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Abstract. A transitive set A of a vector field X is maximal transitive if it contains 

every transitive set of X intersecting it. We shall prove that if X is C ~ generic then every 

singularity of X with either only one positive or only one negative eigenvalue belongs 

to a maximal transitive set of X. In particular, we characterize maximal transitive sets 

with singularities for generic C l vector fields on closed 3-manifolds in terms of homo- 

clinic classes associated to a unique singularity. We apply our results to the examples 

introduced in [3] and [15]. 
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1 Introduction 

Let M be a closed n-manifold  and X l (M) be the set o f  C I vector fields on M 

endowed with the C 1 topology. Given an open subset A of  X I ( M )  a subset 

R C A is residual i f  it coincides with a countable intersection of  open-dense 

subsets of  A .  We say that a generic vector field in A satisfies a property (P) 
if  there is a residual subset R of  A such that (P) holds for every X c R .  An 

invariant set of  X c X j (M) is transitive i f  it is the ~o-limit set o f  one of  its points. 

A transitive set A of  X is maximal transitive i f  it contains any transitive set T of  

X satisfying T ~ A ~ 0. 

Given a vector  field X and a transitive set A of  X, it is natural to ask about 

the existence of  a maximal  transitive, set of  X containing A. For example,  every 
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transitive set of an Axiom A vector field is contained in a maximal transitive 
set. There are examples of vector fields exhibiting transitive sets which are not 

contained in a maximal transitive set [11]. 
Assume that A is hyperbolic and isolated. Then we have two possibilities, 

namely A has singularities or not. If A has no singularities and X is C l generic, 
then A is contained in a maximal transitive set of X [4]. If A has singularities, 
then it reduces to a singularity. We say that a singularity is co-dimension one if 
it has either only one positive or only one negative eigenvalue. In this paper we 
shall prove the following result. 

Theorem A. A generic C 1 vector field X satisfies that every of  its co-dimension 
one singularities is contained in a maximal transitive set of X. 

Corollary 1.1. A generic three-dimensional C 1 vector field X satisfies that 
every of  its singularities is contained in a maximal transitive set of  X. 

The idea of the proof of Theorem A is the following. Denote by Hx (p) the 
homoclinic class of a hyperbolic periodic orbit p of X. Recall that Hx (p) is the 
closure of the transversal homoclinic points associated to p. It was proved in [4] 
that the homoclinic class associated to a periodic orbit p of a generic C 1 vector 
field X is maximal transitive. This was done as follows. First it was proved that, 

for every periodic orbit p of a generic C 1 vector field X, the closure CI(W} (p)) 
of the unstable manifold W} (p) is a Lyapunov stable set of X. Similarly, for 

generic C 1 X, the closure CI(W)}(p)) of the stable manifold W}(p)  of p is a 

Lyapunov stable set of the reversed flow - X. Next, it was proved that for every 
periodic orbit p of X generic, the following identity holds 

n x ( p )  = Cl(W}(p)) N Cl(W~(p)). (1) 

Finally it was noted that every transitive set of X realized as an intersection of 
a Lyapunov stable set of X with a Lyapunov stable set of - X  is a maximal 

transitive set. 
This approach does not work to find maximal transitive sets in general, but (1) 

leads us to define, for any compact invariant set A of X, 

where 

and 

Hx(A) = CI(W~(A)) fq CI(W~c(A)), 

W}(A)  = {q : dist(Xt(q), A) -+ O, 

W)(A)  = {q : dist(Xt(q), A) -+ 0, t cc}. 
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We believe that if A is a transitive set of a generic C L vector field X, then 

Hx (A) defined as above is a maximal transitive set of X. Below we give sufficient 

conditions for Hx (A) to be maximal transitive when A reduces to a singularity. 

Theorem B. l f  X is a generic C 1 vector f ield then the fol lowing conditions are 
equivalent: 

1. W~c(a ) C Hx(cr). 

2. Cl(W}(cr)) = H x ( a ) .  

3. CI(W,~(a)) is transitive. 

4. W~:(a) C~ H x ( a )  has non empty interior in W~:(a). 

Moreover, any o f  such a conditions implies that Hx  (a ) is a maximal transitive 
set. Similar result holds replacing u by s. 

The above theorem implies the following characterization of maximal transi- 
tive sets with co-dimension one singularities for generic C 1 vector fields. 

Corollary 1.2. l f  X is a generic C j vector field, then A is a maximal transitive 
set with co-dimension one singularities o f  X if  and only if A = I tx  (or)for some 
co-dimension one singularity cr o f  X. 

