Maximal transitive sets with singularities for generic C^1 vector fields

C. M. Carballo, C. A. Morales and M. J. Pacifico*

Abstract. A transitive set Λ of a vector field X is *maximal transitive* if it contains every transitive set of X intersecting it. We shall prove that if X is C^1 generic then every singularity of X with either only one positive or only one negative eigenvalue belongs to a maximal transitive set of X. In particular, we characterize maximal transitive sets with singularities for generic C^1 vector fields on closed 3-manifolds in terms of homoclinic classes associated to a unique singularity. We apply our results to the examples introduced in [3] and [15].

Keywords: transitive sets, maximal transitive sets, transitive sets with singularities.

1 Introduction

Let *M* be a closed *n*-manifold and $\mathcal{X}^{1}(M)$ be the set of C^{1} vector fields on *M* endowed with the C^{1} topology. Given an open subset \mathcal{A} of $\mathcal{X}^{1}(M)$ a subset $\mathcal{R} \subset \mathcal{A}$ is residual if it coincides with a countable intersection of open-dense subsets of \mathcal{A} . We say that a generic vector field in \mathcal{A} satisfies a property (*P*) if there is a residual subset \mathcal{R} of \mathcal{A} such that (P) holds for every $X \in \mathcal{R}$. An invariant set of $X \in \mathcal{X}^{1}(M)$ is transitive if it is the ω -limit set of one of its points. A transitive set Λ of X is maximal transitive if it contains any transitive set T of X satisfying $T \cap \Lambda \neq \emptyset$.

Given a vector field X and a transitive set Λ of X, it is natural to ask about the existence of a maximal transitive set of X containing Λ . For example, every

Received 1 October 2000.

^{*}This work is partially supported by CNPq 001/2000, FAPERJ and PRONEX/Dynamical Systems, FINEP-CNPq.

transitive set of an Axiom A vector field is contained in a maximal transitive set. There are examples of vector fields exhibiting transitive sets which are not contained in a maximal transitive set [11].

Assume that Λ is hyperbolic and isolated. Then we have two possibilities, namely Λ has singularities or not. If Λ has no singularities and X is C^1 generic, then Λ is contained in a maximal transitive set of X [4]. If Λ has singularities, then it reduces to a singularity. We say that a singularity is *co-dimension one* if it has either only one positive or only one negative eigenvalue. In this paper we shall prove the following result.

Theorem A. A generic C^1 vector field X satisfies that every of its co-dimension one singularities is contained in a maximal transitive set of X.

Corollary 1.1. A generic three-dimensional C^1 vector field X satisfies that every of its singularities is contained in a maximal transitive set of X.

The idea of the proof of Theorem A is the following. Denote by $H_X(p)$ the homoclinic class of a hyperbolic periodic orbit p of X. Recall that $H_X(p)$ is the closure of the transversal homoclinic points associated to p. It was proved in [4] that the homoclinic class associated to a periodic orbit p of a generic C^1 vector field X is maximal transitive. This was done as follows. First it was proved that, for every periodic orbit p of a generic C^1 vector field X, the closure $Cl(W_X^u(p))$ of the unstable manifold $W_X^u(p)$ is a Lyapunov stable set of X. Similarly, for generic $C^1 X$, the closure $Cl(W_X^s(p))$ of the stable manifold $W_X^s(p)$ of p is a Lyapunov stable set of the reversed flow -X. Next, it was proved that for every periodic orbit p of X generic, the following identity holds

$$H_X(p) = \operatorname{Cl}(W_X^u(p)) \cap \operatorname{Cl}(W_X^s(p)).$$
(1)

Finally it was noted that every transitive set of X realized as an intersection of a Lyapunov stable set of X with a Lyapunov stable set of -X is a maximal transitive set.

This approach does not work to find maximal transitive sets in general, but (1) leads us to define, for any compact invariant set A of X,

$$H_X(A) = \operatorname{Cl}(W_X^u(A)) \cap \operatorname{Cl}(W_X^s(A)),$$

where

$$W_X^u(A) = \{q : \operatorname{dist}(X_t(q), A) \to 0, \ t \to -\infty\}$$

and

$$W_X^s(A) = \{q : \operatorname{dist}(X_t(q), A) \to 0, \quad t \to \infty\}.$$

Bol. Soc. Bras. Mat., Vol. 31, No. 3, 2000

We believe that if A is a transitive set of a generic C^1 vector field X, then $H_X(A)$ defined as above is a maximal transitive set of X. Below we give sufficient conditions for $H_X(A)$ to be maximal transitive when A reduces to a singularity.

Theorem B. If X is a generic C^1 vector field then the following conditions are equivalent:

- 1. $W_X^u(\sigma) \subset H_X(\sigma)$.
- 2. $\operatorname{Cl}(W_X^u(\sigma)) = H_X(\sigma)$.
- 3. $Cl(W_X^u(\sigma))$ is transitive.
- 4. $W_X^u(\sigma) \cap H_X(\sigma)$ has non empty interior in $W_X^u(\sigma)$.

Moreover, any of such a conditions implies that $H_X(\sigma)$ is a maximal transitive set. Similar result holds replacing u by s.

The above theorem implies the following characterization of maximal transitive sets with co-dimension one singularities for generic C^1 vector fields.

Corollary 1.2. If X is a generic C^{\perp} vector field, then Λ is a maximal transitive set with co-dimension one singularities of X if and only if $\Lambda = H_X(\sigma)$ for some co-dimension one singularity σ of X.

Then, we have another corollary:

Corollary 1.3. If X is a generic three-dimensional C^{\perp} vector field, then Λ is a maximal transitive set with singularities of X if and only if $\Lambda = H_X(\sigma)$ for some singularity σ of X.

The paper is organized as follows. Theorem A is proved using Theorem B. In Section 2 we shall prove both theorems. In Section 3 we give further applications of Theorem B. For the readers convinience we are including in the Appendix the results of [4] and [12] used here.

