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Topologically mixing and minimal but not ergodic,
analytic transformation on T°
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Abstract. We give an example of an analytic transformation on T° that conserves the
Haar measure, that is minimal and topologically mixing, but is not ergodic.
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1 Introduction

In [2], Furstenberg constructed an analytic diffeomorphism of T? that preserves
the Haar measure and is minimal but not ergodic. The diffeomorphism F he
produces is not topologically mixing since there exists a sequence of integers
k, — oo such that F* — Jdy> uniformly as n goes to infinity (this rigid-
ity obviously eliminates topological mixing). We will use the construction of
Furstenberg and the techniques developed in [1] of reparametrizations of irra-
tional flows on the torus in dimension higher than 3, to construct an example on
T® of a diffeomorphism that has all the properties of the Furstenberg map but
that is in addition topologically mixing.

An essential ingredient of our construction will be the construction by J-C.
Yoccoz in an appendix to his thesis [4], of a minimal translation on T? and a
real-analytic complex function ¢ of T? that give a counterexample to the Denjoy-
Koksma inequality in dimension 2. Following [4], we take ¢ and «' rationally
independent such that the denominators of their convergents, g, and g,,, satisfy
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forn > ng

qn = e3q’;*1’ (D

g, = & (2)
Define then
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Assume ny is such that % < px,y) < %, for any (x, y) € T2, We will denote
the Birkhoff sums of ¢ with respect to R, ,» by

m—1

om(x,¥) =)@ (Rl (x, 7).

k=0

The stretching (important partial derivatives) of the Birkhoff sums ¢,, for all
large m will be central for topological mixing as we will explain later. For the
moment we just state the only property of the sums ¢,, that we will need:

Proposition 1 (Stretch). Let be given a rectangle R on T?. There exists an inter-

24n ’
val J x {yo} C R of length more than 1/q,>, such that for any m € [, 2e%n]
and any x € J, we have

O (e, yo) = 2 3)
—— x PR
0x o edn

A similar statement involving = ‘P’” (x0, ¥) holds for m € [3“1" 220417,
This proposition follows from a direct computation of the ¢,,’s, and its proof
can be found in [1] ! or implicitly in [4]. The essential thing to notice is that the

IThe exact statement in [1] is: Define, for n € N, the set

1
Li={xeT! /[qnx]e[ ———]U[— =T,
then we have the following
Proposition 3.4. Forany y € T!, for any x € I, foranym € (55 o , 2624011,
d
o e,y = =2t @)
ox edn n

A similar inequality on 6(;:,,, (x, ¥) holds whenm ¢ [e 0 , 2e24n+1],
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’
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intervals [, 2e%), (5, 2e%+1] cover N when n runs through the integers,
hence the derivatives of ¢, will always be stretching either in one or in the other
direction x and y (or in both).

As we mentioned, the other ingredient of our construction will be Furstenberg’s
example. Choose 8 an irrational number such that the translation on T°, Ry, o 5
be minimal, and such that the sequence of denominators of the convergents of
B, g, satisty forn > ng

én 2 e‘]n~l i

Let ¢ be the following real analytic function on T':
o0 . ~
sin 2w g, 6
pO) =) ——.

n
n=1 gn+1

Next, define on T* the following skew product, denoted by T :
™ — T,
(x,y,0,2) = (x+a,y+a,0+8,2+¢0)).
What will be relevant for 7 is the following
Proposition 2. The diffeomorphism T is minimal and nonergodic.

Proof. This proposition is due to Furstenberg [2], and follows from our choice
of ¢ (wild coboundary). The idea is that if the equation

Y(0) — 0+ B) = 9(0), E)

admits a measurable solution ¥ but does not admit a continuous one, then the
skew product T is nonergodic but is minimal (Cf [2], or [3], Propositions 4.2.5
and 4.2.6). Here, the solution ¥ of the equation (E) one finds using Fourier
expansions is:

e}
. 2 : 1 1 i2mg,0
tﬁ(@) = Re (—l 1= ei2m§nﬁ nén_H e g ) .

n=1
But we have

Pry <

‘q~n gnn+1 ’

- < (=" _
Qn(én +én+l) - ( ) (IB
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hence . _
qn+1 1 < gn+1 |
2 T |l—ei2minB| T 27

from the right hand side of this inequality we deduce that v is L?. From the
left hand side, it appears that the series is not absolutely convergent. Since it is
a lacunar series (the g,’s increase exponentially), a theorem by Zygmund states
that it is not continuous [5]. O

Finally, the last step of our construction is to let {7} be the special flow con-
structed over T with the ceiling function ¢ (that depends only on the variables
x and y). We recall rapidly the definition: The flow {7’} is obtained by in-
ducing on T x R/ ~, where ~ is the identification (x, v, 8, z, s + ¢(x, y)) ~
(T(x,y,0,z),s), the action

™xR — T*xR
(x,y,0,z,8) — (x,y,0,z,5+1).