Then, we have another corollary: 

Corollary 1.3. I f  X is a generic three-dimensional C 1 vector field, then A is 
a maximal transitive set with singularities o f  X if  and only if A = Hx (or)for 
some singularity a o f  X. 

The paper is organized as follows. Theorem A is proved using Theorem B. In 
Section 2 we shall prove both theorems. In Section 3 we give further applications 
of Theorem B. For the readers convinience we are including in the Appendix the 
results of [4] and [12] used here. 

2 Proof of theorems A and B 

In what follows M denotes a closed n-manifold, n > 3. Denote X j (M) the 
space of C 1 vector fields endowed with the C 1 topology. We denote 2~ the 
set of compact subsets of M endowed with the Hausdol~ topology. It follows 
that X t (M) is a separable Banach space [5]. We shall say that X ~ X 1 (M) is 

Kupka-Smale if the periodic orbits and singularities of X are hyperbolic and the 
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corresponding invariant manifolds intersect transversaly. The set of C 1 Kupka- 
Smale vector fields is denoted by K S  1 (M). Recall that - X  denotes the time 
reversed vector field associated to X c X 1 (M). 

We d e n o t e X t t h e f l o w o f X c X  l (M) , t  EIR. I fA c M ,  R c I R a n d E  > 0  

we denote CI(A) the closure of A, XR(A)  = {Xr(a) " (r, a) c R x A}, and 
B~(A) the E-ball centered at A. Set Ox(p)  = X~(p)  and O+(p) = X(o,~)(p) 
for any p c M. The set of periodic orbits of X is denoted by Per(X), Sing(X) 

denotes the set of singularities of X, and Crit(X) = Per(X) U Sing(X). 

If y is a metric space, we say R c y is residual if R is a countable intersection 
of open-dense subsets o f y .  For example, K S  1 (M) is residual in X I (M). Clearly 

a countable intersection of residual subsets is residual. 
A set-valued map 

* " y --+ 2y  

is lower semi-continuous at Y0 E R if for every open set U C M satisfying 
U n ~(Y0) # 0, there is a neighborhood U0 of Y0 such that U N ~(Y) # 0 
for every Y E U0. Similarly, ~ is upper semi-continuous at Y1 ~ Y if for every 
compact subset K C M satisfying K N ~(Y1) = 0 there is a neighborhood 

U1 of YI such that K n ~(Y) = 0 for every Y E U1. We say that �9 is lower 

semi-continuous if it does for every Y0 ~ Y. A well known result [10] asserts 
that for suitable y ,  if �9 is lower semi-continuous then there is a residual subset 

R of y such that �9 is also upper semi-continuous at every YI c R. 
A compact set A C M is Lyapunov stable for X if for every neighborhood U 

of A there is a neighborhood V C U of A such that Xt (V) C U for every t >_ 0. 
The following criterion for Lyapunov stability is well known [2]. 

Lemma 2.1. A compact set A is Lyapunov stable for X if it satisfies the fol- 

lowing property 

(P) If  xn E M is a sequence converging to x ~ A and t,, >__ 0, then any limit 

point o f  the sequence Xt,, (xn) is in A. 

Lemma 2.2. Let A be a non empty compact set, A = A + N A-,  where A + is 
Lyapunov stable for X and A -  is Lyapunov stable for  - X .  I f  A + is transitive, 

then A = A +. Similar property holds replacing + by - .  

Proof. If A + is transitive and A + n A-  ~ 0 with A-  Lyapunov stable for 
- X ,  using (P), we get that A + C A-.  So, A + N A-  = A + and we conclude 

A = A +. [] 
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The following 1emma is a consequence of Lemma 2.1 and its proof is left for 
the reader. 

Lemma 2.3. Let A be non empty a compact set, A = A + N A-,  where A + 
is Lyapunov stable for  X and A -  is Lyapunov stable for  - X .  I f  A is transitive 
then it is maximal transitive. 

Below we state a simple criterion for transitiveness using Lyapunov stability. 

Lemma 2.4. Let A be a transitive set of  a vector field X. Suppose that there is 
q 6 CI(W~(A)) ~ CI(W)}(A)) such that cox(q) is Lyapunov stable for  X. Then 
CI(W~ (A)) = cox (q). In particular, CI(W} (A)) is a transitive set. 