2 Proof of theorems A and B

In what follows M denotes a closed *n*-manifold, $n \ge 3$. Denote $\mathcal{X}^1(M)$ the space of C^1 vector fields endowed with the C^1 topology. We denote 2_c^M the set of compact subsets of M endowed with the Hausdorff topology. It follows that $\mathcal{X}^1(M)$ is a separable Banach space [5]. We shall say that $X \in \mathcal{X}^1(M)$ is *Kupka-Smale* if the periodic orbits and singularities of X are hyperbolic and the

corresponding invariant manifolds intersect transversaly. The set of C^1 Kupka-Smale vector fields is denoted by $\mathcal{KS}^1(M)$. Recall that -X denotes the time reversed vector field associated to $X \in \mathcal{X}^1(M)$.

We denote X_t the flow of $X \in X^1(M)$, $t \in \mathbb{R}$. If $A \subset M$, $R \subset \mathbb{R}$ and $\epsilon > 0$ we denote Cl(A) the closure of A, $X_R(A) = \{X_r(a) : (r, a) \in R \times A\}$, and $B_{\epsilon}(A)$ the ϵ -ball centered at A. Set $\mathcal{O}_X(p) = X_{\mathbb{R}}(p)$ and $\mathcal{O}_X^+(p) = X_{[0,\infty)}(p)$ for any $p \in M$. The set of periodic orbits of X is denoted by Per(X), Sing(X) denotes the set of singularities of X, and Crit(X) = Per(X) \cup Sing(X).

If Y is a metric space, we say $\mathcal{R} \subset Y$ is *residual* if \mathcal{R} is a countable intersection of open-dense subsets of Y. For example, $\mathcal{KS}^1(M)$ is residual in $\mathcal{X}^1(M)$. Clearly a countable intersection of residual subsets is residual.

A set-valued map

$$\Phi: \mathcal{Y} \to 2_c^M$$

is *lower semi-continuous* at $Y_0 \in \mathcal{R}$ if for every open set $U \subset M$ satisfying $U \cap \Phi(Y_0) \neq \emptyset$, there is a neighborhood \mathcal{U}_0 of Y_0 such that $U \cap \Phi(Y) \neq \emptyset$ for every $Y \in \mathcal{U}_0$. Similarly, Φ is *upper semi-continuous* at $Y_1 \in Y$ if for every compact subset $K \subset M$ satisfying $K \cap \Phi(Y_1) = \emptyset$ there is a neighborhood \mathcal{U}_1 of Y_1 such that $K \cap \Phi(Y) = \emptyset$ for every $Y \in \mathcal{U}_1$. We say that Φ is lower semi-continuous if it does for every $Y_0 \in Y$. A well known result [10] asserts that for suitable Y, if Φ is lower semi-continuous then there is a residual subset \mathcal{R} of Y such that Φ is also upper semi-continuous at every $Y_1 \in \mathcal{R}$.

A compact set $\Lambda \subset M$ is *Lyapunov stable* for X if for every neighborhood U of Λ there is a neighborhood $V \subset U$ of Λ such that $X_t(V) \subset U$ for every $t \geq 0$. The following criterion for Lyapunov stability is well known [2].

Lemma 2.1. A compact set Λ is Lyapunov stable for X if it satisfies the following property

(P) If $x_n \in M$ is a sequence converging to $x \in \Lambda$ and $t_n \ge 0$, then any limit point of the sequence $X_{t_n}(x_n)$ is in Λ .

Lemma 2.2. Let Λ be a non empty compact set, $\Lambda = \Lambda^+ \cap \Lambda^-$, where Λ^+ is Lyapunov stable for X and Λ^- is Lyapunov stable for -X. If Λ^+ is transitive, then $\Lambda = \Lambda^+$. Similar property holds replacing + by -.

Proof. If Λ^+ is transitive and $\Lambda^+ \cap \Lambda^- \neq \emptyset$ with Λ^- Lyapunov stable for -X, using (P), we get that $\Lambda^+ \subset \Lambda^-$. So, $\Lambda^+ \cap \Lambda^- = \Lambda^+$ and we conclude $\Lambda = \Lambda^+$.

The following lemma is a consequence of Lemma 2.1 and its proof is left for the reader.

Lemma 2.3. Let Λ be non empty a compact set, $\Lambda = \Lambda^+ \cap \Lambda^-$, where Λ^+ is Lyapunov stable for X and Λ^- is Lyapunov stable for -X. If Λ is transitive then it is maximal transitive.

Below we state a simple criterion for transitiveness using Lyapunov stability.

Lemma 2.4. Let Λ be a transitive set of a vector field X. Suppose that there is $q \in \operatorname{Cl}(W_X^u(\Lambda)) \cap \operatorname{Cl}(W_X^s(\Lambda))$ such that $\omega_X(q)$ is Lyapunov stable for X. Then $\operatorname{Cl}(W_X^u(\Lambda)) = \omega_X(q)$. In particular, $\operatorname{Cl}(W_X^u(\Lambda))$ is a transitive set.

Proof. Let Λ , q and X be as in the statement. Clearly, $\omega_X(q) \cap \operatorname{Cl}(W_X^s(\Lambda)) \neq \emptyset$. Let x be a point in this intersection. It can be approximated by a sequence x_n of points in $W^s(\Lambda)$. Then, we can choose a sequence t_n of positive times such that dist $(X_{t_n}(x_n), \Lambda)$ goes to zero as $n \to \infty$. The sequence $y_n = X_{t_n}(x_n)$ has a subsequence that converges to a point y in Λ . As $\omega_X(q)$ is Lyapunov stable for X, we can apply Lemma 2.1 to show that y belongs to $\omega_X(q)$. Hence, $\Lambda \cap \omega_X(q) \neq \emptyset$. Using the transitivity of Λ we apply Lemma 2.1 again to get that $\Lambda \subseteq \omega_X(q)$. The Lyapunov stability of $\omega_X(q)$ also implies that the whole $W_X^u(\Lambda) \subseteq \omega_X(q)$. Then, since $\omega_X(q)$ is closed, the proof follows.

Remark 2.5. By [4] (see also the Appendix), under the hypothesis of Lemma 2.4, we obtain that for generic X, $Cl(W_X^u(\Lambda))$ is a Lyapunov stable set of X. The following lemma is in [1], [7].

