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generic rational function of the type

§ generates the first homology group of a generic fiber of

0 Introduction

Let F and G be two homogeneous polynomials in C**'. The following function
is well-defined

F? —
f= e :CP(n)\R — C,

F 14
fx)= % X = [xo; X1~ ; Xl

where R = {F =0} N {G = 0}, (‘Zéég; = % and p and g are relatively prime
numbers. We can view the fibration of f as a codimension one foliationin CP ()

given by the 1-form

w=pGdF —gqFdG
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306 HOSSEIN MOVASATI

Let 2, denote the set of homogeneous polynomials of degree a in C”.

Proposition 0.1. There exists an open dense subset U of P, x Py such that for
any (F, G) € U we have:

1. {F = 0} and {G = O} are smooth varieties in CP (n) and intersect each
other transversally;

2. The restriction of f to CP(n)\({F = 0} U{G = 0}) has nondegenerate
critical points, namely py, pa, ... , pr, with distinct images in C, namely
C1, €2, ... , Cr respectively.

Throughout the text the elements of U will be called generic elements. We
will prove this proposition in Appendix A. Put

CI{Cl,Cz,...,CV}

From now on, we will work with the function f which has the generic properties
as in Proposition 0.1. The foliation F associated to f has the following singular
set

Slng(f) = {pli pZ’ apt" R}

The value O (resp. co) is a critical value of f if and only if p > 1 (resp. g > 1).
Let A be a subset of {0, oo} which consists of only critical Values For example
if p=1,¢ = 1 then A is empty. The set of critical values of isCUA.

Proposition 0.2. f is a C™ fiber bundle map over C\(C U A).

We will prove this proposition in Section 3.

The above proposition enables us to use the arguments of Picard-Lefschetz
Theory to study the topology of the fibers of f. But, for example, the critical
fiber (F = 0}, when p > 1, is not considered in that theory (as far as I know). To
overcome with this obstacle, we will construct aramification map T CP (n) —
Cp (n) for the multivalued function f »4 % . The pull-back function fre = = fri ot
of fr 5 is univalued and has no more the critical values 0 and oo. Next, we
will embed the complex manifold CP (n) in some CP{N) in such a way that
the pull-back foliation F is obtained by the intersection of the hyperplanes of a
generic Lefschetz pencil with CP(n).

The study of the topology of an algebraic variety by intersecting it with hy-
perplanes of a pencil has been started systematicly by Lefschetz in his famous
article [12]. We will use the arguments of this area of mathematics, specially
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ON THE TOPOLOGY OF FOLIATIONS WITH A FIRST INTEGRAL 307

the articles [11],[3], to understand the topology of the leaves of F. Note that the
leaves of F do not contain the points of the set {F = 0} N {G = 0}.

In the first section we will construct such ramification map 7, and in the second
section we will review Picard-Lefshetz Theory. In the third section we will apply
our results to the foliation 7.

I want to use this opportunity to express my thanks to my advisor Alcides Lins
Neto. Discussions with him during this work have provided valuable information
and new ideas. Also, thanks go to Cesar Camacho and Panlo Sad for their
interest and support. I also thank Eduardo Esteves for his comments on algebraic
geometry. The author is also grateful to the exceptional scientific atmosphere in
IMPA that made this work possible.

1 Ramification Maps

In the first part of this section we will introduce ramification maps with a normal
crossing divisor. In the second part we will use a method which gives us some
examples of ramification maps. This method will be enough for our purpose.
The following isomorphism will be used frequently during this section:

Leray (or Thom-Gysin) Isomorphism: If a closed submanifold N has pure
real codimension ¢ in M, then there is an isomorphism

T He (N)SH (M, M\N)

holding for any k, with the convention that H;(N) = 0 for s < 0. Roughly
speaking, given x € H,_.(N), its image by this isomorphism is obtained by
thickening a cycle representing x, each point of it growing into a closed c-disk
transverse to V in M (see [3] p. 537).

Let N be a connected codimension one submanifold of the complex manifold
M. Write the long exact sequence of the pair (M, M\N) as follows:

- Hy(M, M\N) % H,(M\N) - H,(M) = --- (1)

where o is the boundary operator and i is induced by inclusion. Since N has
real codimension two in M, H,(M, M\N) (~ Hy(N) ~ Z) is generated by the
disk A transverse to N at a point y € N. By the above long exact sequence it
follows that if a closed cycle x in M\N is homologous to zero in M then it is
homologous to a multiple of 6 (A) = § in M\ D. The cycle § is called a simple
loop around the point y € N in M\N.
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308 HOSSEIN MOVASATI

1.1 Normal Crossing Divisors

The following well-known fact will be used frequently:

Proposition 1.1.1. Ler 7 : M — M be a finite covering map of degree p. Then
the following statements are true:

1. ©,.:m (M ) — w1 (M) is one to one, where w1 (M) denotes the fundamental
group of M;

2. If (M) is abelian then 71(M) is also abelian and 7ti (M)? C 1,(m(M)),
where my(M)? = {y? | y € m(M)}.

Proof: The proof of the first statement can be found in [19]. If 77, (M) is abelian
then

t.(aba”'b") = ()T B) T (@) T (B) " = 1

where a, b € 7, (M). The map 7, is one to one and so aba—'b~' = 1 which
implies that ab = ba.

For any closed path ¢ € (M, x), its inverse image by 7 is a union of closed
paths aj, a2, ... ,a; in M. Choose a point y in M and points x; in the path
a;, fori = 1,...,k such that t(x;) = t(y) = x and put b; = Ai_laiA,- and
b = b\by--- by, where A; is a path in M which connects y to x;. The image of
A; by 7 is a closed path in M and 7| (M) is abelian, therefore

T*(b) = HT*(Ai)ilf*(ai)t*(Ai) =g = a?f

The last equality is true because 7 has degree p and the paths a;’s are the inverse
image of a. il

In what follows, if the considered group is abelian, we use the additive notations
of groups; for example instead of a” we write pa.

Definition 1.1.1. Let M be a complex manifold of dimension n. By a reduced
normal crossing divisor we mean a union of finitely many connected closed
submanifolds, namely D;, D,, ..., D, of M and of codimension one, which
intersect each other transversally i.e., for any point a € M there is a local
coordinate (x, y) € C* x C"*, k < s around a such that in this coordinate a =
(0,0) and for any j = 1, ..., k, the component D;, is given by x; = 0, where
{ii,...,ix} = {i | a € D;}. We say this coordinate normalizing coordinate of
D at a. We will denote a reduced normal crossing divisor by

DziD,-
1
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ON THE TOPOLOGY OF FOLIATIONS WITH A FIRST INTEGRAL 309

When D has only one component i.e., s = 1, then D is called simple. The
following fact is a direct consequence of the definition.

