,(a. z)Mf 
zeZ~ 

and Vo is the mean-zero cylinder function 

V a(~) =- ~. .a(a.  z)p(z)[ot - ~(z)] . (4.4) 
zcZ. ~ 

In these formulas and below (a �9 b) stands for the inner product in IR d. 
To prove a central limit theorem for the tagged particle, we need to represent 

fo Va (~s) ds as a martingale aT/t plus a small term and to compute the limiting 

variance of  M~' + aT'/t. We have seen in Theorem 2.2 that such a representation 
is possible provide the solution fz of  the resolvent equation 

)vf~ - s  = Va (4.5) 
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satisfies (2.6). In this case 3)t is the limit, as k $ 0 of the martingale Mt ~ given 

by I t 
M )  = f ~ ( ~ )  - A(~o)  - ( s  

This martingale can be expressed in terms of the elementary martingales MtZ, 
M; ~'y introduced above. Since 

- A ( ~ o )  f0 t = Z [f)~(aX'Y~s-) -- f),(~s )1 dN2 "y 
. r ,ycZ, J 

/0' + ~ [A(0z~,-) - A(~,_)JdN~5, 
zcZ,  d 

an elementary computation shows that 

Mt ~ 

§ 

fo~[A(ox'~"~s-) - A(~s-)] dM~'Y 
x,y~Z d 

f0' [/~(<4x_) - f~(~,_)] aM, ~ . 
zcZ~ 

By Theorem 2.2, if (2.6) holds for the solution of the resolvent equation, 

1 l 
_ _  a _ _ M  ~ )~ ( a - Z , )  = ~ M ~  + f i  t + R, , 

where 
lim lira R~ ~ = 0 in L2(v~). 

t --,'- eo ),-~0 

Since the martingale M~ + 37/t satisfies the assumptions of Lemma 2.1 for every 
a in R d, under assumption (2.6), Zt converges in law to a mean zero Gaussian 
distribution with co-variance D(oe) given by 

a.  D(oOa = E~,~[(M~ + ]~1) 2] = lim E~[(M~ + M~) 2] 
Z-+O 

/E( fo ;1 = lim E,,s ~ [A(cr~'Y~s ) - A ( ~ - ) ]  dMX'y 
Z-~O 

x,y~g~ 

zcZ~ 
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= ~im{ 2 P ( Y - x ) E v g , [  ~ ( x ) [ 1 - ~ ( y ) ] [ f x ( ~  fx(~)]2] 
x ,ycZ  d 

zcZ~ 

Here we used extensively the fact that the martingales M[, M~ 'y are orthogonal 
and the explicit form of their quadratic variation. Developing the square, we get 
that for each fixed )~ the previous expectation is equal to 

(1 - oe) ~ p ( z )  ( a .  Z) 2 

+ 2 2 (a. z) p(z)E~ [[1 - t(z)] [f~(0~)- f)~(~)l] 
zcZ," 

+ ~_~ P(Y -x )E~g , [~ (x ) [1 -~ (Y ) ] [ f~ (c rx 'Y~ )  - fx(~)] 2] 
x,yE~ d 

+ 2 p(z)E~,[[1- ~(z)][f~(0~t)- a(~)12]. 
z~Z~ 

In view of (4.3), the last two terms are equal to 211 fz 112. A change of variables 
( = Oz~ in the the expectation E~, [[1 - ~(z)l fz (0z~)] permits to write the second 
term as 2 < W,7, fz >,j~, where 

W. = ~--~ (a . z ) p ( z ) { ~ ( z )  - ~ ( - z ) }  �9 (4.6) 

zEZ~ 

In conclusion, 

a �9 D(u )a  = (1 - o~) ~ p(z)  (a .  Z) 2 

zcZ~ 

+ lim { 2 <  W~,,f;, >~, +2Hfxl121 
X-+0 

(4.7) 

for every a in IR d. Recall from (2.14) that limz_,0 IIAII 2 = limz-~0 < Va, f~ >. 
Since, on the other hand, Va + Wa = ~ z ( a  �9 z )p(z )[a  - ~(-z)] ,  

a .  D(~)a  = (1 - o~) ~ p(z)  (a .  Z) 2 @ 2 lim < Wo, fx >,~*, (4.8) 
),.---~ 0 

z~Z~ 
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where 

= Z ( a .  z)p(z)[~ - ~ ( - z ) ] .  
z 

Up to this point we have shown that a central limit theorem for the tagged 
particle in the simple exclusion process holds provided that (2.6) is in force for 
the solution of the resolvent equation (4.5). In this case the limiting variance is 
given by (4.8). In the next three subsections, we prove condition (2.6) in different 
contexts. 