Lemma 2.6. Let $X \in \mathcal{X}^1(M)$ and $x \in M \setminus (\operatorname{Per}(X) \cup \operatorname{Sing}(X))$. Suppose that for every $\delta > 0$ there are $x_p \in B_{\delta}(p)$, $x_q \in B_{\delta}(q)$, $t_p \ge 0$ and $t_q \le 0$ such that $X_{t_p}(x_p) \in B_{\delta}(x)$ and $X_{t_q}(x_q) \in B_{\delta}(x)$. Then, for any C^1 neighborhood \mathcal{U} of Xin $\mathcal{X}^1(M)$, there is $L = L(\mathcal{U}) > 0$ so that for every $\epsilon > 0$ there exists $Y \in \mathcal{U}$ such that:

1.
$$Y = X$$
 outside $B_{\epsilon}(X_{[0,L]}(p)) \cup B_{\epsilon}(X_{[-L,L]}(x)) \cup B_{\epsilon}(X_{[-L,0]}(q))$ and
2. $q \in \mathcal{O}_{Y}^{+}(p)$.

This lemma is used to prove the following proposition

Proposition 2.7. There is a residual subset \mathcal{R} of $\mathcal{X}^1(M)$ such that if $X \in \mathcal{R}$ and $\sigma \in \text{Sing}(X)$, then the set

$$\{p \in W_X^u(\sigma) : \operatorname{Cl}(\mathcal{O}_X^+(p)) \text{ is Lyapunov stable for } -X\}$$

is residual in $W_X^u(\sigma)$.

Let us introduce some useful notation before the proof of this proposition. Given $X \in \mathcal{KS}^1(M)$, then $\operatorname{Sing}(X)$ is a finite set and it is denoted by

$$\operatorname{Sing}(X) = \{\sigma_1(X), \cdots, \sigma_k(X)\}.$$

Denoting $\sigma_i(Y)$ the continuation of $\sigma_i(X)$ for Y close to X one has

$$\operatorname{Sing}(Y) = \{\sigma_1(Y), \cdots, \sigma_k(Y)\}.$$
(2)

for every Y close to X.

Let σ be a hyperbolic singularity of a vector field X. A *fundamental domain* of $W_X^u(\sigma)$ is a cross-section of $X/W_X^u(\sigma) - \{\sigma\}$ intersecting every orbit of $X/W_X^u(\sigma)$ (see [5]).

It is well known that the proof of Proposition 2.7 follows from the local result below [5].

Lemma 2.8. For every $X \in \mathcal{KS}^1(M)$ there is a neighborhood \mathcal{U}_X of X in $\mathcal{X}^1(M)$ and a residual subset \mathcal{R}_X of \mathcal{U}_X such that if $Y \in \mathcal{R}_X$, $\sigma \in \text{Sing}(Y)$ and $D^u_Y(\sigma)$ is a fundamental domain of $W^u_Y(\sigma)$, then the set

$$\{p \in D_Y^u(\sigma) : Cl(\mathcal{O}_Y^+(p)) \text{ is Lyapunov stable for } Y\}$$

is residual in $D_Y^u(\sigma)$.

Proof. Let *X* be a Kupka-Smale C^1 vector field. As mentioned before it follows that there is a neighborhood \mathcal{U}_X of *X* such that $\operatorname{Sing}(Y)$ satisfies (2) for every $Y \in \mathcal{U}_X$. For simplicity we denote $\dim(W_Y^u(\sigma_i(Y))) = u_i$ for $1 \le i \le k$.

Let $D_X^u(\sigma_i(X))$ be a fundamental domain of $W_X^u(\sigma_i(X))$. To simplify notation we shall assume that $D_X^u(\sigma_i(X))$ is the u_i -sphere S^{u_i} .

Let Σ_i be a cross-section of X such that $S^{u_i} = W^u_X(\sigma_i(X)) \cap \Sigma_i$. Shrinking \mathcal{U}_X , if necessary, we can assume that

$$D_Y^u(\sigma_i(Y)) = W_Y^u(\sigma_i(Y)) \cap \Sigma_i$$

is a fundamental domain of $W_Y^u(\sigma_i(Y))$ for every $Y \in U_X$. It is suffices to prove the result for this particular fundamental domain. By the Stable Manifold Theory [8] it follows that there is a C^1 map

$$\Gamma_i: \mathcal{U}_X \times S^{u_i} \to \Sigma_i$$

such that

$$D_Y^u(\sigma_i(Y)) = \operatorname{Graph}(\Gamma_i(Y, \cdot)) = \{\Gamma_i(Y, y) : y \in S^{u_i}\}.$$

Note that the natural projection $\Pi_i : D_Y^u(\sigma_i(Y) \to S^{u_i}, \Pi_i(\Gamma_i(Y, y)) = y$, is a C^1 diffeomorphism.

We define the set valued map

$$\Phi_i: \mathcal{U}_X \times S^{u_i} \to 2^M_c$$

by

$$\Phi_i(Y, y) = \operatorname{Cl}(\mathcal{O}_Y^+(\Gamma_i(Y, y))).$$

The Tubular Flow Box Theorem [5] and the continuity of Γ_i imply that Φ_i is lower semi-continuous. Denote \mathcal{R}'_i the residual subset of $\mathcal{U}_X \times S^{u_i}$ such that Φ_i is upper semi-continuous in \mathcal{R}'_i .

Define, for every $Y \in U_X$, the set

$$\mathcal{R}'_i(Y) = \{ y \in S^{u_i} : (Y, y) \in \mathcal{R}'_i \}.$$

It follows that the set

$$\mathcal{V}_i = \{Y : \mathcal{R}'_i(Y) \text{ is residual in } S^{u_i}\}$$

is residual in U_X .

Define

$$\mathcal{R}_X = \mathcal{KS}^1(M) \cap \left(\bigcap_{i=1}^k \mathcal{V}_i \right).$$

Clearly \mathcal{R}_X is a residual subset of \mathcal{U}_X . If $Y \in \mathcal{R}_X$ we define

$$G_i(Y) = \{ \Gamma_i(Y, y) : y \in \mathcal{R}'_i(Y) \}.$$

It follows that $G_i(Y)$ is residual in $D_Y^u(\sigma_i(Y)), \forall i = 1, \dots, k$.