Proposition 1.1.2. Let D be a reduced normal crossing divisor in a complex
manifold M. For any subset I of {1,2, ..., s}, the set
M; =N D;
is a complex manifold of codimension #I in M and
D;=DNM; =) D;NM,
i¢l

is a reduced normal crossing divisor in M.

In what follows for a given function v : M — M, and for any subset x of M
(resp. a meromorphic function x on M) we denote by ¥ the set 7! (x) (resp. the
meromorphic function x o r on M).

Definition 1.1.2. Let M and M be two compact complex manifolds of the
same dimension, D = Zi D; be a reduced normal crossing divisor in M and
P1, P2, .- -, Ps be positive integer numbers greater than one. The holomorphic
map T : M — M is called a ramification map with divisor D and ramification
index p; at D; if

L.t /(D)= D is a reduced normal crossing divisor;

2. For any point @ € M and a normalizing coordinate (x, y) € Ck x Cr*
around a = ©(a), there is a normalizing coordinate (¥, y) € CF x C**
around a such that in these coordinates a = (0,0), a = (0, 0) and 7 is
given by:

— ~Pi < Pig Py~
(x!y) - (an) = ((-xl lax2—1 7x](k)’y)
From the definition, we can see that
1. The critical points and values of  are D and D, respectively;

2. T |7 p s a finite covering map of some degree p;

3. For any subset I of {1, 2, ..., s}, if M/ is not empty then I;.; p; divides
p.
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310 HOSSEIN MOVASATI

We have also the subramification maps of 7, which is stated in bellow.

Proposition 1.1.3. Keeping the notations in Definition 1.1.2 and Proposition
1.1.2, for any ramification map © : M — M and I a subset of {1,2, ... s},
the restriction of T to M, namely Ty, is a ramification map with divisor D; and
ramification multiplicity p; at D; N M, where i & 1. Moreover, If T is of degree

then 1y i r L
p then ty is of degree i

Proposition 1.1.4. Let t : M — M be a ramification map of degree p and
with reduced normal crossing divisor D and let w (M\ D) be abelian. Then the
Sfollowing statement are true:

1. (M) is abelian;
2. pri(M) C (i (M));
3. If D is simple then 7, : 7, (M) — 7(M) is one to one;

4. If D* = Zle D is a reduced divisor in M such that D* + D is a normal
crossing divisor, then D* + D is also a normal crossing divisor.

Proof: The set D is a finite union of some submanifolds of M with real codi-
mension greater than two, therefore every path in 7, (M, x), where x € M\ D, is
homotopic to some path in 77, (M\ D, x). Now the first and second statements are
the direct consequences of Proposition 1.1.1, Definition 1.1.2 and the mentioned
fact.

Let X be a small disk transverse to D at y € D and x € £ N M\ D. Let also
a € m (M, ¥), where (%) = x, and 7.(a) be homotopic to zero in M and a do
not intersect D.

Considering the long exact sequence (1) and the fact that i(z.(a)) = 0, we
conclude that 7,(a) is homotopic to k6 in M\ D, where k is an integer number
and § is a simple loop in ¥ around y. By Proposition 1.1.1, this means that a is
homotopic to a closed path around ¥ in 7~!(X), where (§) = y, which means
that @ is homotopic to the point 7 in M, and this proves the third statement.

Let a € (NierD)N(Nier-D}), where I € {1,2,... ,standI* C {1,2,... 5"}
Choose a normalizing coordinate (x, x*, y) € C" x C” x C*"~"" ground a such
that the components of D (resp. D*) through p are represented by the coordinate
x (resp. x*), where r = #I and r* = #I*. Now the fourth statement is a direct
consequence of Definition 1.1.2. O

Bol. Soc. Bras. Mat., Vol. 31, No. 3, 2000
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1.2 Construction of Ramification Maps

For any abelian group G and a positive integer number p define G, = G/pG.
We have the following properties with respect to G p:

Proposition 1.2.1. The following statements are true:

1. Every morphism f : G — G’ of abelian groups induces a natural mor-
phism f, : G, — G’

P
2. (Gp)y = G,y where (p, q) denotes the greatest common divisor of p
and q;

3. If f 1 G — G is surjective then f, is also surjective. If f is one to one
then f, may not be one to one and so we cannot rewrite exact sequences
of abelian groups by this change of groups and maps;

4. Let f : G — G’ be amorphism of abelian groups and p,q be two positive
integer numbers. If f is one to one, pG' C f(G) and (p, q) = 1 then f,
is an isomorphism between G, and G,;

Proof: We only prove the fourth statement, since others are trivial. There exist
integer numbers x, y such that px + gy = 1.
For any a € G’ we have

a —qf(ay) = p(ax) € f(G)

and so f, 1s surjective.
If f,(a) = Othen f(a) = qb for some b € G'. We have

b= pbx)+ flay) = f(s), s€G

which implies that f(a — ¢gs) = 0. The morphism f is one to one and so we
have a = gs, which means that f, is one to one. O

The following statement gives us an example of ramification map with simple
divisor.

Proposition 1.2.2. Let M be a complex manifold with w(M) = 0 and D be
a simple divisor whose complement in M has abelian fundamental group. Let
also p' be a positive integer number and

HI(M\D)p’ = Zp
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312 HOSSEIN MOVASATI

Then there exists a degree p ramification map with divisor D and ramification
multiplicity p at D.

Proof: For any ¢ € D define 7 (M\D, e¢) = {0,} and
M = Ueeumi(M\D, €)
M has the structure of a complex manifold. For any [a.] € 7 (M\ D, ¢) we must
define a base open set and a chart map around [a.]. Consider two cases:
1.e € M\D

Let V, be a simply connected open neighbourhood of e in M\ D. The following
function is well-defined:

n: Ve - M’ 77()’) = [AeyaeA;yl]
where A,, is a path which connects e to y in V,. The image of 7 is a base open
set around a, and 7 is a chart map.
2.eeD

Let (V,, (x, y)), (x,y) € (C*! x C,0), be a coordinate around e such that in
this coordinate e = (0, 0) and D is given by y = 0. By Leray isomorphism, for
any ¢’ = (x', ') € V, the group m(M\D, ')y ~ Z, is generated by a simple
loop around (x’, 0) in

S =, ) € (€' xC,0) | x =x)
In particular, we have p | p’. This gives us the following construction of a chart
map around [a,]:

For any yo € (C, 0), let j(yg) be a point in (€, 0) such that
. . 2n
Y5 = Jj(o)? &0 <arg(j(yo) < "

and let 8, be the path which connects yo to j(yp) in {y € (C,0) | y? = y{}in

the clock direction.