Proof. Let A, q and X be as in the statement, Clearly, cox(q) f3CI(W~ (A)) ~ 0. 
Let x be a point in this intersection. It can be approximated by a sequence x,~ 
of points in W~(A). Then, we can choose a sequence t, of positive times such 
that dist(Xt, (x,,), A) goes to zero as n --+ ~ .  The sequence Yn = Xt,, (x,) 
has a subsequence that converges to a point y in A. As Cox(q) is Lyapunov 
stable for X, we can apply Lemma 2.1 to show that y belongs to cox (q). Hence, 
A A cox(q) ~ 0, Using the transitivity of A we apply Lemma 2.1 again to get 
that A __c cox(q). The Lyapunov stability of cox(q) also implies that the whole 
W~(A) __ cox(q)- Then, since cox(q) is closed, the proof follows. [] 

Remark  2.5. By [4] (see also the Appendix), under the hypothesis of  Lemma 
2.4, we obtain that for  generic X, CI(W~(A)) is a Lyapunov stable set of  X. 

The following lemma is in [1], [7]. 

Lemma 2.6. Let X c X I ( M )  andx  c M \ (Per(X) U Sing(X)). Suppose that 

for every ~ > 0 there are xp c B8 (p), Xq ~ B~ (q), tp > 0 and tq <_ 0 such that 

Xt~,(Xp) E Ba(x) and Xfq(Xq) ~ B~(x). Then, for  any C l neighborhood "U of  X 
in X 1 (M), there is L = L ( U )  > 0 so that for  every e > 0 there exists Y c q3 
such that: 

1, Y ---- X outside B~(X[o,L](p)) U B~(X~ L,LI(x)) U B~(X[-L,oj(q)) and 

2, q c O+ (p). 

This lemma is used to prove the following proposition 
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Proposition 2.7. There is a residual subset R of Xl(M) such that if X ~ R 
and ~r c Sing(X), then the set 

{p E W~(cr) �9 Cl(O+(p))  is Lyapunov stable for - X} 

is residual in W}(cr), 
Let us introduce some useful notation before the proof of this proposition. 

Given X 6 K S  1 (M), then Sing(X) is a finite set and it is denoted by 

Sing(X) = {or1 (X), . . .  , o~k(X)}. 

Denoting cri (Y) the continuation of o-i (X) for Y close to X one has 

Sing(Y) = { a 1 ( Y ) , ' " , ~ ( Y ) } .  (2) 

for every Y close to X. 
Let cr be a hyperbolic singularity of a vector field X. A fundamental domain of 

W} (o-) is a cross-section of  X / W }  (o-) - {o- } intersecting every orbit of X~ W} (~r) 
(see [5]). 

It is well known that the proof of Proposition 2.7 follows from the local result 
below [5]. 

L e m m a  2.8. For every X c K S  l (M) there is a neighborhood Ux  of X in 
X 1 (M) and a residual subset R x  of Ux  such that i fY  c Rx ,  ~r E Sing(Y) and 
D~, (~r) is a fundamental domain of  W~, (<r), then the set 

{p c D~(o-) �9 Cl(O+(p))  is Lyapunov stable for  Y} 

is residual in D~(cr). 

Proof.  Let X be a Kupka-Smale C ~ vector field. As mentioned before it follows 
that there is a neighborhood Ux  of X such that Sing(Y) satisfies (2) for every 
Y 6 Ux .  For simplicity we denote dim(W~,(~ri(Y)) ) = ui for 1 < i < k. 

Let D~ (o'i (X)) be a fundamental domain of W~ (cri (X)). To simplify notation 
we shall assume that D~ (cri (X)) is the ui-sphere S ~'i . 

Let Ei be a cross-section of X such that S "e = W~;(ai(X)) C3 }]i. Shrinking 
Ux ,  if necessary, we can assume that 

D~(~ri(Y)) = W~(~ri(Y)) N Ei 

is a fundamental domain of W E (oi (Y)) for every Y c Ux .  It is suffices to prove 
the result for this particular fundamental domain. 
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By the Stable Manifold Theory [8] it follows that there is a C j map 

Fi  : U x  • S ui --+ ~ i  

such that 

D~,(ai(Y)) = Graph(Fi(Y, .)) = {Fi(Y, y) " y c S"*}. 

Note that the natural projection Hi " D~,(cri(Y) -+ S "i, IIi(I~i(Y, y)) = y, is a 
C I diffeomorphism. 

We define the set valued map 

by 

@ i ' U x  x S  "i--->2 M 

r Y) = CI(O+(Fi(Y,  Y))). 

The Tubular Flow Box Theorem [5] and the continuity of Fi imply that dP i is 
lower semi-continuous. Denote R I the residual subset of  Ux  • S "i such that qsi 
is upper semi-continuous in R I . 