The proof of the proposition is then reduced to prove that $\operatorname{Cl}(\mathcal{O}_Y^+(p))$ is Lyapunov stable for $Y, \forall (i, Y, p) \in \{1, \dots, k\} \times \mathcal{R}_X \times G_i(Y)$. For this we assume by contradiction that there is $(i, Y, p) \in \{i, \dots, k\} \times \mathcal{R}_X \times G_i(Y)$ such that $\operatorname{Cl}(\mathcal{O}_Y^+(p))$ is not Lyapunov stable for Y. Note that there is $y \in \mathcal{R}'_i(Y)$ such that that $\Phi_i(Y, y) = \operatorname{Cl}(\mathcal{O}_Y^+(p))$. In particular $(Y, y) \in \mathcal{R}'_i$, i.e. Φ_i is upper semicontinuous at (Y, y).

By Lemma 2.1 there are sequences $x_n \to x \in \operatorname{Cl}(\mathcal{O}_Y^+(p))$ and $t_n > 0$ such that $X_{t_n}(x_n) \to q \notin \operatorname{Cl}(\mathcal{O}_Y^+(p))$. Observe that $p \notin \operatorname{Crit}(X)$. We can assume that $x \notin \operatorname{Crit}(X)$ for, otherwise, we could replace x by some point in $W_Y^u(x) \setminus \{x\}$ (recall that Y is Kupka-Smale). Similarly we can assume that $q \notin \operatorname{Crit}(Y)$ for, otherwise, we could replace q by some point in $W_Y^s(q) \setminus \{q\}$.

Let *U* be a neighborhood of $\operatorname{Cl}(\mathcal{O}_Y^+(p))$ satisfying $q \notin U$. In particular, $K = M \setminus U$ is compact, $\Phi_i(Y, y) \cap K = \emptyset$ and $q \in K$. As $x \in \operatorname{Cl}(\mathcal{O}_Y^+(p))$, there is a sequence $s_n \geq 0$ such that $X_{s_n}(p) \to x$. Hence, for every $\delta > 0$ there are $x_p = p \in B_{\delta}(p), x_q = X_{t_n}(x_n) \in B_{\delta}(x), t_p = s_n \geq 0$ and $t_q = -t_n \leq 0$ such that $X_{t_p}(x_p) \in B_{\delta}(x)$ and $X_{t_q}(x_q) \in B_{\delta}(x)$. Then, by Lemma 2.6 there is $Z \in X^1(M)$ arbitrarily C^1 close to Y such that $q \in \operatorname{Cl}(\mathcal{O}_Z^+(p))$. This last fact contradicts the upper semi-continuity of Φ_i at (Y, y) for $q \in \Phi_i(Z, p) \cap K \neq \emptyset$. This contradiction concludes the proof. \Box

The following lemma is not difficult, it is in [12], and it is proved in the Appendix for completeness.

Lemma 2.9. If $X \in \mathcal{X}^1(M)$ and $p \in M$, then $\operatorname{Cl}(\mathcal{O}_X^+(p))$ is Lyapunov stable for X if and only if $\omega_X(p)$ does.

Proof of Theorem B. Let X be a generic C^1 vector field and $\sigma \in \text{Sing}(X)$. By [4] we can assume that $\text{Cl}(W_X^u(\sigma))$ is Lyapunov stable for X and $\text{Cl}(W_X^s(\sigma))$ is Lyapunov stable for -X. Recall that $H_X(\sigma) = \text{Cl}(W_X^u(\sigma)) \cap \text{Cl}(W_X^s(\sigma))$ by definition.

Clearly (1) implies (2) since $H_X(\sigma)$ is both closed and contained in $\operatorname{Cl}(W_X^u(\sigma))$. Now assume that (2) holds. By Proposition 2.7 there is $p \in \operatorname{Cl}(W_X^u(\sigma)) = H_X(\sigma) = \operatorname{Cl}(W_X^u(\sigma)) \cap \operatorname{Cl}(W_X^s(\sigma))$ such that $\operatorname{Cl}(\mathcal{O}_X^+(p))$ is Lyapunov stable for X. Then, by Lemma 2.4 and Lemma 2.9 applied to $\Lambda = \{\sigma\}$, we obtain that $\operatorname{Cl}(W_X^u(\sigma))$ is transitive, proving (3).

If (3) holds it follows that $H_X(\sigma) = \operatorname{Cl}(W_X^u(\sigma))$ by Lemma 2.2. Thus, $W_X^u(\sigma) \cap H_X(\sigma) = W_X^u(\sigma)$, proving (4).

If (4) holds there is $p \in H_X(\sigma)$ such that $\operatorname{Cl}(\mathcal{O}_X^+(p))$ is Lyapunov stable for X by Proposition 2.7. Then $\operatorname{Cl}(W_X^u(\sigma))$ is transitive by Lemma 2.4 and Lemma 2.9. By Lemma 2.2 we conclude that $H_X(\sigma) = \operatorname{Cl}(W_X^u(\sigma))$, proving (1).

Clearly, $H_X(\sigma)$ is transitive if one of the above conditions hold. In particular, any of the conditions (1)-(4) implies that $H_X(\sigma)$ is maximal transitive. Indeed, as $\operatorname{Cl}(W_X^u(\sigma))$ is Lyapunov stable for X and $\operatorname{Cl}(W_X^s(\sigma))$ is Lyapunov stable for -X Lemma 2.1 implies that $H_X(\sigma)$ contains any transitive set T of X satisfying $H_X(\sigma) \cap T \neq \emptyset$. A similar argument proves an analogous result replacing u by s. This completes the proof.