The flow {T'}, thus obtained, is analytic and preserves the normalized Lebesgue
measure on M7, = T* x R/ ~, i.e. the product of the Haar measure on the
basis T* with the Lebesgue measure on the fibers. This is the flow we will work
with and the theorem we want to prove is the following:

Theorem 1. The flow {T'} is minimal and topologically mixing, and is not
ergodic.

First, the flow is minimal and nonergodic because T is minimal nonergodic.
We only have to prove topological mixing.

In the sequel, we will use the following notations: By rectangle on T? we
designate a direct product of intervals of the circle. If R € T? and V C T? are
such rectangles, R x V x {0} designates a set of codimension 1 of the space
M7y , situated on the basis T*. In this expression, R encloses the coordinates x
and y while V contains 6 and z. By # we will denote a couple of coordinates
(8, z), and the variable r will be used to denote coordinates (x, y).

We will prove the following proposition that implies more than topological
mixing:

Propesition 3. Given R, R, V C T? rectangles, and u a point of T%; then there
exists to such that, forany t > ty

T' (R x {u} x {O) [ (R x V x {0} # 0. (5)
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The sets involved in the proposition are taken to be on the basis T*. But the
same equation (5) would clearly be true when 7 is large enough, for any couple of
sets T% (R x {u} x {0}) and T (R’ XV x {O}), with s, ' € R. Since any two
open sets of the space M7 , contain sets of the precedent type, this proposition
implies topological mixing for the flow.

Remark. We said that the property is stronger than topological mixing because
the sets that intersect are respectively of dimension 2 and 4 in the five dimensional
space where the flow acts.

The mechanism producing topological mixing is the following: because the
Birkhoff sums of ¢ are always stretching when m is large (in one or in the other
direction x and y); for large ¢, the image of R x {u} x {0} by the flow at time ¢
contains a union of almost vertical strips whose projection on the basis follows
the trajectory under T of R x {u}. So, by minimality of T one of the base points
of these strips intersects the set R’ x V x {0}. Since this is valid for all 7 large
enough, topological mixing is proved. We go now to the detail of the proof.

Definition 1. For any r € T?, and any positive time 7, there is a unique integer

m, such that

m—1

0<t— Zgo «M) <@ (RE,(1).

We denote this number m, by N(r, 1).
Note that because % <@ <2, N(r,t) € [5,2t] for any r. By definition of the
special flow:

Ty, 0) = (LS (), FY0 @), 1 = o)
So, if m is such that ¢ — ¢,,(r) = 0, thenm = N(r, t) and
T'(r,u,0) = (R} . (r), F™ (1), 0).

The stretch property of the Birkhoff sums of ¢ implies

Lemma 1 (Consequence of stretch). Given a rectangle R, there exists ty such
that for any t > ty, we can find an mgy > % with the following property:
For all m € [mg, mg + mo'/*], there is an r,, € R such that

DPm (rm) =1.
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Proof. We will assume ¢ is in an interval of the type [e%a", e2‘14], for some
integer n (the case ¢ € [¢%4, ¢?4++1] being similar). By the Proposition 1 there
is an interval J = [j;, j2] X {yo} of R such that (3) holds on J x {yg}. Let
my = N(ja, Yo, 1). In Definition 1, we saw that m € [4, 26] C [©a, 2¢%]. By
definition also we have

(6)

N W

0 <r-— (sz (j21 )’0) <@ (Rzlvi'(.hw )’O)) =
Now, because ¢ > %, we obtain from the right hand side in (6), for any £ > 3

! — Qumyii(j2, Yo) < 0. @)