4.1 Symmetric case 

Assume that p is symmetric. In this case the generator s is self-adjoint. To apply 
the method presented in sections 2 and 3 and the results proved in subsection 
3.1, we first need to examine whether Va belongs to the Sobolev space 9-/--1 
associated to the generator s 

Fix a function f i n  2 �9 L (v~). Since Vo has mean zero, if < f >,,g stands for the 
expectation of f with respect to v*, 

Evg[V,f] = ~-~.(a < f >@dv~ 
zezg, 

= Z ( a "  z) p(z) f [ 1  - ~(z)] [ f -  < f > @ d r *  . 
, /  

z e Z  d 

Write this last expression as the sum of two halfs. In one of the sums, perform the 
change of variables ( = 0z ~, which is possible because the indicator [ 1 - ~ (z)] = 
l{~(z) = 0} guarantees that there are no particles at z. After these operations 
the last term becomes 

f 
(1/2) Z ( a .  z) p ( z ) / [ 1  - ~(z)l [ f -  < f >,,a]dv* 

d 
ZCZ d 

(1/2) Z ( a .  z) p(z) I [ 1  - ~( -z ) ]  [ f ( 0 - z ~ ) -  < f >~:]dv* . + 
d zeZ d 

Change variables z' = - z  in the second sum, recall that p is symmetric and add 
the two terms to obtain that the previous sum is equal to 

f 
Z ( a .  z) p(z) 1 [ 1  - ~(z)] [ f (~)  - f (Oz() ldv* . (1/2) 

, 1  
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It remains to apply Schwarz inequality to bound the square of this expression by 

( 1 / 4 ) ( 1 -  a) (  ~_~ (a.  z)2p(z)) ~ p(z) f [ 1 -  ~(z)] [ f ( ~ ) -  f(Oz~)] 2 d r : .  
z~zd z 

In view of formula (4.3) for the Dirichlet form of f ,  we have just proved that 

{ < Va, f >v~* }2 _ < (1/2)(1 - a) 2 ( a .  z)2p(z) < f ,  ( - s  >~?~ 
zcz d 

This proves not only that Va belongs to H-1  but gives also the bound �9 

[IWoll2_l < (1/2)(1 - a) E ( a .  z)2p(z) (4.9) 

zeZ~, 

for the H _  1 norm of V~. 
We have just proved that V~ belongs to H - l .  Since, on the other hand, the 

generator is self-adjoint, in view of subsection 3.1, the assumptions of Theorem 
2.2 are in force. This proves a central limit theorem for the tagged particle in the 
reversible context, originally proved by Kipnis and Varadhan [6]: 

Theorem 4.2. Assume that the transition probability p(.) is symmetric. Then, 
Zt converges in distribution, as t "~ oc, to a mean zero Gaussian law with matrix 
co-variance D (o~) characterized by (4.8). 

4.2 Mean zero case 

Consider now the mean zero case. Varadhan in [21], Theorem 5.1, proved a 
sector condition for this model. He showed the existence of a finite constant Co 
such that 

2 
{ < f , ( - L ) g > v *  < Co < f , ( - L ) f  > v g < g , ( - L ) g > ~ g  

for all functions in the domain of the generator. He proved furthermore that the 
local function Va given by (4.4) belongs to H _  i. In view of the results presented 
in subsection 3.2, (2.6) holds for the solution of the resolvent equation (4.5). We 
have therefore the following theorem due to Varadhan [21 ]: 

Theorem 4.3. Assume that the transition probability p(.) has mean zero. Then, 
Zt converges in distribution, as t ~ ~ ,  to a mean zero Gaussian law with co- 
variance matrix D(et) given by (4.8). 
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4.3 Asymmetric exclusion process 

Assume now that p(.) is asymmetric. For each n > 0, denote by E , :  the subsets 
of Z,d with n points and let E, = U,>_0E,: be the class of finite subsets of g~. 
For each A in E,, let gJA be the local function 

* A  = 1--I ~ ( x )  - o~ 

xcA 

where X(Oe) = ~(1 - oe). By convention, ~r = 1. It is easy to check that 
{~'A, A 6 E,} is an orthonormal basis of L2(v*). For each n > 1, denote by G, 
the subspace of L2(v *) generated by {~PA, A c E, :} ,  so that L2(v *) = | 
Functions of Gn are said to have degree n. 