The image of §,, by the map i(y) = y”, (§y,)%, is a closed path with initial and
end point y; and so the following function is well-defined

7:(C'xC,0) > M, nx,y) ={x}x (6"

The image of 7 is a base open set around the point ¢ and » is a chart map.
The reader can verify easily that M with these base open sets and chart maps
is a complex manifiold and the natural function 7 : M — M is the desired
ramification map. O

Bol. Soc. Bras. Mat., Vol. 31, No. 3, 2000



ON THE TOPOLOGY OF FOLIATIONS WITH A FIRST INTEGRAL 313

Theorem 1.2.1. Let M be a complex manifold with m;(M) = 0 and D =
Y '_, D; be a reduced normal crossing divisor such that the complement of each
D; in M has abelian fundamental group. Let also p', p5, ... p, be positive
integer numbers which are prime to each other. Put p; = #m(M\D;) o Then
there is a degree pp, - -+ p, ramification map with divisor D and ramification
multiplicity p; at D;, i = 1,2, ... ,s

Proof: The proof is by induction on s. For s = 1 it is Proposition 1.2.2.

Suppose that the theorem is true for s — 1. Let ¢ : M — M be a degree p,
ramification map with simple divisor D; and multlphclty Py at Dy. We check
the assumptions of the theorem for the divisor D, + . . . 4 D; in the manifold M,
to apply the hypothesis of the induction.

By the third part of Proposition 1.14 7, R (M ) = m{M) is one to one and
by hypothesis 7 (M) = 0, therefore 7 (M) = 0.

Applying Proposition 1.1.4 to the ramificationmap t |, 5,, we see that (M\D;)
is abelian; also 4 of Proposition 1.1.4 implies that D is a normal crossing divisor.

The morphism

Tt (M\Dy) — 71 (M\Dy)
is one to one and by 2 of Proposition 1.1.4

pim (M\D;) C 7. (m (M\D;)
But g.c.d.(py, p;) = 1 and so by 4 of Proposition 1.2.1 we have

T (M\D) py = 701 (M\D;) ¢
Now we can apply the hypothesis of the induction to M and D' =%, D;. There
exists a degree p; - -- p, ramification map z’ : M’ — M with divisor D’ and

multiplicity p; at D;, i = 2, ..., s. The reader can check that the map 7 o 7’ is
the desired ramification map. O

1.3 Multivalued Functions

To study multivalued functions, we will need to study a certain class of ram-
ification maps. First, we give the precise definition of multivalued functions.
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Definition 1.3.1. Let v : M — M be a degree p holomorphic map between
two complex manifold M and M i.e., T is a finite covering map of degree p out
of its critical points. Every meromorphic function g on M is called a p-valued
meromorphic function on M. Roughly speaking, the image of a point x € M
under g is the set g(z ' (x)). The map 7 is called the ramification map of g and
the set of critical values of the map 1 is called the ramification divisor of the
multivalued function g.

Given a complex manifold M, a meromorphic function f on it and an 1nteger
number N. Can we construct a ramification map of the multivalued function f¥ W
according to the above definition? Here we will answer to this question for some
limited classes of meromorphic functions.

Let f be a meromorphic function on the manifold M and 7 : M — M be
a ramification map with reduced normal crossing divisor D = Y ;_, D; and
multiplicity p; at D;,i = 1,2,...,s. Letalsodiv(f) =Y _m;V;. Then

dzv(f) = Zajmj Vj

where f = f o, a; = p; if V; = D; for some i and a; = 1 otherwise.

Proposition 1.3.1. Keeping the notations used above, suppose that H' (M, 7 N) =
Oand N | div(f) i.e., N divides the multlpllcztles of the components of div(f),
where N is a positive integer number. Then f v is a well- -defined meromorphic
function on M. Therefore, we can view f ¥ as a multivalued function on M with
the ramification map t.

Proof: For any point x € M there is a neighbourhood V; of x such that in this

neighbourhood f = giN , where g; is a meromorphic functionon V;. Letc¢;; = g—;,

then cN = 1. Since H' (M Zy) = 0, there exist complex numbers ¢;’s such that
cij = +. Now g |y,= g ’s define the global meromorphic function which is the

desired candidate for f N D

2 Picard-Lefschetz Theory

In 1924 S. Lefschetz published his famous article [12] on the topology of al-
gebraic varieties. In his article, in order to study the topology of an algebraic
variety, he considered a pencil of hyperplanes in general position with respect
to that variety. Many of the Lefschetz intuitive arguments are made precise by
appearance a critical fiber bundle map. In the first part of this section we intro-
duce the basic concepts of Picard-Lefschez Theory and in the second part we
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introduce the Lefschetz pencil and state our two basic theorems 2.2.1, 2.3.2.
This section is mainly based on the articles [11],[3]. Homologies are considered
in an arbitrary field of characteristic zero except it mentioned explicitly.

2.1 Critical Fiber Bundle Maps

The following theorem gives us a huge number of fiber bundle maps.

Theorem 1. (Ehresmann’s Fibration Theorem [7]). Let f 1 Y — B be a
proper submersion between the manifolds Y and B. Then f fibers Y locally
trivially i.e., for every point b € B there is a neighbourhood U of b and a C*°-
diffeomorphism ¢ : U x f~'(b) — f~Y(U) such that f o ¢ = m| = the first
projection. Moreover if N C Y is a closed submanifold such that f |y is still
a submersion then | fibers Y locally trivially over N i.e., the diffeomorphism ¢
above can be chosen to carry U x (f'(b) N N) onto f~"(U)YNN.

The map ¢ is called the fiber bundle trivialization map. Ehresmann’s theorem

can be rewrite for manifolds with boundary and also for stratified analytic sets.
In the last case the result is known as the Thom-Mather theorem.
In the above theorem let f not be submersion, and let C’ be the union of critical
values of f and critical values of f |y, and C be the closure of C’ in B. By
a critical point of the map f we mean the point in which f is not submersion.
Now we can apply the theorem to the function

f:Y\f4C)—- B\C=~R
For any set K C B, we use the following notations
Yg = f7'(K), Y =Yg NN, Lg = Yi\Yy

and for any point ¢ € B, by Y, we mean the set Y;. By f : (Y, N) — B we
mean the mentioned map and we call it the critical fiber bundle map.