Define, for every Y c Ux ,  the set 

R I ( Y )  = {y c S"' : (Y, y)  c RI } .  

It follows that the set 

V / =  {Y : RI(Y ) is residual in S"'} 

is residual in Ux .  

Define 

R x  = K S I ( M )  (~ ( n~= iV i )  . 

Clearly R x  is a residual subset of Ux .  If Y E R x  we define 

Gi (Y )  = {Fi(Y, y) : y c RI(Y) }. 

It follows that Gi (Y )  is residual in D } ( a i ( Y ) ) ,  Vi = 1 , . . .  , k. 

The proof of the proposition is then reduced to prove that Cl(O~-(p)) is Lya- 
punov stable for Y, g(i, Y, p) c {1, �9 �9 - , k} x R x  x Gi ( Y ) .  For this we assume 
by contradiction that there is (i, Y, p) c {i, --. , k} x R x  • Gi(Y) such that 
Cl(O+(p))  is not Lyapunov stable for Y. Note that there is y c RI(Y ) such 

that ~i (Y ,  Y) = CI(O+(P)).  In particular (Y, y) 6 RI,  i.e. q~i is upper semi- 
continuous at (Y, y). 
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By Lemma 2.1 there are sequences xn -+ x c Cl(O+(p)) and tn > 0 such 
that Xt,, (xn) -+ q r CI(O+(p)). Observe that p r Crit(X). We can assume that 
x r Crit(X) for, otherwise, we could replace x by some point in W~(x) \ {x} 
(recall that Y is Kupka-Smale). Similarly we can assume that q r Crit(Y) for, 
otherwise, we could replace q by some point in W~,(q) \ {q}. 

Let U be a neighborhood of Cl(O+(p)) satisfying q r U. In particular, 
K = M \ U is compact, ~Pi(Y, y) N K = 0 and q e K. As x c Cl(O+(p)), 
there is a sequence sn > 0 such that Xs,, (p) --+ x. Hence, for every 3 > 0 there 
are Xp = p ~ B~(p), Xq = Xt,(xn) ~ B~(x), tp = s~ > 0 and tq = - tn < 0 
such that Xt~,(Xp) ~ B~(x) and Xtq(Xq) E B~(x). Then, by Lemma 2.6 there is 
Z ~ X I ( M )  arbitrarily C 1 close to Y such that q 6 Cl(O+(p)). This last fact 
contradicts the upper semi-continuity of ~i at (Y, y) for q 6 qsi (Z, p) N K # 0. 
This contradiction concludes the proof. [] 

The following lemma is not difficult, it is in [12], and it is proved in the 
Appendix for completeness. 

Lemma 2.9. If  X ~ X l ( M )  and p ~ M, then Cl(O+(p)) is Lyapunov stable 

for X if and only if Cox(p) does. 

Proof of Theorem B. Let X be a generic C 1 vector field and o- E Sing(X). By 
[4] we can assume that CI(W~; (~r)) is Lyapunov stable for X and CI(W~ (or)) is 
Lyapunov stable for - X .  Recall that Hx(o)  = CI(W~(er)) N Cl(W~c(cr)) by 
definition. 

Clearly (1) implies (2) since Hx (~r) is both closed and contained in Ct (W~ (or)). 
Now assume that (2) holds. By Proposition 2.7 there is p ~ CI(W~(cr)) = 

Hx (o-) = CI(W~ (or)) N CI(W~ (o')) such that CI(O + (p)) is Lyapunov stable for 
X. Then, by Lemrna 2.4 and Lemma 2.9 applied to A = {o-}, we obtain that 
CI(W~r (o-)) is transitive, proving (3). 

If (3) holds it follows that Hx (or) = C1 (W~ (or)) by Lemma 2.2. Thus, W~ (or) N 
Hx(cr) = W~c(cr), proving (4). 

If (4) holds there is p 6 Hx(cr) such that Cl(O+(p)) is Lyapunov stable for 
X by Proposition 2.7. Then CI(W~ (o-))is transitive by Lemma 2.4 and Lemma 
2.9. By Lemma 2.2 we conclude that Hx (or) = CI(W~ (~r)), proving (1). 