Consider a local function f .  Since {~A " A ~ E,} is a basis of L2(v~*), we 
may write 

n>0 A e22,.,, n>0 

Here we have denoted by rc,~ the orthogonal projection on Gn. Notice that the 
coefficients f(A) depend not only on f but also on the density oe: f(A) = f(oe, A). 
Since f is a local function, f : E, -+ IR is a function of finite support. 

For a subset A of Z a and x, y in gd, denote by Ax,),, SyA the sets defined by 

Ax,y ~ / 

SyA = { 

(A\{x})U{y]  i fx  c A , y  CA,  
(A\{y})U{x} i f y 6 A ,  x CA, 
A otherwise ; 

A - y  i f y  CA, 
( A - y ) 0 , _ y  i f y 6 A .  

(4.10) 

In this formula, B + z is the set {x + z; x c B}. Therefore, to obtain SyA from 
A in the case where y belongs to A, we first translate A by - y  (getting a new 
set that contains the origin) and we then remove the origin and add site - y .  

Denote by s(.) (resp. a(-)) the symmetric (resp. asymmetric) part of the 
transition probability p: 

s(x) = (1/2)(p(x) + p ( - x ) } ,  a(x) = (1/2){p(x)- p ( - x ) }  . 

A simple computation shows that 

(s f )  = E {(~~ + (5~r'~)(A)] gtA ' 
AcE, 
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where 53o,~ is an operator that can be decomposed as ~a,~ = E~ + (1 - 2ee)s 2 + 
2 .~ -~ (5~-  - Eo), with 

(~t)(A) = (1/2) E s ( y - x ) [ ~ 7 ( A x ~ ) - ~ ( A ) l ,  

x,yeg~ 

('~2f)(A) = Z a ( y  - x ) [ f (Ax ,y )  -- t(A)] , 
xEA yeA 
x#O,y#o 

(4.11) 
(Eo~)(A) = ~ a ( y  - x ) f ( A  U {x}) 

xCA,yC:A 
x #O, y /-O 

(g+f)(A) = ~ a ( y - - x ) { ( A  - {y}) ; 
xEA,y~A 
x#0,yr 

and g~,~ is an operator which can be decomposed as eel{ + (1 - o!)~} + 
x /~-~(~  + + E~-), where 

(~f)(A) = ~ p ( y ) [ f ( S y A ) -  f(A)], 
yea 

(~f)(A) = ~ p(y)[f(SyA) - f(a)], 
yf~A (4.12) 

(~+~)(A) = ~ p ( y ) [ { ( A  - {y}) - ~(SyA - {-y})],  
yeA 

(E;-f)(A) = ~ p(y)[f(A U {y}) - f(SyA U {-y})] .  
yeA 

We may therefore decompose the generator s as 

where 

L = s + Ro + Bo + s  

AcT,  

s  = ~/X(-~ ~ { 2 ~  + + ~+}{ ( A ) * A ,  

A E'~', 

Bof = E { ( I  2o~)~o 2 + a~{ + ( 1 -  a)~2r}{ ( A ) • A ,  

AcE,  

R o f  = ~ g;~(A)qJA. 
AcE,  
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The space L2(v *) and the generator s have therefore exactly the structure 
presented in subsection 3.3. Denote by H0,1, H0,-1 the Sobolev spaces induced 
by the local functions and the symmetric positive operator R0. 

To conclude the proof of the central limit theorem for the tagged particle, 
we need only to check that the local function V~, given by (4.4) satisfies the 
assumption of Lemma 3.2 and that the generator satisfies hypotheses (3.2), (3.4), 
(3.6). 

Sethuraman, Varadhan and Yau [19] proved that in dimension d > 3 all mean 
zero local functions belong to H _  ~. In particular, since V, has mean zero, 

[ < Va, f >~)g ] < C011f[l~ 

for some finite constant Co and all functions f in the domain of the generator. 
Notice that we only need to consider functions f having degree one because V~t 
has degree one. In this case, by Lemma 4.4 in [8], ]l fill _< C0]lfl[0,1 for some 
finite constant Co so that V,, belongs to H0. 1 and the first assumption is fulfilled. 

We now turn to the second set of hypotheses of Lemma 3.2. We need to check 
assumptions (3.2), (3.4) and (3.6). In view of formula (3.5) in [8], (3.2) holds for 
the asymmetric simple exclusion process. On the other hand, putting together 
Lemma 4.1 and formula (3.1) in [19] with Lemma 5.1 of [7], we show that 
(3.4) holds with/3 = 1/2 for the asymmetric exclusion process in dimension 
d > 3. Finally, in respect to (3.6), observe that B0 has two pieces. The first 
one, corresponding to oe521~ + (1 - ot)~ 2, satisfies (3.6) with g = 1 in view of 
[8], Lemma 4.2. However, the piece which corresponds to (1 - 2ee)~ does not 
satisfy (3.6). What we can prove instead, [9], is that 

Lemma 4.4. Let  cb be a f unc t ion  such that II~.~ll0, i < ~ f o r  each n >__ 1. 