Definition 2.1.1. Let A C R C S be topological spaces. R is called a strong
deformation retract of S over A if there is a continuous map 7 : [0, 1] x S — §
such that

1. ¥(0,.) = id;
2.r(l,x) e R&v(l,y) =yVx,ye S, yeR;

3.r(t,x) =xVt€]0,1], x € A.
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Here r is called the contraction map. In a similar way we can do this definition
for the pairs of spaces (R, R2) C (51, $2), where Ry C Ry and S, C §.

We use the following important theorem to define generalized vanishing cycle
and also to find relations between the homology groups of Y\ N and the generic
fiber L. of f.

Theorem 2.1.1. Let f : Y — Band C' asbefor, ACRCSCBandSNC
be a subset of the interior of A in S, then every retraction from S to R over A
can be lifted to a retraction from Lg to L over L.

Proof: According to Ehresmann’s fibration theorem f : Lyy¢c — S\Cisa C™
locally trivial fibre bundle. The homotopy covering theorem, see 14,11.3[19],
implies that the contraction of S\C to R\C over A\C can be lifted so that Lg\¢
becomes a strong deformation retract of L g\ over L 4\¢. Since C N S is a subset
of the interior of A in §, the singular fibers can be filled in such a way that Ly
is a deformation retract of Lg over L 4. C

Monodromy: Let A be a path in B’ = B\C with the initial and end points by
and by. In the sequel by A we will mean both the path A : [0, 1] — B and the
image of ; the meaning being clear from the text.

Proposition 2.1.1. There is an isotopy
H:Lp x[0,1] = L,
such that for all x € Ly,, t € [0, 1]
Hx,0)=x, H(x,t) € Ly 2)

Foreveryt € [0, 1] the map h, = H(., t) is a homeomorphism between Ly, and
L; ). The different choices of H and paths homotopic to X would give the class
of homotopic maps {h; : Ly, — Ly, } where hy, = H(., 1).

Proof: The interval {0, 1] is compact and the local trivializations of L, can be
fitted together along y to yield an isotopy H. O

The class {h, : Ly, — Ly, } defines the maps

h}L : T[*(Lbo) — JT*(Lbl)
hy : Hi(Lyy) = Ho(Lyp,)

In what follows we will consider the homology class of cycles, but many of the
arguments can be rewritten for their homotopy class.

Bol. Soc. Bras. Mat., Vol. 31, No. 3, 2000



ON THE TOPOLOGY OF FOLIATIONS WITH A FIRST INTEGRAL 317

Figure 1:

Definition 2.1.2. For any regular value b of f, we can define

h: H](B/, b) X Hx(Lb) - H*(Lb)
h(x,.) = h;()

7 (B’, b) is called the monodromy group and its action & on H,(L,) is called
the action of monodromy on the homology groups of L;. Following the article
[3], we give the generalized definition of vanishing cycles.

Definition 2.1.3. Let K be a subset of B and b be a point in K\C. Any relative
k-cycle of Lx modulo Ly is called a k-thimble above (K, b} and its boundary in
L is called a vanishing (k — 1)-cycle above K.

Let us consider the case that we will need. Let Y be a complex compact

manifold, N be a submanifold of ¥ of codimension one, B = C and f be a
holomorphic function. The set of critical values of f, C, is a finite set.
Let ¢; € C (which is an isolated point of C in @), D; be an small disk around
c;and A; be a path in B’ which connects b € B’ to b; € 3D;. Put A; the path by
plus the path which connects b; to ¢; in D; (see Figure 1). Define the set K in
the three ways as follows:

)"i s=1
K’ = )\.l‘UD,‘ s=2 (3)
A UID; s=3

In each case we can define the vanishing cycle in L, above K°. K' and K3 are
subsets of K* and so the vanishing cycle above K! and K3 is also vanishing
above K. In the first case we have the intuitional concept of vanishing cycle. If
¢; is a critical point of f |y we can see that the vanishing cycle above K2 may
not be vanishing above K.

‘The third case gives us the vanishing cycles obtained by a monodromy around
¢;. In this case we have the Wang isomorphism

v: H_ ((Ly)>H(Lg, L)
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Roughly speaking, The image of the cycle « by v is the footprint of ¢, taking
the monodromy around ¢;. Let y; be the closed path which parametrize K3 i.e.,
y; starts from b, goes along Xi until b;, turn around ¢; on d D; and finally comes
back to b along X:. Letalso hy, + Hi(Ly,) — Hi(Lp,) be the monodromy around
the critical value c;. It is easy to check that

ocov=~"h, —1

where o is the boundary operator, therefore the cycle « is a vanishing cycle above
K3 if and only if it is in the image of /;, — I. For more information about the
generalized vanishing cycle the reader is referred to [3].

Lefschetz Vanishing Cycle: Let f have a nondegenerate critical point p; in
Y\N and p; be the unique critical point of f : (Y, N) — C within Y,,, where
¢ = f(pi)-

Proposition 2.1.2. In the above situation, the following statements are true:

1. For all k # n we have Hy(L,,, L,) = 0. This means that there is no
(k — 1)-vanishing cycle along A; for k #n;

2. H,(L,,, Lp) is infinite cyclic generated by a hemispherical homology class
[A;] which is called the Lefschetz thimble and its boundary is called the
Lefschetz vanishing cycle;

3. Let \! be another path which connects b to c; in B" and is homotopic to
A; in B’ (with fixed initial and end point), then we have the same, up to
homotopy and change of sign, Lefschetz vanishing cycle in L.

For the proof of above Proposition see 5.4.1 of [11]. By a hemispheri-
cal homology class, we mean the image of a generator of infinite cyclic group
H,(B", S"!) under the homeomorphism induced by a continuous mapping of
the closed n-ball B” into L,, which sends its boundary, the (n — 1)-sphere S
to L,. Let B be a small ball around p; such that in B we can write f in the
Morse form

f=cit+xi+x+ - +x,

For b such that b — ¢; is positive real, the Lefschetz vanishing cycle in the fiber
L, is given by:

8 = {(xq, - ,xn)eR”IZxJz.:b_ci}
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which is the boundary of the thimble

Aiz{(xla"',xn)ERn|Z.X]2~Eb—Ci}

In the above situation the monodromy #; around the critical value ¢; is given by
the Picard-Lefschetz formula

n(n+1)

h@@) =584+ (=1 2 <8,8>6, &€ H1(Ly)

where < ., . > denotes the intersection number of two cycles in Lj.

Remark: In the above example vanishing above K' and K2 are the same. Also
by the Picard-Lefschetz formula the reader can verify that three types of the
definition of a vanishing cycle coincide. In what follows by vanishing along the
path A; we will mean vanishing above K2.