Proof of Theorem A. Let X C^1 generic and $\sigma \in \text{Sing}(X)$ be of co-dimension one. We assume dim $W_X^u(\sigma) = 1$, otherwise we consider -X instead of X. By [4] (see also the Appendix) we can further assume that $Cl(W_X^s(\sigma))$ is Lyapunov stable for -X and $Cl(W_X^u(\sigma))$ is Lyapunov stable for X. Since $H_X(\sigma) =$ $\operatorname{Cl}(W_X^s(\sigma)) \cap \operatorname{Cl}(W_X^s(\sigma))$, if $H_X(\sigma) = \{\sigma\}$ we obtain, by Lemma 2.3, that $H_X(\sigma)$ is maximal transitive. So, we assume $H_X(\sigma) \setminus \{\sigma\} \neq \emptyset$. In this case we shall prove that $W_X^u(\sigma) \subset H_X(\sigma)$. Indeed, let $x \in H_X(\sigma) \setminus \{\sigma\}$. In particular, $x \in \operatorname{Cl}(W_X^u(\sigma)) \setminus \{\sigma\}$. As dim $(W_X^u(\sigma)) = 1$ it follows that $x \in \omega_X(p)$, for some $p \in W_X^u(\sigma)$. Since dim $W_X^u(\sigma) = 1$ we have, by Proposition 2.7 and Lemma 2.9, that $\omega_X(p)$ is Lyapunov stable for X. On the other hand, as $\operatorname{Cl}(W_X^s(\sigma))$ is Lyapunov stable for -X and $\omega_X(p) \cap \operatorname{Cl}(W_X^s(\sigma)) \neq \emptyset$ (because $x \in \omega_X(p) \cap \operatorname{Cl}(W^s_X(\sigma)))$, by Lemma 2.1, we get $p \in \operatorname{Cl}(W^s_X(\sigma))$. Hence $p \in W^u_X(\sigma) \cap \operatorname{Cl}(W^s_X(\sigma)) \subset H_X(\sigma)$, implying that $\omega_X(p) \subset H_X(\sigma)$. Since $\omega_X(p)$ is Lyapunov stable for X and $\omega_X(p) \cap \operatorname{Cl}(W^s_X(\sigma)) \neq \emptyset$ we obtain, by Lemma 2.1, that $\sigma \in \omega_X(p)$. Using again that $\omega_X(p)$ is Lyapunov stable for X we obtain $W_X^u(\sigma) \subset \omega_X(p) \subset H_X(\sigma)$. By Theorem B we conclude the proof of Theorem A.

3 Applications

In this section we shall discuss an application of Theorem B concerning the persistence of attractors in the C^1 topology. The definition of attractor we deal with is the following. A compact invariant set Λ of a vector fields X is an *attracting set* if there is an open set U (called isolating block) such that $X_t(U) \subset U$ for every t > 0 and

$$\Lambda = \cap_{t \in \mathbb{R}} X_t(U).$$

An *attractor* is a transitive attracting set (this differs from [9] where transitive attracting sets were called Thom attractors). A repeller of X is an attractor for -X. An attractor (a repeller) which reduces to a periodic orbit or singularity is called *sink* (*source*).

It would be interesting to characterize attractors which are "robust" under small perturbations. There are several definitions for robustness of attractors among which we can mention the following one. An attractor Λ of a C^r vector field X is C^r robust, $r \ge 1$, if there is an isolating block U of Λ such that, for every Y C^r close to X, $\bigcap_{t \in \mathbb{R}} Y_t(U)$ is a nontrivial attractor of Y.

The above definition of robust attractor is related with the notion of partial hyperbolicity. Recall that a compact invariant set Λ of a C^1 vector field is *partially hyperbolic* if it exhibits a nontrivial continuous splitting $E^s \oplus E^c$, invariant by the derivative DX_t , such that E^s is contracting by DX_t and dominates E^c , that is, there are constants $0 < \lambda < 1$, $\gamma > 0$ such that for any t > 0, $\|DX_t/E^s\| \|DX_{-t}/E^c\| < \gamma \lambda^t$. We say that the central direction E^c is volume expanding if DX_t restricted to E^c is volume expanding.

In [13] it was proved that partial hyperbolicity with volume expanding central direction is a necessary condition for an attractor of a three-dimensional C^1 vector field to be C^1 robust. However, partially hyperbolicity is not a sufficient condition for robustness of attractors as an example in [14] shows. So, it would be interesting to find weaker notions of robustness leading to a classification in terms of partial hyperbolicity. In this section we deal with the following one. An attracting set Λ of a C^r vector field X is C^r -weakly robust if there are an isolating block U of Λ and a C^r -neighborhood U of X such that the following set

 $\{Y \in \mathcal{U} : Y \text{ has no sources in } U \text{ and there is a nontrivial maximal transitive set} T \subset U \text{ of } Y \text{ such that } W_y^s(T) \cap U \text{ is residual in } U\}$

is residual in U. An attractor is C^r -weakly robust if it is C^r -weakly robust as attracting set.

It is clear that C^r robust attractors are C^r -weakly robust ones. The example in [14] mentioned before is a non-robust attractor which is weakly robust.

The following result gives a sufficient condition for an attracting set to be C^1 -weakly robust.

Proposition 3.1. The condition (H) below suffices for an attracting set Λ of a C^1 vector field X to be C^1 -weakly robust.

(H) There are an isolating block U of Λ and a C¹ neighborhhood U of X such that, for every $Y \in U$, Y has no sources in U and there is $p \in Crit(Y) \cap U$ such that $W_{Y}^{s}(p) \cap U$ is dense in U.

Proof. Let Λ be an attracting set of a C^1 vector field X and suppose that Λ satisfies (H). Let $H_X(p)$ be the homoclinic class of p if p is a periodic orbit of X or $H_X(p) = \operatorname{Cl}(W_Y^u(p)) \cap \operatorname{Cl}(W_Y^s(p))$ if $p \in \operatorname{Sing}_Y(\Lambda)$. Recall that the homoclinic class of $p \in \operatorname{Per}(X)$ is the closure of the set of transverse homoclinic

orbits associated to p. By [4] we have $H_Y(p) = \operatorname{Cl}(W_Y^u(p)) \cap \operatorname{Cl}(W_Y^s(p))$ for generic $Y \in \mathcal{U}$. We claim that for generic $Y \in \mathcal{U}$,

$$H_Y(p) = \operatorname{Cl}(W_Y^u(p)). \tag{3}$$

Indeed, $\operatorname{Cl}(W_Y^u(p)) \subset U$ for every $Y \in \mathcal{U}$ since U is an isolating block of Λ . Thus, $\operatorname{Cl}(W_Y^u(p)) \supset \operatorname{Cl}(W_Y^u(p))$ by (H). So, for generic $Y \in \mathcal{U}$,

$$\operatorname{Cl}(W_Y^u(p)) \supset H_Y(p) = \operatorname{Cl}(W_Y^u(p)) \cap \operatorname{Cl}(W_Y^s(p)) \supset \operatorname{Cl}(W_Y^u(p))$$

proving the claim. Then, by Theorem B, $H_Y(p)$ is transitive. Thus, by [4], there is $\mathcal{R} \subset \mathcal{U}$ residual such that $T = \operatorname{Cl}(W_Y^u(p))$ is a transitive Lyapunov stable set of $Y, \forall Y \in \mathcal{R}$.

