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Abstract. We give an example of an analytic transformation on T 5 that conserves the 
Haar measure, that is minimal and topologically mixing, but is not ergodic. 
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1 Introduction 

In [2], Furstenberg constructed an analytic diffeomorphism of T 2 that preserves 
the Haar measure and is minimal but not ergodic. The diffeomorphism F he 
produces is not topologically mixing since there exists a sequence of integers 
kn -+ c<~ such that F k" -+ IdT2 uniformly as n goes to infinity (this rigid- 
ity obviously eliminates topological mixing). We will use the construction of 
Furstenberg and the techniques developed in [1] of reparametrizations of irra- 
tional flows on the toms in dimension higher than 3, to construct an example on 
T 5 of a diffeomorphism that has all the properties of the Furstenberg map but 
that is in addition topologically mixing. 

An essential ingredient of our construction will be the construction by J-C. 
Yoccoz in an appendix to his thesis [4], of a minimal translation on T 2 and a 
real-analytic complex function ~0 of T 2 that give a counterexample to the Denjoy- 
Koksma inequality in dimension 2. Following [4], we take o~ and oe ' rationally 
independent such that the denominators of their convergents, qn and q~, satisfy 
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fo rn  > no 

qn > e 3q~'-1, (1) 
! 

qn ~ e3@" (2) 

Define then 

~ o ( x , y ) = l + R e  ~ ~ ] + R e  ~ eq',, " 
n = n  0 n = n  0 

1 3 for any (x, y) E T 2. We will denote Assume no is such that 7 < ~0(x, y) < ~, 
the Birkhoff sums of  q) with respect to R~,~, by 

m -  1 
k ~o,~(x, y ) : =  E ~o (R~,~,(x, y)) .  

k=0 

The stretching (important partial derivatives) of  the Birkhoff sums q9 m for all 
large m will be central for topological mixing as we will explain later. For the 
moment  we just state the only property of  the sums ~0m that we will need: 

Proposition I (Stretch).  Let be given a rectangle R on T 2. There exists an inter- 
[ e2qn 2e2q,~ ] val J x {Yo} C R of length more than 1/q~ 2, such that for any m E �9 2 ' 

and any x E J, we have 

Oq)m m 

Ox (x, Yo) > _ eq, " (3) 

�9 { e 2q;' 
A similar statement involving ~ (Xo, y) holds for m E L-5--, 2e2q"+1 ]. 

This proposition follows from a direct computation of  the ~om's, and its proof 
can be found in [1] 1 or implicitly in [4]. The essential thing to notice is that the 

1The exact s ta tement  in [1] is: Define, for n 6 N, the set 

1 1 1 1 1 1 
x. : ~x ~ T ~ / ~q,,xl ~ ~ ,  ~ - ~1 U ~  + -,. 1 - .1~, 

then we have the fol lowing 
[ e 2qn 2 t 

P r o p o s i t i o n 3 . 4 .  For any y r T l ,  JOr any x E Xn, for  any m E t 2 , 2e  q,~ ], 

m qn 
( x , y )  > - - - -  (4) 

-- eqn rt 

e2q[ ~ 2e2%+1 A similar inequali ty on (x, 3') holds  when  m 6 [ ~ - - ,  ]. 
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[ e2qn t e2q~r~ 
intervals L~- ,  2eZqn], I-T-,  2e2q"+' ] cover N when n runs through the integers, 

hence the derivatives of  q)m will always be stretching either in one or in the other 
direction x and y (or in both). 

As we mentioned, the other ingredient of  our construction will be Furstenberg's 
example. Choose/3 an irrational number such that the translation on T 3, R,,~, ~ 
be minimal, and such that the sequence of  denominators of  the convergents of 

j~, c~n satisfy for n > no 

Or, >-- eqn-I . 

Let ~b be the following real analytic function on T l" 

~ sin 2rC gl,,O 
q ~ ( 0 )  = = . 

n=l  n q n + l  

Next, define on T 4 the following skew product, denoted by T �9 

T 4 __+ T 4, 

(x, y , O , z )  --+ (x +ol, y + o [ , O §  Z +qb(O)). 

What will be relevant for T is the following 

Propos i t ion  2. The diffeomorphism T is minimal and nonergodic. 

Proof.  This proposition is due to Furstenberg [2], and follows from our choice 
of  ~b (wild coboundary). The idea is that if the equation 

~ ( 0 )  - ~ ( 0  + / 3 )  = ~b(0), (E) 

admits a measurable solution ~p but does not admit a continuous one, then the 
skew product T is nonergodic but is minimal (Cf [2], or [3], Propositions 4.2.5 
and 4.2.6). Here, the solution ~p of  the equation (E) one finds using Fourier 
expansions is: 

~p(O) = Re - i  1 - ei2~q ,,~ nO,,+1 

But we have 

< ( - 1 ) " ( / ~ -  ) <  _ , 
q , , (0 , ,  + q n + ~ )  - q ,  - G G + I  
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hence 
qn+l 1 qn+l .  
- -  % % - -  

2a" - I1 - ei2=0nV I - 2 ' 

from the right hand side of this inequality we deduce that ~ is L 2. From the 
left hand side, it appears that the series is not absolutely convergent. Since it is 
a lacunar series (the qn's increase exponentially), a theorem by Zygmund states 
that it is not continuous [5]. [] 

Finally, the last step of our construction is to let {T t } be the special flow con- 

structed over T with the ceiling function go (that depends only on the variables 
x and y). We recall rapidly the definition: The flow {T t} is obtained by in- 
ducing o n  T 4 x R / ~ ,  where ~ is the identification (x, y, 0, z, s + g0(x, y)) 

(T(x, y, O, z), s), the action 

T4• --+ T 4 •  

( x , y , O , z , s )  ~ ( x , y , O , z , s + t ) .  