Clearly, Hx (or) is transitive if one of the above conditions hold. In particular, 
any of the conditions (1)-(4) implies that Hx (o-) is maximal transitive. Indeed, 
as Cl(W~}(cr)) is Lyapunov stable for X and CI(W~(cr)) is Lyapunov stable for 
- X  Lemma 2.1 implies that Hx (er) contains any transitive set T of X satisfying 

Hx(~)  N T 7~ 0. 
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A similar argument proves an analogous result replacing u by s. This completes 

the proof. [] 

Proof of Theorem A. Let X C 1 generic and a ~ Sing(X) be of co-dimension 
one. We assume dim W}(o-) = 1, otherwise we consider - X  instead of X. 
By [4] (see also the Appendix) we can further assume that CI(W}(o-)) is Lya- 
punov stable for - X  and CI(W} (a)) is Lyapunov stable for X. Since Hx (a) = 
CI(W)}(a)) N CI(W)(a)),  if Hx(a )  = {a} we obtain, by Lemma 2.3, that 

Hx(cr) is maximal transitive. So, we assume Hx(a)  \ {a} ~ 0. In this case 
we shall prove that W}(a) C Hx(a) .  Indeed, let x c Hx (a )  \ {o-}. In partic- 

ular, x c CI(W}(o-)) \ {a}. As dim(W}(a)) = 1 it follows that x c Cox(p), 
for some p ~ W}(a). Since dim W}(o-) = 1 we have, by Proposition 2.7 
and Lemma 2.9, that Cox(P) is Lyapunov stable for X. On the other hand, as 

CI(W~(a)) is Lyapunov stable for - X  and Cox(P) n CI(W}(a)) 7~ 0 (because 
x ~ cox(p) n CI(W)(a))) ,  by Lemma 2.1, we get p c CI(W}(a)). Hence 

p E W ~ ( a ) n  CI(W~(o-)) C Hx(a) ,  implying that Cox(p) C Hx(a) .  Since 
cox(p) is Lyapunov stable for X and COx(p) n CI(W~(a)) r ~3 we obtain, by 
Lemma 2.1, that a c COx(p). Using again that cox(P) is Lyapunov stable for X 
we obtain W~; (a) C cox (p) c Hx (o-). By Theorem B we conclude the proof of 
Theorem A. 

3 Applications 

In this section we shall discuss an application of Theorem B concerning the 
persistence of attractors in the C I topology. The definition of attractor we deal 
with is the following. A compact invariant set A of a vector fields X is an 
attracting set if there is an open set U (called isolating block) such that Xt (U) c 
U for every t > 0 and 

A = Ntc~Xr(U). 

An attractor is a transitive attracting set (this differs from [9] where transitive 
attracting sets were called Thorn attractors). A repeller of X is an attractor for 

- X .  An attractor (a repeller) which reduces to a periodic orbit or singularity is 
called sink (source). 

It would be interesting to characterize attractors which are "robust" under small 
perturbations. There are several definitions for robustness of attractors among 
which we can mention the following one. An attractor A of a C r vector field X 
is C ~ robust, r > 1, if there is an isolating block U of A such that, for every Y 
C ~ close to X, N t ~ Y t ( U )  is a nontrivial attractor of Y. 
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The above definition of  robust attractor is related with the notion of  partial 

hyperbolicity. Recall that a compact invariant set A of  a C 1 vector field is 

partially hyperbolic i f  it exhibits a nontrivial continuous splitting E + | E c, in- 

variant by the derivative DXt, such that E s is contracting by DXt and dominates 

E c, that is, there are constants 0 < X < 1, g > 0 such that for any t > 0, 

[I D X t / E s  II II D X  t /E  c II < y)d. We say that the central direction E c is volume 

expanding if DXt restricted to E c is volume expanding. 

In [ 13] it was proved that partial hyperbolicity with volume expanding central 

direction is a necessary condition for an attractor of  a three-dimensional C ~ 

vector field to be C l robust. However, partially hyperbolicity is not a sufficient 

condition for robustness of  attractors as an example in [14] shows. So, it would 

be interesting to find weaker notions of  robustness leading to a classification in 

terms of partial hyperbolicity. In this section we deal with the following one. 

An attracting set A of  a C r vector field X is C r-weakly robust if  there are an 

isolating block U of  A and a C"-neighborhood U of  X such that the following 

set 

{Y c U : Y has no sources in U and there is a nontrivial maximal transitive set 

T C U of  Y such that W~,(T) ~ U is residual in U} 

is residual in U.  An attractor is C"-weakly robust if it is C"-weakly robust as 

attracting set. 
It is clear that C r robust attractors are Cr-weakly robust ones. The example 

in [14] mentioned before is a non-robust attractor which is weakly robust. 

The following result gives a sufficient condition for an attracting set to be 

C l_weakly robust. 