Next, if we look at the left extremity of J x {yp}, we have due to the left hand
side in (6)

t— O, (1, Y0) = 1 — @my(J2, Yo) + Om, (J2, Y0) — P> (1,5 Y0)
> DPm, (j2= )’0) - QDmQ (j]a YO)

agpl‘ﬂ
> inf —22(x, J
> inf =~ (x, yolJ1
> e
T glewn

from (3). Because m, > ez% the last inequality implies

. 1/4
[ — §0m2(Jh yO) = 377’12/ s

since ¢ < % we conclude that for any k < 2m,!/*

t— gpmz-l—k(jl’ )’0) 2 O (8)

We take now mg = m, + 3 and we deduce Lemma 1 from (7) and (8) using the
intermediate value theorem on the interval J x {yo}. O

The fact that the diffeomorphism 7' on T is minimal enables us to state the
following lemma, the proof of which is direct by compacity:

Lemma 2 (Minimality). Given two rectangles R and V, and any point (r, u)
in T%, there exists A € N such that: For any my > A, there existsm € [mg, mqo+
mo'/*] satisfying

(R, (r), F"(w)) € R x V.
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Now we prove Proposition 3:

Proof. We can assume that R is very small and take a rectangle R’ C R’ such
that for any m, if an r € R satisfies

R}, (r) € R,

then
Rgfw,(R) CR.

Now, let A be the number given by Lemma 2 and assume 1 > 2A. By Lemma
1, there exists an mg > % > A such that the set 77 (R x {u#} x {0}) contains
the points (RZ . (rm), F™ (1), 0) for every m & [mg, mg + mo'/*]. On the other
hand by Lemma 2, applied to (rg, #) where ro € R is arbitrarily chosen, we
have for some 1 € [mg, mqg + mgy'/*], that (R;ia,(ro), F'(w)) e R’ x V. Hence

(R .(R), F™(u)) C R’ x V, and in particular (R" ,(rz), F™(u)) € R' x V.OJ
To conclude we want to derive from Theorem 1 the following

Theorem 2. There exists an analytic diffeomorphism of T° that preserve the
Haar measure, that is minimal and topologically mixing, but not ergodic.

Any time #y map of the flow we studied is conjugate to an analytic diffeomor-
phism of T° that preserves the Haar measure. From Theorem 1 we have that
T" is topologically mixing and nonergodic. We can obtain Theorem 2 from
Theorem 1 if we prove the following general fact

Proposition 4. Let {T'} be a minimal flow on a compact metric space M, then
for a dense G; set of t in R, the time-t map of the flow is minimal.

Proof. The proof we will give of this proposition is standard. We remind first
the definitions: A flow {7’} on M is minimal if and only if the only closed sets
X C M such that

T"(X) =X, forallt e Ry,

are M or the empty set . A diffeomorphism T of M is minimal if and only if
the only closed sets X C M such that

T'X)=X,

are M or the empty set .
Assume now {7} is a minimal flow on a compact metric space M. Clearly,
the flow is transitive, i.e. for any open sets @ and 'V of M we have

U oV +e.

teRy
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We will first show that for a dense G set of ¢ € R, the time- map of the flow is
transitive. Let {©;] be a countable basis of open sets of M. Define

Tm=1{teR/ | JT"O0[0O; =0}

k>m

The set T; ;,, is closed and has an empty interior: Indeed, if t € T ;,,, then

pt € T; j », for any p € N*; therefore if T; ; ,, contains an interval it will contain

[a, +oc[ for some a € R which obviously contradicts the transitivity of the flow.

Besides T; ; ,, is closed because its complement is clearly open.

The complement of |, ; ,,en Ti.jm is exactly the set of times such that the map

T’ is transitive. From what was underlined above it is a dense G; in R.
Knowing that {7} is in fact minimal we will show that: the same parameters

t for which T' is transitive are such that T' is minimal.

Let 7y € R such that 7% is transitive and let X C M be a closed nonempty set

such that T%(X) = X. For ¢t € R, define

X, = U TS (X).
]

s€[0,z

The closed set X, is invariant by the flow. Since the flow is minimal, we have
X[U = M.
On the other hand, since for any t € R

T (X)) = Xi,

we have by transitivity of 7% that either X, = M or X, has an empty interior.
In particular, for n € N*, X, ,, is either M or has an empty interior. Since
Uiy TF/" X,y /0 = X4y = M, it follows that X,,;, = M. But this holds for
every integer n > 0, hence X = M. il

Acknowledgments. I wish to thank Enrique Pujals for pointing out this ques-
tion to me, and Patrice Le Calvez for a simplification of the original proof.
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