The flow { T t}, thus obtained, is analytic and preserves the normalized Lebesgue 
measure on Mr,~ = T 4 • R / ' ~ ,  i.e. the product of the Haar measure on the 
basis T 4 with the Lebesgue measure on the fibers. This is the flow we will work 

with and the theorem we want to prove is the following: 

Theorem 1. The flow {T f } is minimal and topologically mixing, and is not 
ergodic. 

First, the flow is minimal and nonergodic because T is minimal nonergodic. 

We only have to prove topological mixing. 
In the sequel, we will use the following notations: By rectangle on T 2 we 

designate a direct product of intervals of  the circle. If  R C T 2 and V C T 2 are  

such rectangles, R x V x {0} designates a set of  codimension 1 of the space 
Mr,~ situated on the basis T 4. In this expression, R encloses the coordinates x 
and y while V contains 0 and z. By u we will denote a couple of coordinates 

(0, z), and the variable r will be used to denote coordinates (x, y). 
We will prove the following proposition that implies more than topological 

mixing: 

Proposi t ion 3. Given R, R', V C T 2 rectangles, and u a point ofT2; then there 
exists to such that, for any t > to 

T t (Rx{u}  x { O } ) A R ' x  V x {0} r  (5) 

Bol. Soc. Bras. Mat., Vol. 31, No. 3, 2000 



TOPOLOGICALLY MIXING AND MINIMAL BUT NOT ERGODIC... 281 

The sets involved in the proposition are taken to be on the basis T 4. But the 
same equation (5) would clearly be true when t is large enough, for any couple of  
sets T s (R x {u} x {0}) and T s' (R' • V x {0}), with s, s' E R. Since any two 

open sets of  the space MT,e contain sets of  the precedent type, this proposition 
implies topological mixing for the flow. 

R e m a r k .  We said that the property is stronger than topological mixing because 
the sets that intersect are respectively of  dimension 2 and 4 in the five dimensional 
space where the flow acts. 

The mechanism producing topological mixing is the following: because the 
Birkhoff sums of  ~o are always stretching when m is large (in one or in the other 
direction x and y); for large t, the image of  R x {u} x {0} by the flow at time t 
contains a union of  almost vertical strips whose projection on the basis follows 
the trajectory under T of  R x {u}. So, by minimality of  T one of  the base points 
of  these strips intersects the set R' x V x {0}. Since this is valid for all t large 
enough, topological mixing is proved. We go now to the detail of  the proof. 

For any r c T 2, and any positive time t, there is a unique integer Definition 1. 
m, such that 

m 1 

k 0 <_t - Z ~o (R~,~,(r)) < q~ ( R : ~ j ( r ) ) .  
k=O 

We denote this number m, by N(r ,  t). 
1 Note that because g < ~o < 2, N(r ,  t) c [~, 2t] for any r. By definition of the 

special flow: 

Tf (r, u, O) = (RN(')t) (r), FN(r't)(u), t -- ~ON(F.~)(r)) 
] 

So, i fm is such that t - ~0m(r) = 0, then m = N(r,  t) and 

T'(r ,  u, O) ~- (R~,~,(r), Fro(u), 0) .  

The stretch property of  the Birkhoff sums of  q~ implies 

L e m m a  1 (Consequence  of  stretch).  Given a rectangle R, there exists to such 
t that for  any t >_ to, we can f ind an mo >_ ~ with the fol lowing property: 

For all m E [mo, mo § mol/4], there is an rm c R such that 

~ , , ( r , , , )  = t .  
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Proof.  We will assume t is in an interval of the type [ e  2q'' , e 2q'. ], for some 
integer n (the case t ~ [e 2q; , e 2q'+l ] being similar). By the Proposition 1 there 

is an interval J = [jl ,  j2] x {Y0} of R such that (3) holds on J x {y0}- Let 
[ e2q" 2e2q~]. By m2 = N(j2,  Yo, t). In Definition 1, we sawthatm2 6 [2, 2t] C ~ 2 , 

definition also we have 

3 
[ R  me , . 0 <_ t - ~Om2(j2, YO) < ~0 ce,cg,~,J2, YO)) <- (6) 

Now, because ~o > g,1 we obtain from the right hand side in (6), for any k _> 3 

t - (Pm2+k(j2, Yo) < 0. (7) 