P ropos i t ion  3.1. The condition (H) below suffices for an attracting set A of  a 
C I vectorfield X to be C 1 -weakly robust. 

(H) There are an isolating block U of  A and a C 1 neighborhhood U of  X such 
that, for every Y ~ U, Y has no sources in U and there is p E Crit(Y) (~ U 

such that W~(p) A U is dense in U. 

Proof .  Let  A be an attracting set of a C l vector field X and suppose that A 

satisfies (H). Let  Hx (p) be the homoclinic class of p if p is a periodic orbit 

of X or Hx(p)  = CI(W~(p))  N CI(W{(p))  if p ~ S ingr (A) .  Recall that the 

homoclinic class of  p ~ Per(X)  is the closure of  the set of  transverse homoclinic 
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orbits associated to p. By [4] we have Hy(p )  = Cl(W~(p)) O CI(W~(p)) for 

generic Y 6 U.  We claim that for generic Y e %/, 

Hy (p) = Cl(W; (p)). (3) 

Indeed, CI(W~(p)) C U for every Y r 21 since U is an isolating block of A. 
Thus, CI(W{(p)) ~ CI(W~(p)) by (H). So, for generic Y ~ 'U, 

Cl(W~(p) )  D Hy (p )  = Cl (W~(p) )  N Cl(W~(p)) D Cl(W~(p)) 

proving the claim. Then, by Theorem B, Hy (p) is transitive. Thus, by [4], there 
is :R C 21 residual such that T = CI(W~ (p)) is a transitive Lyapunov stable set 
of Y, VY ~ R.  

It remains to prove that W~ (T) N U is residual in U, for every Y ~ R.  For this 
we proceed as follows. As p 6 T, (H) implies that Wi~ (T) n U is dense in U. 

Since T is Lyapunov stable, there is a sequence U,, C CI(Un) C Urn-l, n > 1, of 
positively invariant open sets such that N,~ > l Un = T. We claim that W~ (U,~)) n U 
is open and dense in U. Indeed, let Br,-I = {q 6 W~(Un-I) N U; wy(q)  C 

CI(U,0}. B~,-I is open and dense in U. Clearly W~(U,~) n U D Bn. Hence 
W~(T)  = N,~W~(U,~) n U D nnB,~ is residual in U. Thus, W { ( T )  N U is 
residual in U. The proof is completed. [] 

Let us describe some examples of attracting sets where Proposition 3.1 applies. 

1. Attractors with several expanding directions ([3]). Let f*  : T k --+ T ~ 

an expanding map on T k, the k-dimensional toms. That is f*  is a C'- map 
in T k for which there is a constant )~ > 1 such that IIDf*(x)[[ > X. Denote 

D 2 the two-dimensional disk. It follows that T k x D 2 can be realized as an 

isolating block of  an hyperbolic attractor A in a way that the vertical foliation 
V = {{q} x D 2 : q e T k} is contracting. Suspending A we obtain a (k + 3)- 
dimensional C ~ vector field X '  with a hyperbolic attractor A ~. Note that the 
open set U' = T 1~ x D 2 x S 1 is an isolating block of A' with cross-section 
Z = T k • D 2. Following [3] one can modify A' around a tubular neighborhood 
in order to obtain a C ~ vector field X and an attracting set A of X having a 
hyperbolic singularity ~ with several expanding directions. Note that ~ is not 
codimension one any longer. In addition, A has ~ as a cross section with 
expanding return map F : I~0 ~ 2 ,  where ~0 = N \ C for some subset C of 
W} (~r). Note that the vertical foliation V is invariant and contracting for F.  The 
modification can be done in a way that there is a quotient map f : ~ 0 / V  --+ Z / V 
satisfying [[Df(x)[[ > X for every x 6 N o / V .  It was proved in [3] that if A is 
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the diameter of  T ~, R is the radius of injectivity of the exponential map in T k 

and the constant A satisfies 

A > 2 m a x  1 , ~  , (4) 

then the quotient map f is transitive. Consequently, A is a C" robust attractor 
of X if the above inequality holds. 

It is natural to consider the case A 6 (1, 2) in the above setting (see Remark 
3.3 below). Applying Proposition 3.1 one can prove the following fact. 

Proposi t ion 3.2. I fA  > 1, then A is a C ~ -weakly robust attracting set o f  X.  