It remains to prove that $W_Y^s(T) \cap U$ is residual in U, for every $Y \in \mathcal{R}$. For this we proceed as follows. As $p \in T$, (H) implies that $W_Y^s(T) \cap U$ is dense in U. Since T is Lyapunov stable, there is a sequence $U_n \subset \operatorname{Cl}(U_n) \subset U_{n-1}, n \ge 1$, of positively invariant open sets such that $\bigcap_{n\ge 1} U_n = T$. We claim that $W_Y^s(U_n)) \cap U$ is open and dense in U. Indeed, let $B_{n-1} = \{q \in W_Y^s(U_{n-1}) \cap U; \omega_Y(q) \subset \operatorname{Cl}(U_n)\}$. B_{n-1} is open and dense in U. Clearly $W_Y^s(U_n) \cap U \supset B_n$. Hence $W_Y^s(T) = \bigcap_n W_Y^s(U_n) \cap U \supset \bigcap_n B_n$ is residual in U. Thus, $W_Y^s(T) \cap U$ is residual in U. The proof is completed. \Box

Let us describe some examples of attracting sets where Proposition 3.1 applies.

1. Attractors with several expanding directions ([3]). Let $f^*: T^k \to T^k$ an expanding map on T^k , the k-dimensional torus. That is f^* is a C^r map in T^k for which there is a constant $\lambda > 1$ such that $\|Df^*(x)\| \ge \lambda$. Denote D^2 the two-dimensional disk. It follows that $T^k \times D^2$ can be realized as an isolating block of an hyperbolic attractor A in a way that the vertical foliation $V = \{\{q\} \times D^2 : q \in T^k\}$ is contracting. Suspending A we obtain a (k + 3)dimensional C^r vector field X^r with a hyperbolic attractor Λ^r . Note that the open set $U' = T^k \times D^2 \times S^1$ is an isolating block of Λ' with cross-section $\Sigma = T^k \times D^2$. Following [3] one can modify Λ' around a tubular neighborhood in order to obtain a C^r vector field X and an attracting set A of X having a hyperbolic singularity σ with several expanding directions. Note that σ is not codimension one any longer. In addition, Λ has Σ as a cross section with expanding return map $F : \Sigma_0 \to \Sigma$, where $\Sigma_0 = \Sigma \setminus C$ for some subset C of $W_X^s(\sigma)$. Note that the vertical foliation V is invariant and contracting for F. The modification can be done in a way that there is a quotient map $f: \Sigma_0/V \to \Sigma/V$ satisfying $||Df(x)|| \ge \lambda$ for every $x \in \Sigma_0/V$. It was proved in [3] that if Δ is the diameter of T^k , R is the radius of injectivity of the exponential map in T^k and the constant λ satisfies

$$\lambda > 2 \max\left\{1, \frac{\Delta}{R}\right\},\tag{4}$$

then the quotient map f is transitive. Consequently, Λ is a C^r robust attractor of X if the above inequality holds.

It is natural to consider the case $\lambda \in (1, 2)$ in the above setting (see Remark 3.3 below). Applying Proposition 3.1 one can prove the following fact.

Proposition 3.2. If $\lambda > 1$, then Λ is a C^1 -weakly robust attracting set of X.

Proof. As $\lambda > 1$ it is immediate that Λ satisfies (H). Then, the result follows from Proposition 3.1.

Remark 3.3. Proposition 3.2 can be seem as an indication that the following result is true: Let f be a C^1 expanding map defined on $M \setminus \{c\}$ for some $c \in M$, where M is a n compact manifold. Then, there is a closed and connected set $J \subset M$ containing c in its interior such that for every $x \in J \setminus \{c\}$ there is a return time $n \in \mathbb{N}$ such that the induced return map $x \mapsto f^n(x)$ is transitive. By an expanding map we mean that there is $\lambda > 1$ such that $||Df(x)|| > \lambda$ for every $x \in M$. See Theorem 2.1 in [14] for a one-dimensional version of this result.

2. Wild strange attractors [15]. In [15] it was constructed a four-dimensional vector field X exhibiting an open set D and a singularity $O \in D$ such that

- (a) X is transverse to the boundary of D and $Cl(X_t(D)) \subset D$ for every t > 0.
- (b) X has a cross-section Π ⊂ D intersecting every nonsingular flowline of X in D.
- (c) The eigenvalues $\gamma, -\lambda \pm i\omega, -\alpha$ of DX(O) satisfy $\gamma, \lambda, \omega, \alpha \in \mathbb{R}, \gamma > 0$, $0 < \lambda < \alpha, \omega \neq 0$.
- (d) X has a dominated splitting $E^s \oplus E^c$ in D such that E^s is one-dimensional. Moreover, X_t contracts E^s and expands volume along E^c for t > 0.

Althought [15] assumed that X is C^r , $r \ge 4$, such a construction can be also done in the C^1 topology.

It is clear that the above conditions (a)-(d) are open, i.e. they are satisfied for every Y in a C^1 neighborhood \mathcal{V} of X (obviously replacing X by Y and O by O(Y)).

For every $Y \in \mathcal{V}$ we define

$$\Lambda(Y) = \cap_{t>0} Y_t(D).$$

Clearly $\Lambda(Y)$ is an attracting set of Y. Let $\Lambda(Y)$ be the set of $q \in D$ accessible from O(Y). Recall that q is accessible from O(Y) if for every $\epsilon > 0$ there is a $(\epsilon, 1)$ -orbit of Y joining O(Y) to q (see [15] for details).