2.2 Vanishing Cycles as Generators

Now let {c;, c2, ..., cs} be a subset of the set C of critical values of f, and
b € C\C. Consider a system of s paths i, ... , A, starting from b and ending
atcy, ¢y, ... , Cs, respectively, and such that:

1. each path A; has no self intersection points ;

2. two distinct path A; and A; meet only at their common origin A;(0) =
A;(0) = b (see Figure 2).

This system of paths is called a distinguished system of paths. The set of van-
ishing cycles along the paths A;, i = 1,...,s is called a distinguished set of
vanishing cycles related to the critical points ¢y, ¢, ... , ¢;.

Theorem 2.2.1. Suppose that H,_, (LE\(q)) = O for some positive integer num-

ber k and a € C, which may be a critical value. Then a distinguished set
of vanishing (k — 1)-cycles related to the critical points in the set C\{a} =
{c1,ca, ..., ¢/} generates H,_(L,).

Proof: We use the arguments of the article [11] Section 5. Note that in our case
the fiber is L, = Y;,\N and not Y,,.

We consider our system of distinguished paths inside a large disk D, so that
a € C\D,, the point b is in the boundary of D, and all critical values ¢;’s in
C\{a} are interior points of D,. Small disks D; with centers ¢; i = 1,--- , 7
are chosen so that they are mutually disjoint and contained in D, . Put

Ki=aUD;, K=U_K,
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Figure 2:

The pair (K, b) is a strong deformation retract of (D, b) and so by Theorem
2.1.1 (Lg, Lp) is a strong deformation retract of (Lp,, Lp). The set A = Uk
can be retract whithin itself to the point » and so (Lg, L) and (Lg, L;) have
the same homotopy type. By the excision theorem (see [14]) we conclude that

H(Lp,.Ly) ~ Y Hi(Lk,, Ly) ~ Y He(Lp,, Ly,)
i=1 i=l

Write the long exact sequence of the pair (Lp,, L):
... = H(Lp,) = Hi(Lp,, Ly) > Hi1(Ly) = Hei(Lp,) = ... (4

Knowing this long exact sequence, it is enough to prove that H;_((Lp,) = 0. A
contraction from C\{a} to D, can be lifted to the contraction of L@\ ) 0 Lp,
which means that Lp, and Lg,,, have the same homotopy type and so by the
hypothesis H_; (LDJr) = 0. O

2.3 Lefschetz Pencil

In this section we repeat some notations and propositions of [11] Section 2. All
the proofs can be found there.

The hyperplanes of CP(N) are points of the dual projective space CP(N).
We use the following notation:

H, CCP(N), y € CP(N)
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Let X be a closed irreducible subvariety of CP(N) and let X, C X be the
nonempty open subset of its regular points. Define

V;( ={(x,y) e CP(N) x CPV(N) | x € X, & H, is tangent to X at x}
This is a quasiprojective subset of CP(N) x CP(N), because the set

V = {(x, y) € CP(N) x CP(N) |

x is a singular point of X or H, is tangent toX at x}

is closed in CP(N) x <CPV(N ) and V)/( is a zariski open in V. The closure Vy of
V;{ is called the tangent hyperplane bundle of X. Consider the second projection

m: Vx = CP(N), (x,y) =y

its image X is a closed irreducible subvariety of (CPV(N ) of dimension at most
n — 1 which is called the dual variety of X. If X is a smooth variety then

X = {y e CPV(N) | H, is tangent to X at some point }
In general X has singularities even if X does not. If dim(X) = N — 1 the degree

of X is well-defined and if dim()v() < N — 1 we define deg()v() =0.

Proposition 2.3.1. (Duality Theorem [11] 2.2) The tangent hyperplane bundles
of X and X coincide

Vx = V; and hence X=X

A pencil in CP (N) consists of all hyperplanes which contain a fixed (N — 2)-
dimensional projective space A, which is called the axis of the pencil. We denote
a pencil by {H,},c or G itself, where G is a projective line in CPV(N ).

The pencil {H,},c¢ is in general position with respect to X if G is in general
position with respect to X. From now on, fix a pencil {H, },¢ in general position
with respect to X .

Proposition 2.3.2. ( [11], 1.6.1) The axis A intersects X transversally.
For the pencil {H,},.s put

X;=XNH, L, =X\A, CZGﬂX:{C],Cz,...,Cr}, X =AnX
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We will sometimes parametrize G by C and denote the pencil by {Hi}, .z In
order to have a map whose level surfaces are the X,’s, we need to do a "blow up"
along the variety X’. Let

Y={(x,1)eXxC|xeH)
There are two projections
xZyvytitT
PutY’ = p~!(X’) = X’ x C then
Propesition 2.3.3. ([11] 1.6.2, 1.6.3, 1.6.4) If X is a smooth variety then

1. The modification Y of X is smooth and irreducible;

2. p is an isomorphism between Y\Y' and X\X' and also an isomorphism
between f‘1 (t) and X;;

3. For every critical value ¢;, i = 1,...,r of f, the hyperplane H,, has
a unique tangency of order two with X which lies out of A. The other
hyperplanes H,., ¢ & C are transverse to X;

4. The projection f : Y — Chasr = deg(}? ) nondegenerate critical points
Pis.-., Py in Y\Y' such that f(p;) = ¢;’s are distinct values in C.

Now we have the critical fiber bundle map f : (¥, Y’) — C. Note that [y
has no critical points. We conclude that the natural function f : X\ A — Cisa
fiber bundle map over C\C.

Definition 2.3.1. We can view f : X — C as a meromorphic function on X.
f is called the Lefschetz meromorphic function. The foliation induced by the
pencil {H,}, ¢ is called the Lefschetz foliation.

Proposition 2.3.4. The pencil {H,},c is in general position with respect to X if
and only if

1. Choosing a good paramerization of G, (f)eo = f '(00) and (f)o =
F10) are smooth irreducible varieties and intersect each other transver-
sally and ;

2. f has only nondegenerate critical points with distinct images.
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Proof: If {H,},c; is in general position with respect to X, then the axis of the
pencil, A, intersects X transversally. Knowing that

(f)0=H0ﬂX, (f)oo:HoomX» HomHoo:A

we conclude that ( f)g and ()., intersect each other transversally. The second
statement is Proposition 2.3.3, 4.