Proof.  As k > 1 it is immediate that A satisfies (H). Then, the result follows 

from Proposition 3.1. [] 

R e m a r k  3.3. Proposition 3.2 can be seem as an indication that the fo l lowing 

result is true: Let f be a C ~ expanding map defined on M \ {c} f o r  some c c M,  

where M is a n compact  manifold. Then, there is a closed and connected set 

J C M containing c in its interior such that f o r  every x ~ J \ {c} there is a 

return time n E J77 such that the induced return map x ~ f ~  (x) is transitive. 

By an expanding map we mean that there is A > 1 such that I IDf  (x)ll > k f o r  

every x 6 M.  See Theorem 2.1 in [14] f o r  a one-dimensional version o f  this 

result. 

2. Wild strange attractors [15]. In [15] it was constructed a four-dimensional 
vector field X exhibiting an open set D and a singularity O E D such that 

(a) X is transverse to the boundary of  D and CI(Xt (D)) C D for every t > 0. 

(b) X has a cross-section I-I C D intersecting every nonsingular flowline of X 

in D. 

(c) The eigenvalues V, - A  4- ico, -ol  of D X ( O )  satisfy T, A, co, ~ 6 R, g > 0, 
0 < k < a,,co ~ 0. 

(d) X has a dominated splitting E s @ E c in D such that E s is one-dimensional. 
Moreover, X, contracts E S and expands volume along E c for t > 0. 

Althought [15] assumed that X is C ~, r > 4, such a construction can be also 
done in the C 1 topology. 
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It is clear that the above conditions (a)-(d) are open, i.e. they are satisfied for 
every Y in a C 1 neighborhood V of X (obviously replacing X by Y and O by 

O(Y)). 

For every Y 6 V we define 

A(Y) = n,>oY,(D). 

Clearly A(Y) is an attracting set of Y. Let A(Y)  be the set o f q  c D accessible 
from O (Y). Recall that q is accessible from O (Y) if for every e > 0 there is a 
(e, 1)-orbit of Y joining O(Y) to q (see [15] for details). 

Note that (a) implies that A (Y) c A (Y) for every Y E V .  By Lemma 2 in [ 15] 
condition (H) is satisfied with U = D, U = V ,  A = A (Y), and p = O (Y). And 

using (H) it was proved in [15] that A(Y)  is a chain transitive Lyapunov stable 
set such that W~ (A (Y)) A D is residual in D for every Y E V.  On the other hand, 
using directly Proposition 3.1 we conclude that A(Y) is a C 1-weakly attracting 
set for every Y c V .  Thus generic Y 6 V exhibits a transitive Lyapunov stable 
set T(Y)  C A(Y)  such that WS(T(Y))  f? D is residual in D. 

4 Appendix 

In this section we include results of [4] and [12] used in the paper. 

The next proposition is in [4] and its proof uses the same tools as Lemma 2.8. 

Proposi t ion 4.1. There exists a residual set R of X l (M) such that, for every 

Y ~ R and cr c Crit(Y), CI(W}(o-)) is Lyapunov stable for X and Cl(Wfc(r 
is Lyapunov stable for - X. 

Proof.  Let us start with some notations. Given X c X 1 (M) and p 6 Per(X) 
we denote Fix (p) the period of p. It is convenient to consider a singularity as a 
periodic orbit with period zero. 

If  T > 0 we denote 

Critv(X) = {p 6 Crit(X) : l-Ix(p) < T}. 

If  p E Crit(X) is hyperbolic, then there is a continuation p(Y)  of p for Y 
close enough to X so that p(X)  = p. 

Note that if  X E K S  1 (M) and T > 0, then 

Cri t r (X)  = {Pl (X), . . .  , pk(X)} 
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is a finite set. Moreover, 

Critr(Y) = {Pl(Y),---  , Pk(Y)} 

for every Y close enough to X. 
Clearly Proposition 4.1 is a consequence of the following lemma [5]. 

L e m m a  4.2. If X E K S  1 (M) and T > 0 then there is a neighborhood UX,T of 
X, anda residual subset RX,T of Ux,r, so that i fY  ~ R x , r  and p ~ CritT(Y) 
then CI(Wff (p)) is Lyapunov stable for Y and CI(Wi; (p)) is Lyapunov stable for 
--Y.  

Proof.  As already mentioned, Crit(Y) = {pl ( Y ) , " "  , P~(Y)} for every Y in 

some neighborhood U x , r  of X. 
For any i 6 {1, . - .  , k} we define qbi �9 Ux,:r --+ 2~ by 

�9 i ( r )  = Cl(W~ ( p i ( r ) ) .  