Let  h)~ be the solut ion o f  the resolvent  equat ion 

)vh). - L h z  = do . 

There exists  a f ini te  cons tan t  Co, independen t  o f  )~ and  oe, such that 

C o ~  
]lLshx,,~llo,-t _< ]lzc,,~llo,-i 

o~ 

60 / /3 /2  i~+1 

§  S I[JrJh;~[l~ 
o/ 

j = n  1 

f o r  all  n > 1 ,0  < o~ < l and  )v > 0 .  
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It very easy to check that this estimate may replace condition (3.6) in the proof 
of Lemma 3.2. In view of the previous estimates, we have the following result 
due to Sethuraman, Varadhan and Yau [19]: 

Theorem 4.5. Assume that the transition probability p( . )  is asymmetric. Then, 

in dimension d > 3, Zt converges in distribution, as t "~ oo, to a mean zero 

Gaussian law with co-variance matrix D (or) characterized by (4.8). 

5 Comments and extensions 

We list in this section some results related to the problem of the central limit 
theorem for the tagged particle. 

5.1 Invariance principle 

With a little more effort, one can prove in fact that the tagged particle converges 
to a d-dimensional Brownian motion with diffusion coefficient characterized by 
(4.8). 

Remark  5.1. In the conditions of  Theorem 4.2, Theorem 4.3 or Theorem 4.5, 

Z N =- ZNt converges, as N "~ ~ ,  to a Brownian motion with diffusion coefficient 

given by (4.8). 

We never excluded the possibility that the variance vanishes. In fact one can 
prove that D(~) is strictly positive in all cases but one. In the nearest-neighbor 
one-dimensional symmetric simple exclusion process D(o0 =- 0. In fact, in 
this case, ~/~ is not the correct renormalization and this is easy to understand. 
Since particles cannot jump over the others, if we want the tagged particle to 
move from the origin up to N, we need also to move all particles which were 
originally between the origin and N to the right of N. The displacement of 
the tagged particle is thus much more rigid. Relating the exclusion process to 
the symmetric nearest-neighbor one-dimensional zero-range process, Arratia [ 1] 
and Rost and Vares [16] proved that X t N / N  1/4 converges in distribution to a 

fractionary Brownian motion. 
In a similar spirit, Landim, Olla and Volchan [10] and Landim and Volchan 

[13] considered the evolution of an asymmetric tagged particle in Z, jumping to 
the right with intensity p > 1/2 and to the left with intensity 1 - p, evolving as 
a random walk with exclusion in a medium of symmetric particles. They proved 
a law of large numbers and an equilibrium central limit theorem for the position 
of a tagged particle. 
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5.2 S m o o t h n e s s  o f  the  d i f fus ion  coef f ic ient  

Recall from (4.8) the characterization of the self-diffusion coefficient D(-) and 
notice that it depends on o~, the density of particles in the environment. Based on 
the duality introduced in Subsection 4.3, Landim, Olla and Varadhan [8] proved 
that this dependence is smooth: 

Theorem 5.2. In the symmetric  case the self-diffusion coefficient D( . )  is o f  

class C ~ on [0, 1] and in the asymmetr ic  case, in dimension d >_ 3, it is o f  class 

C ~ on (0, 1]. 
It is not yet clear whether the lack of smoothness at the origin comes from the 

method (essentially the factor ~ -  t appearing in the statement of Lemma 4.4) or 
whether it is intrinsic to the problem. 

Here is the idea of the proof. Recall equation (4.8) for the self-diffusion matrix. 
Let R~ = X (c~)-l/2Va be the cylinder function given by 

Ra(~) -- 
1 

p ( y ) ( y ,  a)[c~ - ~(y) ] .  
j (1 ~ )  

y c Z  d 

With the notation introduced in the previous section, we may write Ra a s  

Ra(~) = - Z (y" a)p(y)~Py , 
ycZ~ 

For )~ > 0, denote by gx the solution of the where ~ ,  = ~P/z/ for z in Z d 
resolvent equation: 

) ~ g x -  s = Ra . 