Now suppose that f satisfies 1 and 2. Suppose that G is not in general position
with respect to X atx € GNX. We can disitinguish two cases

1. x is a smooth point of X and G is tangent to X at x;

Let H; be a hyperplane which passes through x, contains G and is tangent to X
at x. By Duality Theorem the information

x € G C H;, Hjistangentto X at x
can be translated to
se€ACH, H,istangentto X ats

But this contradicts the first statement.
2. x is a singular point of X;

This case also cannot happen. By the argument used in the proof of 1.6.4 of [11],
we have: x is a smooth point of X, if and only if, H, has a unique tangency point
of order two with X. U

Theorem 2.3.1. Suppose that the p_encil {H}ieq is in genegll position with
respect to X and Let a be a point in C\C. Then for every b € C\C

1. Hi(Ly) ~ H(X\H,), i #n,n— 1

2. If H,_\(X\H,) = 0, then a distinguished set of vanishing cycles related
to the critical values ¢, ¢z, . .. , ¢, generates the group H,_(Lp).

Proof: This is a direct consequence of Theorem 2.2.1 and Theorem 2.1.2 and
the long exact sequence (4). OJ

Blow up: Fix the point b € CP(n). All lines through b in CP(n) form a
projective space of dimension n — 1, namely P. Define

CP(n) ={(x,y) e CP(N) x P |x € y}
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CP(n) is a smooth subvariety of CP(N) x P. We have two natural projections

CP(n) < CPn) > P

The reader can check that f is an isomorphism between i ~!(b) and P and i is
an isomorphism between CP (n)\{b} and ((315(11)\1'_1 (b). CP(n) is called the
blow up of CP (n) at the point b. Roughly speaking, we delete the point b from
CP(n) and substitute it by a projective space of dimension n — 1.

Theorem 2.3.2. Suppose that the pencil {H,}, ¢ is in general position with
respect to X and let b € C\C, then

1. For every two Lefschetz vanishing cycles 8o and &, in X, there exists a
closed path ). in C\C with initial and end point b and such that

h3.(80) = %6
where hy, is the monodromy along the path X;

2. If H,_(X\H,) = 0 forsomea € E\C and H, (X,) # 0 then for every
Lefschetz vanishing cycle § in Ly, the action of the monodromy group on
5 generates H,_(Lp).

Proof: The first statement and its proof can be found in 7.3.5 of [11]. But we
can give a rather short proof for it as follows:

Let us consider the pencil {H, },c¢ as the projective line G in (CP(n) Let 8o and
8 vanish along the paths Ao and %; which connect b to critical values cq and ¢;
in G, respectively. The subset Z C X consisting of all points x such that the
line through x and b is not in general position with respect to Xisa proper and
algebraic subset of X. Since X is an irreducible variety and co, c; € X \Z, there
is a path w in X \Z from ¢y to ¢;. Denote by G the line through 5 and w(s).
After blow up at the point » and using the Ehresmann’s theorem, we conclude
that:

There is an isotopy H : [0, 1] x G — UG, such that

1. H(0, ) is the identity map;

2. forall s € [0, 1], H(s, .) is a C* isomorphism between G and G which
sends points of X to X;

3. Foralls € [0, 1], H(s, b) = b and H(s, ¢;) = w(s).
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Let A, = H(s, Xo). In each Lefschetz pencil { H,},c¢, the cycle 8 in X, vanishs
along the path A in w(s), therefore 8 vanishes along A} in ¢; = w(1). Consider
Ap and A} as the paths which start from b and end in a point b, near ¢; and put
A = A| — A1. By uniqueness of the Lefschetz vanishing cycle along a fixed path
we can see that the path A is the desired path.

Now let us prove the second part. Unfortunately the above argument is true for
the fiber X; and not L,. Therefore by Theorem 2.3.1 we can only conclude that
the action of the monodromy on a vanishing cycle generates H,_(X;). Since
H,_(Xp) # 0, there is no homologous to zero vanishing cycle in X;. Let us
prove that the intersection matrix [< §;, §; >],., of vanishing cyclesis connected
i.e., for any two vanishing cycles 8 and 8’ there exists a chain §;,, §;,, ... , §;, of
vanishing cycles with the following properties:

5:851’5,:550 <5ik’§ik+l >;l50, k:1,2,...,€—1

If & is not connected to § as above then by Picard-Lefschetz formula §’ has
intersection zero with all cycles obtained by the action of the monodromy on §.
But the action of the monodromy on § generates H,_(Xp). X, is compact and
so 8 = 01in X, which is a contradiction. Now using Picard-Lefschetz formula
in L, we see that the action of the monodromy on a vanishing cycle generates
any other vanishing cycle in L,. By Theorem 2.3.1, vanishing cycles generate
H,_,(L;) and so the second statement is proved. -

3 Topology of Integrable Foliations

In this section we will combine the results of the sections 1 and 2 to generalize
Theorem 2.3.1 and Theorem 2.3.2 for the foliation F(pGdF — qFdG). Note
that the first Integral of ‘F has the critical fibers {F = 0} and {G = 0}, if
p > 1l and g > 1 respectively, which don’t appear in the Lefschetz foliation.
Homologies are considered in an arbitrary field except in the mentioned cases.

3.1 Integrable Foliations and Lefschetz Pencil

Let F(pGdF — q FdG) be an integrable foliation sat1sfy1ng the generic condi-
tions of Proposition 0.1. Put

Fr\™
D] = {F = 0}, D2 - {G - 0}, Lb = (a) (b)\R, Xb' == Lb UR
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Consider the reduced normal crossing divisor D = D; + D, and the positive
integer numbers g, p such that

deg(F)=qd, deg(G) =pd, g.cd.(p,q) =1

It is a well-known fact that the fundamental group of the complement of any
smooth hypersurface V in CP (n) is isomorphic to Zg,,(v) and therefore

i (CPM\Dy)q = Zq , mi(CP\D2)p =Z,)
By Theorem 1.2.1 there exists a degree pg ramification map
7:CP(n) » CP(n) (5)

with divisor D and ramification multiplicities ¢ and p in D; and D, respectively.
We can view the polynomials F, G and the coordinates x;,{ =0,... ,n—1, as
meromorphic functions with the pole divisor H,, the hyperplane at infinity. We
have

div(F) = ¢(Dy — d.Hy)

div(G) = p(D; — d.Hy)

therefore F 7 and G% are well-defined meromorphic functions on CP(n). Define
jiCPm\Hw — C%  j(x) = (F1,G)

The following proposition shows that the different sheets of CP(n) are due to
~ 1 ~ 1
the different values of F¢ and G».

Proposition 3.1.1. For any x € CP(n)\Hy, the map j takes distincts values in
7= (x). (If x € Hy, choose another hyperplane as the hyperplane at infinity).