Next, if we look at the left extremity of J x {Y0}, we have due to the left hand 
side in (6) 

t - -~m2(J l ,  Y0) = t --  (Pro2 (j2,  Y0) -b g)m2 ( j2,  Y0) - -  q)m2 ( j l ,  Y0) 

>--- (Din2 (j2,  Y0) --  q)m2 ( j l ,  Y0) 

> inf ~ (x, Yo)[JI 
- -  x c J  OX 

m 2  

q2eqn  

e2qn 
from (3). Because me >_ -5- the last inequality implies 

,~ 1/4 
t - ~Om2(Jl, YO) > ore2 , 

3 since ~0 _< ~, we conclude that for any k < 2m21/4 

t - ~0m2+k(jl, Y0) > 0. (8) 

We take now mo = m2 + 3 and we deduce Lemma 1 from (7) and (8) using the 

intermediate value theorem on the interval J • {Y0}- [] 

The fact that the diffeomorphism T o n  T 4 is minimal enables us to state the 
following lemma, the proof of which is direct by compacity: 

L e m m a  2 (Minimali ty) .  Given two rectangles -R' and V, and any point (r, u) 
in T 4, there exists A E N such that: For any mo > A, there exists m c [too, mo + 
mo 1/4 ] satisfying 

[om tr~ Fm(u)) C • V. ~ltOl,Oll\ ]~ 
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Now we prove Proposition 3: 

Proof.  We can assume that R is very small and take a rectangle R' C R' such 

that for any m, if an r �9 R satisfies 

R~m~,(r) �9 R', 

then 

R~,~,(R) C R'. 

Now, let A be the number given by Lemma 2 and assume t > 2A. By Lemma 
t [, there exists an mo >_ ~ >_ A such that the set T t (R • {u} • {0}) contains 

the points (R~:~,(rm), Fro(u), 0) for everym e [too, mo + mo~/4]. On the other 
hand by Lemma 2, applied to (ro, u) where ro �9 R is arbitrarily chosen, we 

IR'~ ~r ~ F~(u)) -R' Y. Hence have for some rh �9 [m0, m0 + m01/4], that t ~,~'~ 0), �9 • 

(R2~,(R), F'~(u)) C R ' x  V, and in particular (R2~,(r~), F~(u)) �9 R' • V.E] 

To conclude we want to derive from Theorem 1 the following 

Theorem 2. There exists an analytic diffeomorphism of  T 5 that preserve the 
Haar measure, that is minimal and topologically mixing, but not ergodic. 

Any time to map of the flow we studied is conjugate to an analytic diffeomor- 
phism of T 5 that preserves the Haar measure. From Theorem 1 we have that 
T t~ is topologically mixing and nonergodic. We can obtain Theorem 2 from 
Theorem 1 if  we prove the following general fact 

Proposi t ion 4. Let { T t } be a minimal flow on a compact metric space M, then 
for a dense G~ set o f t  in R, the time-t map of  the flow is minimal. 

Proof.  The proof we will give of this proposition is standard. We remind first 
the definitions: A flow {T t } on M is minimal if and only if the only closed sets 
X C M such that 

T t(X) = X, f o r  all t �9 R+, 

are M or the empty set 0. A diffeomorphism T of  M is minimal if and only if 
the only closed sets X C M such that 

T(X)  = X, 

are M or the empty set ~1. 
Assume now {T t } is a minimal flow on a compact metric space M. Clearly, 

the flow is transitive, i.e. for any open sets 0 and V of M we have 

t6R+ 
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We will first show that for a dense Gs set of t c R, the time-t map of the flow is 
transitive. Let {Oi} be a countable basis of  open sets of M. Define 

 ,j,m = { tcn  / U rkt(o,)[] oJ =0}. 
k>_m 

The set  Ti,j,m is c losed  and has an e m p t y  interior: Indeed, if t 6 Ti,j,m, then 
p t  6 Ti,j,m for any p 6 N*; therefore if T/,j,m contains an interval it will contain 
[a, +oo[  for some a E R which obviously contradicts the transitivity of the flow. 
Besides T/,j,m is closed because its complement is clearly open. 

The complement of  Ui,j,meN Ti,j,m is exactly the set of times such that the map 
T t is transitive. From what was underlined above it is a dense Gs in R. 

Knowing that { T t } is in fact minimal we will show that: the same  parameters  

t for  which  T t is transitive are such that T t is minimal .  

Let to 6 R such that T t~ is transitive and let X C M be a closed nonempty set 
such that T t~ ( X )  = X .  For t c R+, define 

X,= U Ts(X)" 
se[0,r] 

The closed set Xto is invariant by the flow. Since the flow is minimal, we have 

Xto = M .  

On the other hand, since for any t 6 R 

T '~ (Xt) = X,, 

we have by transitivity of T t~ that either Xt  = M or Xt  has an empty interior. 
In particular, for n c N*, Xto/,~ is either M or has an empty interior. Since 
u n - -  1 k=0 Tkt~ = Xto = M,  it follows that Xto/,, = M.  But this holds for 
every integer n > 0, hence X = M. [] 

Acknowledgments. I wish to thank Enrique Pujals for pointing out this ques- 
tion to me, and Patrice Le Calvez for a simplification of the original proof. 
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