By the continuous dependence of unstable manifolds we have that qbi is a 

lower semi-continuous map, and so, ~i  is also upper semi-continuous for every 
vector field in some residual subset Ri  of Ux, T. Set Rx,  T = K S  1 (M) N (Ni Ri) .  

Then R x , r  is residual in Ux , r .  Let us prove that R x , r  satisfies the conclusion 

of the lemma. 
Let cr ~ Critr(Y) for some Y 6 Rx , r .  Then, o- = pi(Y) for some i, and so, 

~i(Y) = Cl(W~(~r)). 
Suppose by contradiction that CI(W~ (o-)) is not Lyapunov stable for Y. Then, 

there are sequences x,~ -+ x c Cl(W~(cr)) and t,, > 0 such that 

q = lim Yr,,(xn) r Cl(W~(cr)). (5) 
n ---~ OO 

We have either 

(a) x r Crit(Y) or 

(b) x ~ Crit(Y). 

It is enough to prove case (a). Indeed, if  x is as in (b), it can be neither an 
attracting nor a repelling singularity or periodic orbit, and so W~ (x) \ {x} ~ 0. 
As xn --~ x, there is r E W~, (x) such that xn -+ r. We claim that r E CI(W; (o-)). 
Otherwise, using the Connecting Lemma [6] we obtain Z C 1 near to Y such that 
W~(cr(Z)) N W)(x) 7~ 0, producing a saddle-connection for Z. By another 
C l perturbation Z' of Z we break this saddle-connection, to send W},(cr(Z')) 
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close to r contradicting the fact that ~i is upper semi-continuous at Y. Thus, 

r e CI(W~(a)) .  Since r r Crit(Y), we conclude as in case (a), replacing x by 
F. 

Now we prove (a). Note that we can assume that q ~ Crit(Y) for otherwise we 
replace q by some point in the stable manifold of q. Fix a small neighborhood 
U of CI(W~ (c~)) such that q r U. 

For each n denote q,~ = Yt,, (x~). As x e C1 (W~ (or)) there is p r W~ (or) \ {or } 

satisfying the following property: For every 8 > 0 there is tp > 0 and xp 6 B~ (p) 

such that Xt,,(Xp) ~ Be(x). Note that p ~ Crit(Y). 
By (5) there is tq = - tn  and Xq = Yt,,(xn) such that Xt,~(Xq) 6 B~(x). Then, 

by Lemma 2.6, we find Z C l near to Y, Z = Y outside a small compact neig- 
+ 

bourhood of YI_LLI(X), for some large L, and such that q c Oz(p).  
Since p c W~(~r(Z)) and q r U, we obtain that CI(W~(o-(Z))) is not con- 

tained in U, and thus ~;  is not upper semi-continuous at Y, a contradiction. The 
proof of Lemma 4.2 is complete. [] 

P r o o f o f L e m m a  2.9. If z c cox (z) (i.e. z is recurrent), then cox (z) = CI(O~ (z)) 
and we are done. So, we can assume that z is not recurrent. In particular, 

z r Sing(X).  
By contradiction, assume that CI(O+(z)) is Lyapunov stable and that cox(Z) 

does not. Then there are a neighborhood U of COx (z) and a sequence p,~ 6 M --+ 

p E cox(z) such that p,', = Xt,,(pn) r U for some t,, _ 0. 
Passing to a subsequence, if  necessary, the limit x -- l i m n ~  p;~ exists. 
Since CI(O+(z)) is Lyapunov stable for X, we apply Lemma 2.1 to A = 

Cl(Ox+(z)) and we obtain x ~ CI(O+(z)) \ U. 
Choose T > 0 depending on U such that Xt (z) e U for all t > T (T exists 

since COx(Z) C U). Then, x ~ Xl0,rl(z ) \ U. 
We consider a cross-section E containing z, 8 > 0 small and the flow box 

B = XI_~,r+sI(E). 

Note that W = U U B is a neighborhood of CI(O+(z)). 

If  3 and E are chosen small, then we have the following properties related to 
p , ,  t,~ and x as before: As t,~ >__ 0 is a sequence such that Xt,, (p~) -+ x, then 
there is t,'~ c [0, t,~] such that p;~ = Xt/, (P,O r B. In another words, the positive 
trajectory of  X through p,~ must enter B before it passes close to x. 

Passing to a subsequence if necessary, we can assume, as before, that x'  = 
lim,__,~ p;~ exists. Note that x'  r W. By Lemma 2.1 we obtain x'  e Cl(O+(z)).  
But this is impossible since W is a neighborhood of Cl(O+(z)).  The proof is 
complete. [] 
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