Proof: The set
S={xeCPm)|da,be CP~(n) st.1(@=tb)=x, a#£b, jla=jb)}

is an open closed subset of C P (n), because the values of F g ( G%) in t7 (x) are
the same up to multiplication by some g-th (p-th) root of the unity. Choosing
normalizing coordinates like in Definition 1.1.2 around the points a € D; N D,
and 7~ !(a), we have

(1, x2) & (1, %0, ¥) = (1, %2, y) (6)

7 has the degree pq and so S has not any point near a, therefore S is empty. [J
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The foliation F = t*(F) in CP(n)isalso integrable and has the first integral
1

2 with divisor
G

t

Q|

dw(——_) =D,—D,

Gvr
For every beC,let

s

Ly =(zp) " @\R, X;=L;UR, R=Dyn D,

(oY
|

The following proposition states the relations between the leaves of F and 7.

Proposition 3.1.2. The following statements are true:

1. tmaps Rt R biholomorphically;

2.7 g, Lo = Lo (T % Loo — L) is a finite covering map of degree g
(repectively p);

3. Foranyc # 0,00, T maps L to L biholomorphically.

Proof: The first and second statements are the results obtained in Proposition
1.1.3. For the third it is enough to prove that 7 ] 18 one to one.

1
If 7(x) = t(y) and ‘f—‘f(x) 2 (y) then £ ' LRt e G’ S 5 a constant which
Gr

‘1 ) G” )
18 p- th and g-th root of the unity, but g.c.d.(p,g) = 1 and so F4 (x) = F%(y)
and Gl’ (x) = G (x). By Proposition 3.1.1 we conclude that x = y. U

Define v : (CP(n) — CP(N) by
V(A =[xkl xb L a® F(A) GR (A, do - in=d

N — 2 is the number of monomials of degree d with the variables xq, x|, . .. , x,,.

Proposition 3.1.3. v is an embedding.
Proof: Consider the following commutative diagram:
CP(n) % CPWN -2

L) it )
CP(n) > CP(N)
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where v, is the well-known veronese embedding and i is the projection on the
first N — 1 coordinates.

1. v is one to one;

Ifa,b € CP(N)and v(a) = v(b) then v (t(a)) = vy(t (b)) andso t(a) = T(b)
and by Proposition 3.1.1 we conclude that a = b.

2. v is locally embedding;
For any a ¢ CP (n) choose normalizing coordinates around a and 7(a). For

example , if a € D| N D, the diagram (7) has the form

afxf,y) & va(xf, x5, y)
0 0 )
v
(x1, %2, ) —  (Wax?, xF, ¥), %1, x2)
we have to prove that the bottom map is an embedding at 0.
dvg

dy
Dv(0) = 0
0

S = %
— O ¥

vy 1s the veronese embedding and so Dv(0) has the maximal rank rank ». For
other points the proof is similar. 0

The foliation F is obtained by hyperplane sections of the following Lefschetz
pencil

{Hi}), .z H ={[x; x5; xy1] € CP(N) | xy = txny1}

21
D, and D, intersect each other transversally in R = D; N Dy, and F . has
év

nondegenerate critical points with distinct images, therefore { H,}, ;= is in general

position with respect to X = v(CP (n)).
Now consider the following commutative diagram

CP(N) > CP®m)

Fi FP
L = 9
. & ©)
c 5> C
- 1
where i(z) = zP9. Let C denote the set of critical values of f—‘f, then by
G?

Proposition 3.1.2, we conclude that
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o

Corollary 3.1.1. £ and EY are fiber bundle maps over C\(C U A) and C\C,
Gv
respectively.

Corollary 3.1.2. Let b € C be a regular value of % Then for every two
Lefschetz vanishing cycles 8, and 8, in X, there is a mondromy h;_such that

h(8)) = %6,

Proof: Fix a point b € i ~'(b). By diagram 3.2, we have the following commu-
tative diagram

71 (C\C, b) x Hy(Xp) — H.(X;)
i Tl T, | (10)
T C\(CUA), D) x HJ(Xy) — HJ(Xp)

8 = 1(8;), i = 1,2 are two Lefcshetz vanishing cycles in X 5- By Theorem
2.3.2, there exists a path P= T (@\C‘ , I;) such that the related monodromy takes
8, to +38,. We can assume that this path doesn’t pass through 0 and co. Now by
the above diagram the path i (1) is the desired path. O

3.2 More About the Topology of Integrable Foliations

Here we want to prove a theorem similar to Theorem 2.2.1 for the foliation
F(pGdF —qFdG).

Lett : CP (n) — CP(n) be a ramification map with simple divisor D =
{G = 0} and multiplicity p at D.

div(G) = p(D — d.Hy)

Therefor Gli’ is a well-defined meromorphic function on CP(n). We denote by
C the set of critical values of L in C\{oo}. Also
Gv

R={F=0n{G =0}
The foliation F = t*(F) has the first integral ~—FQ Note that 0 € C is no more
= Gr
a critical point of £, Consider the following commutative diagram
GP
CP(n) — CP(n)

F ol
G% ‘l/ G4

C — C
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where i (z) = z”. Like before we have

Proposition 3.2.1. The following statements are true:

1 is a fiber bundle map over C\(C U {oo});

%\;l e

2. 7 maps R ( Loo)to R ( respectively L) biholomorphically;
307 gy, Lo— Lois a finite covering map of degree ¢;

4. Forany ¢ # 0, 00, T maps L. to L.y biholomorphically.

Theorem 3.2.1. I[fn = 2 then a distinguished set of Lefschetz vanishing cycles
related to the critical points in the set C generates the first homology group of a

regular fiber Ly, of £
GP

Proof: (n=2) By Theorem 2.3.1 it is enough to prove that H,,_, (C P (n)\[)) =0.
According to Proposition 1.1.1,7, : H,_(CP(m)\D, Z) — H,_(CP(n)\D, Z)
is one to one, and we also know that H,_1(CP.(n)\D, Z) = Zgeg(c), Which im-
plies that H, 1(CP(n)\D) = 0in an arbitrary field. These facts imply what we
want. O

Corollary 3.2.1. Let b be a regular value of g—g and A be a set of distinguished
Lefschetz vanishing cycles related to the critical points in the set C. Let also h
be the monodromy around the critical value 0. Then the set

AURA)YU---URP1(A)

generates H,_(Ly).

Proof: Let A be a distinguished set of Lefschetz vanishing cycles as in Theorem
3.2.1. We can see easily that 7(A) = AUR(A)U--- UhP7I(A). O

The fiber L, does not contain the points of { F = 0}N{G = 0}, so this corollary
partially claims that the cycle around a point of {/ = 0} N {G = 0} is a rational
sum of vanishing cycles. In the initial steps of this article my objective was to
prove the following corollary.