Note that (a) implies that $A(Y) \subset \Lambda(Y)$ for every $Y \in \mathcal{V}$. By Lemma 2 in [15] condition (H) is satisfied with U = D, $\mathcal{U} = \mathcal{V}$, $\Lambda = \Lambda(Y)$, and p = O(Y). And using (H) it was proved in [15] that A(Y) is a *chain transitive* Lyapunov stable set such that $W_Y^s(A(Y)) \cap D$ is residual in D for every $Y \in \mathcal{V}$. On the other hand, using directly Proposition 3.1 we conclude that $\Lambda(Y)$ is a C^1 -weakly attracting set for every $Y \in \mathcal{V}$. Thus generic $Y \in \mathcal{V}$ exhibits a *transitive* Lyapunov stable set $T(Y) \subset A(Y)$ such that $W^s(T(Y)) \cap D$ is residual in D.

4 Appendix

In this section we include results of [4] and [12] used in the paper.

The next proposition is in [4] and its proof uses the same tools as Lemma 2.8.

Proposition 4.1. There exists a residual set \mathcal{R} of $\mathcal{X}^{1}(M)$ such that, for every $Y \in \mathcal{R}$ and $\sigma \in \operatorname{Crit}(Y)$, $\operatorname{Cl}(W_{X}^{u}(\sigma))$ is Lyapunov stable for X and $\operatorname{Cl}(W_{X}^{s}(\sigma))$ is Lyapunov stable for -X.

Proof. Let us start with some notations. Given $X \in \mathcal{X}^1(M)$ and $p \in Per(X)$ we denote $\prod_X(p)$ the period of p. It is convenient to consider a singularity as a periodic orbit with period zero.

If T > 0 we denote

$$\operatorname{Crit}_{T}(X) = \{ p \in \operatorname{Crit}(X) : \Pi_{X}(p) < T \}.$$

If $p \in Crit(X)$ is hyperbolic, then there is a continuation p(Y) of p for Y close enough to X so that p(X) = p.

Note that if $X \in \mathcal{KS}^1(M)$ and T > 0, then

$$\operatorname{Crit}_T(X) = \{p_1(X), \cdots, p_k(X)\}$$

Bol. Soc. Bras. Mat., Vol. 31, No. 3, 2000

is a finite set. Moreover,

$$\operatorname{Crit}_T(Y) = \{p_1(Y), \cdots, p_k(Y)\}$$

for every *Y* close enough to *X*.

Clearly Proposition 4.1 is a consequence of the following lemma [5].

Lemma 4.2. If $X \in \mathcal{KS}^1(M)$ and T > 0 then there is a neighborhood $\mathcal{U}_{X,T}$ of X, and a residual subset $\mathcal{R}_{X,T}$ of $\mathcal{U}_{X,T}$, so that if $Y \in \mathcal{R}_{X,T}$ and $p \in \operatorname{Crit}_T(Y)$ then $\operatorname{Cl}(W_Y^u(p))$ is Lyapunov stable for Y and $\operatorname{Cl}(W_Y^s(p))$ is Lyapunov stable for -Y.

Proof. As already mentioned, $Crit(Y) = \{p_1(Y), \dots, p_k(Y)\}$ for every Y in some neighborhood $\mathcal{U}_{X,T}$ of X.

For any $i \in \{1, \dots, k\}$ we define $\Phi_i : \mathcal{U}_{X,T} \to 2_c^M$ by

$$\Phi_i(Y) = \operatorname{Cl}(W_Y^u(p_i(Y))).$$

By the continuous dependence of unstable manifolds we have that Φ_i is a lower semi-continuous map, and so, Φ_i is also upper semi-continuous for every vector field in some residual subset \mathcal{R}_i of $\mathcal{U}_{X,T}$. Set $\mathcal{R}_{X,T} = \mathcal{KS}^1(M) \cap (\cap_i \mathcal{R}_i)$. Then $\mathcal{R}_{X,T}$ is residual in $\mathcal{U}_{X,T}$. Let us prove that $\mathcal{R}_{X,T}$ satisfies the conclusion of the lemma.

Let $\sigma \in \operatorname{Crit}_T(Y)$ for some $Y \in \mathcal{R}_{X,T}$. Then, $\sigma = p_i(Y)$ for some *i*, and so, $\Phi_i(Y) = \operatorname{Cl}(W_Y^u(\sigma)).$

Suppose by contradiction that $Cl(W_Y^u(\sigma))$ is not Lyapunov stable for Y. Then, there are sequences $x_n \to x \in Cl(W_Y^u(\sigma))$ and $t_n \ge 0$ such that

$$q = \lim_{n \to \infty} Y_{t_n}(x_n) \notin \operatorname{Cl}(W_Y^u(\sigma)).$$
(5)

We have either

- (a) $x \notin \operatorname{Crit}(Y)$ or
- (b) $x \in \operatorname{Crit}(Y)$.

It is enough to prove case (a). Indeed, if x is as in (b), it can be neither an attracting nor a repelling singularity or periodic orbit, and so $W_Y^u(x) \setminus \{x\} \neq \emptyset$. As $x_n \to x$, there is $r \in W_Y^u(x)$ such that $x_n \to r$. We claim that $r \in Cl(W_Y^u(\sigma))$. Otherwise, using the Connecting Lemma [6] we obtain $Z C^1$ near to Y such that $W_Z^u(\sigma(Z)) \cap W_Z^s(x) \neq \emptyset$, producing a saddle-connection for Z. By another C^1 perturbation Z' of Z we break this saddle-connection, to send $W_{Z'}^u(\sigma(Z'))$ close to r contradicting the fact that Φ_i is upper semi-continuous at Y. Thus, $r \in Cl(W_Y^u(\sigma))$. Since $r \notin Crit(Y)$, we conclude as in case (a), replacing x by r.

Now we prove (a). Note that we can assume that $q \notin \operatorname{Crit}(Y)$ for otherwise we replace q by some point in the stable manifold of q. Fix a small neighborhood U of $\operatorname{Cl}(W_Y^u(\sigma))$ such that $q \notin U$.