Of course, gz = X (oe)-J/2fz �9 In view of (4.8), 

a .  D(ot)a = ( 1 - ~ ) ~ p ( z ) ( a - z )  2 

z~Z~ 

+ 2X(o0 l im < S~, gx >~g,, (5.1) 
)~---~0 

where S~ = - Y~z (a . z)p(z)~P-.~. 

Denote by gz(a, A) the coefficients ofgz on the basis {qJA, A C E.}. Writing 
both g~ and Ra on the basis {qJA, A C :E.}, we obtain an equation for the 
coefficients g)~ (or, A): 

~ ) ~  - 2(u)g>~ = ~ a  . (5.2) 
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Here, ~(oe) is the operator ~0,~ + ~ ,~  defined in (4,11), (4.12) and, for each a 
in R d, ,~ta = ,9t~ is the real function defined on E, by ~a ({Y}) = - ( Y  �9 a)p(y) ,  
~)~a(A) = 0 for IA[ > 1 and A = qS. 

In view of (5.1), to prove that D is smooth, we just need to show that 

< S~, g~ > . . . .  lira ~ p(z)(a �9 z)g;~(ce, lim {z}) 

is a smooth function in the density a. We need thus to show that there exists a 
subsequence )~ $ 0 such that {gx~(a, {y}) : k >_ l} converges uniformly to a 
smooth function for all y with p(y)  > O. 

To prove that gx(ot, {y}) is a sequence of smooth functions, observe from 
equation (5.2) and from the explicit form of the operator ~(a)  given in (4.11), 
(4.12) that g~(~, .) is the solution of a elliptic equation for each fixed a. The 
density a is now a parameter of the equation and we want to prove that the 
solutions depend smoothly on this parameter. 

In the case where the operator ~(c~) doesn't change the degree of a function, 
we would have a one-parameter family of finite dimensional elliptic equation. 
To show that the solutions depend smoothly on the parameter o~, we would first 
deduce the equations satisfied by the derivatives of ~qx and then obtain estimates, 
uniform in X, on the L ~ norm of these derivatives to conclude the existence of 
a subsequence Xk for which ~zk converges to a smooth function. 

In our case, the operator E(c~) changes the degree of a function by at most one. 
To apply the previous ideas, one need first to show that the solution is such that 
the high degrees are small in some sense. This is exactly the content of Lemma 
3.1. Details of the proof can be found in [8], [9]. 

Remark 5.3. The approach just presented to prove smoothness of  the self- 
diffusion coefficient provides 7hylor expansions at any order of  the co-variance 
matrix through the inversion of  finite-dimensional parabolic operators (cf [8]). 

5.3 Bulk diffusion 

The method presented above is quite general and can be used to prove that the 
Bulk diffusion coefficient of nongradient [20] interacting particle systems are 
smooth (cf. [2]). 

These results have an important application. There are essentially two general 
methods to prove the hydrodynamic behavior of an interacting particle system. 
The first one, introduced by Guo, Papanicolau andVaradhan, [5], requires unique- 
ness of weak solutions of the partial differential equation which describes the 
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macroscopic behavior of the system. The second one, called the relative entropy 

method and due to Yan, [22], requires the existence of smooth solutions. 
For some nongradient systems, the differential equation is of parabolic type 

and the diffusion matrix is given by a variational formula, similar to the ones 
derived in this article. In order to apply the relative entropy method, one needs 
to check that this diffusion matrix is regular in order to guarantee the existence 
of smooth solutions. The approach presented here may therefore validate the 

relative entropy method for nongradient systems. For instance, in the case of 
the Navier-Stokes correction [4], [11], [12] for the asymmetric simple exclusion 
process, the same method permits to prove that the bulk diffusion coefficient in 
dimension d > 3 is smooth in the interval [0, l /2)  U (1/2, 1] (cf. [9]). 

5.4 Finite dimensional approximations 

Fix N > l and consider a finite dimensional version of the symmetric exclusion 

process on the toms { - N  . . . . .  N} d (i.e. with periodic boundary conditions, 
preserving in this manner the translation symmetry). Since we want to work 

with an ergodic process, we also fix the total number K of particles. Consider 
now a tagged particle in this finite system. If N is much larger than the size of 
a single jump, the motion of the tagged particle has a unique canonical lifting 
to Z d. We get in this manner a process XN(t)  with values in Z d. Let us denote 
by DtN,K l the variance of the Brownian motion which is the limit of the scaled 
process eXN(e-2t)  as e --+ 0. It is proved in [7] that 

lim DIN,K 1 = D(oO. 
N--+ oo 

K/(2N)d-+o~ 
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