For each *n* denote $q_n = Y_{t_n}(x_n)$. As $x \in Cl(W_Y^u(\sigma))$ there is $p \in W_Y^u(\sigma) \setminus \{\sigma\}$ satisfying the following property: For every $\delta > 0$ there is $t_p \ge 0$ and $x_p \in B_{\delta}(p)$ such that $X_{t_p}(x_p) \in B_{\delta}(x)$. Note that $p \notin Crit(Y)$.

By (5) there is $t_q = -t_n$ and $x_q = Y_{t_n}(x_n)$ such that $X_{t_q}(x_q) \in B_{\delta}(x)$. Then, by Lemma 2.6, we find Z C¹ near to Y, Z = Y outside a small compact neigbourhood of $Y_{1-L,L}(x)$, for some large L, and such that $q \in \mathcal{O}_Z^+(p)$.

Since $p \in W_Z^u(\sigma(Z))$ and $q \notin U$, we obtain that $\operatorname{Cl}(W_Z^u(\sigma(Z)))$ is not contained in U, and thus Φ_i is not upper semi-continuous at Y, a contradiction. The proof of Lemma 4.2 is complete.

Proof of Lemma 2.9. If $z \in \omega_X(z)$ (i.e. *z* is recurrent), then $\omega_X(z) = \operatorname{Cl}(\mathcal{O}_X^+(z))$ and we are done. So, we can assume that *z* is not recurrent. In particular, $z \notin Sing(X)$.

By contradiction, assume that $Cl(\mathcal{O}_X^+(z))$ is Lyapunov stable and that $\omega_X(z)$ does not. Then there are a neighborhood U of $\omega_X(z)$ and a sequence $p_n \in M \rightarrow p \in \omega_X(z)$ such that $p'_n = X_{t_n}(p_n) \notin U$ for some $t_n \ge 0$.

Passing to a subsequence, if necessary, the limit $x = \lim_{n \to \infty} p'_n$ exists.

Since $\operatorname{Cl}(\mathcal{O}_X^+(z))$ is Lyapunov stable for X, we apply Lemma 2.1 to $\Lambda = \operatorname{Cl}(\mathcal{O}_X^+(z))$ and we obtain $x \in \operatorname{Cl}(\mathcal{O}_X^+(z)) \setminus U$.

Choose T > 0 depending on U such that $X_t(z) \in U$ for all $t \ge T$ (T exists since $\omega_X(z) \subset U$). Then, $x \in X_{[0,T]}(z) \setminus U$.

We consider a cross-section Σ containing $z, \delta > 0$ small and the flow box

$$B = X_{[-\delta, T+\delta]}(\Sigma).$$

Note that $W = U \cup B$ is a neighborhood of $Cl(\mathcal{O}_X^+(z))$.

If δ and Σ are chosen small, then we have the following properties related to p_n , t_n and x as before: As $t_n \ge 0$ is a sequence such that $X_{t_n}(p_n) \to x$, then there is $t'_n \in [0, t_n]$ such that $p''_n = X_{t'_n}(p_n) \notin B$. In another words, the positive trajectory of X through p_n must enter B before it passes close to x.

Passing to a subsequence if necessary, we can assume, as before, that $x' = \lim_{n \to \infty} p_n''$ exists. Note that $x' \notin W$. By Lemma 2.1 we obtain $x' \in Cl(\mathcal{O}_X^+(z))$. But this is impossible since W is a neighborhood of $Cl(\mathcal{O}_X^+(z))$. The proof is complete.

References

- M. C. Arnaud, *Création de connexions en topologie C¹*. C. R. Acad. Sci. Paris, Série I, **329** (1999), 211–214.
- [2] N.P. Bhatia and G.P. Szego, *Stability theory of dynamical systems*. Springer-Verlag, Heidelberg, 1979.
- [3] C. Bonatti, A. Pumariño and M. Viana, *Lorenz attractors with arbitrary expanding dimension*. C. R. Acad. Sci. Paris, **325** (1997), Série I: 883–888.
- [4] C. M. Carballo, C. A. Morales and M. J. Pacifico, *Homoclinic classes for generic C¹ vector fields*. Preprint MAT.07/2000 PUC-Rio, 2000.
- [5] W. de Melo and J. Palis, *Geometric Theory of Dynamical Systems-An Introduction*. Springer Verlag, Berlin, 1982.
- [6] S. Hayashi, Connecting invariant manifolds and the solution of the C^1 stability and Ω -stability conjectures for flows. Annals of Math., **145** (1997), 81–137.
- [7] S. Hayashi, Hyperbolicity, stability, and the creation of homoclinic points. In Documenta Mathematica, Extra Volume ICM, Vol. II, 1998, 1998.
- [8] M. Hirsch, C. Pugh and M. Shub, *Invariant manifolds*, volume 583 of Lect. Notes in Math. Springer Verlag, Berlin, 1977.
- [9] M. Hurley, Attractors: persistence, and density of their basins. Trans. AMS, **269** (1982), 247–271.
- [10] K. Kuratowski, *Topology II*. Academic Press- PWN-Polish Sci. Publishers Warszawa, 1968.
- [11] C. Morales and M. J. Pacifico, Non-transitive attracting sets for 3-flows. In preparation.
- [12] C. Morales and M. J. Pacifico, Lyapunov stability of generic ω-limit sets. Preprint, 2000.
- [13] C. Morales, M. J. Pacifico and E. Pujals, On C¹ robust singular transitive sets for three-dimensional flows. C. R. Acad. Sci. Paris, 326 (1998), Série I: 81–86.
- [14] C. Morales and E. Pujals, Singular strange attractors on the boundary of Morse-Smale systems. Ann. Sci. École Norm. Sup., 30 (1997), 693–717.
- [15] D. V. Turaev and L. P. Shilnikov, An example of a wild strange attractor. Mat. Sbornik, 189 (1998), 137–160.

C. M. Carballo

Departamento de Matemática, PUC-Rio Rio de Janeiro, RJ, Brazil

E-mail: carballo@mat.puc-rio.br

C. A. Morales, M. J. Pacifico

Instituto de Matemática Universidade Federal do Rio de Janeiro C. P. 68.530, CEP 21.945-970 Rio de Janeiro, RJ, Brazil

E-mail: morales@impa.br / pacifico@impa.br