Corollary 3.2.2. Suppose that n = 2 and the generic fiber of g—: has genus
greater than zero. Then the action of the monodromy group on a Lefschetz
vanishing cycle generates H,_1(Ly). Let w; be a meromorphic 1-form in the
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projective space of dimension two whose pole divisor is a union of some fibers

of L. If
/ w| = 0
8

Jor a continuous sequence 8, of vanishing cycles, then w, restricted to the closure
of each fiber of (F;—Z is exact.

We recall that in the above corollary we have assumed the generic conditions
of Proposition 0.1.

Proof: The first part is a direct consequence of Theorem 2.3.2 and Proposition
3.1.2. For the second part it is enough to prove that

/C{)]ZO
L

For all 1-cycles in the fibers of (F;—Z
Using the ramification map t, the reader can verify that:

Proposition 3.2.2. Let Dy be a small disk around O and | be the straight line
which connects 0 to by, a point in 3 Dy, then

1. (Ly;, Ly,) is a strong deformation retract of (Lp,, Ly,);

2. There is a C™ function ¢ : I x L, — L; such that ¢ is a fiber bundle
trivialization on I\{0} and the restriction of ¢ to {0} x L;,, namely g, is a
finite covering map of degree p from Ly, to Ly ;

3. There is amonodromy h : Ly, — Ly, around 0 such that for every x € Ly,
we have

g M g(x) = {x, h(x), -, AP (x)}

in particular h* = I and go h = g.

A Generic Properties

Here we will prove Proposition 0.1. The main tool is the transversality theorem
which appears both in Algebraic Geometry and Differential Topology. We will
work in the category of algebraic varieties but the whole of this discussion can
be done in the C* category of manifolds.
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In the sequel by 7'X we denote the tangent bundle of the variety X and by
(T X)o we denote the image of the zero section of the vector bundle TX. For
any x € X we have

Th,(TX) =Ty, (TX)y ® To, (T X)
and so we can define
d:Tp (TX) = Ty (T, X)

d is the projection on the second coordinate. We will essentially use the following
transversality theorem in algebraic geometry:

Theorem 2. Let f : X — Zandnw : X — A be morphisms (C* functions)
between smooth varieties (vesp. C™ manifolds) and W be a smooth subvariety
(resp. submanifold) of Z. Also assume that 7 is surjective and f is transverse to
W, then there exists an open dense subset U of A such that f |- s transverse
to W foreveryoa € U.

Proof: This theorem is a consequence of Bertini’s theorems ( see [17]). For
more information about the transversality theorem the reader is referred to [18]
and [1].

Recall that f : X — Z is transverse to W if for every x € X with y =
f(x) € W, we have T,W + (T f)(T,(X)) = T,(Z). This is equivalent to
this fact that f~!(W) is empty or is a smooth subvariety of X of dimension
dim(X) — dim(Z) + dim(W). The following well-known proposition will be
used.

Proposition A.0.3. Let f : X — Z be a morphism between two smooth varieties
and dim(Z) = 1. Then the critical points of [ are nondegenerate, if and only
i, Tf : TX\(TX)y— TZ is transverse to (T Z),.

Let

X={F,Gx)eP, xP,xCP(n)| F(x) #0, G(x) # 0}

_ FP
g:X—C, ¢g(F,G,x) = G =71

and TX be the subvector bundle of TX whose fiber T(F,G,X)X is the tangent
space of {(F, G)} x CP(n). Let also T g be the restriction of Tg to T X and
w:TX — P, x P, be the projection on the parameter (F, G).
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Proposition A.0.4. For a generic pair (F,G), the critical points of g—z in
CP(m\({F = 0} U{G = 0}) are nondegenerate.

Proof: According to the transversality theorem and Proposition A.0.3 it is
enough to prove that

fg :TX - TC
is transverse to (TC)o. In a local coordinate around (F, G, x', v) € T X we have

- FP FP
Tg(F,G,x',v) = (a(x/), D(a)(X’)(v))

B=doTygenTg)(F,G u w) =

2 ’ ! F ! G /
D7 f(x)()(u) + Df (x ) (w) + pD(f5))w) - qD(fa—)(x )(v)

If Tg is not transverse to_(T@)O at (x’, v) with v # 0, then B = 0 for all
u,w, F,G. Putting F = G = 0 we get

Df(x'y=0, D*f(x)(v) =0

Let x’ = (x1, x5, .. .xL’I) and v = (vj,va,...v,) thenforalli = 1,2,... .n
putting F' = x — x/, G = 0, we obtain v; = 0. This implies that v = 0 which
is a contadiction. [l

The next step is to prove that generically the images of the critical points of
g—z are distinct in C. I did not succeed to get this generic property by using
the transversality theorem, therefore I will prove it in the projective space of
dimension two, by an elementary arguments in algebraic geometry. The proof

in higher dimensions is the same. The following lemmas will be used:

Lemma A.0.1. Let ¢ : C* — C™ be a linear map and A be a subvariety of
C™. Then AN Im(¢p) = Ay U Ay U - - - is the decomposition of AN Im(¢) into
irreducible components, if and only if, ¢~ '(A) = ¢ ' (A U~ (A U--- is
the decomposition of ¢ ' (A) into irreducible components.

Proof: This is due to the fact that we can choose a basis for the vector space
C” such that ¢ : C" = C* x C" — Im(¢) = C™ is the projection on the
second coordinate. O
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Let

A = (x € C®| pxyxs — qx1xs = pxaxs — gx1xg = 0}
A =(xeCxs=1x =0}

A ={xe o PX4Xy — GX|Xs = PXgX3 — gX[Xg = XX — X3Xs = 0}

Lemma A.0.2. The following statements are true:

1. A’ has two irreducible components A, and A;

14

2. A" x A’ has four irreducible components A;; = A;

! : ; .
[xAj, 1, ] =71,C

3. For any linear subspace V of C'? of dimension greater than 8, A’ x A'NV
has also four irreducible components A NV, i j=rc

In fact, from this lemma we only need to the fact that, for any linear subspace
V of C!? of dimension greater than 8, A’,_ NV is irreducible.

Consider an affine open set C> ¢ CP(2) and let 0 = (0,0), 1 = (0, 1).
Define

A ={w=pGdF —gqFdG | (F,G) € P, x P, & w has singularity at 0 and 1}

Lemma A.0.3. The variety A has exactly four irreducible components A,,, A,
Ay, Aee. The component A,. contains all I-forms in A which have a radial
singularity at 0 and a center singularity at 1. In the same way other components
are defined.

Proof: For any p € C? define the linear map
¢p: Pa x Py > C°, ¢,(F,G) = (F(p), F(p), F,(p), G(p), G<(p), G, (p))

where the partial derivatives are considered in the fixed affine coordinate. Also
we define

¢ : Py x Py, - C2, ¢ = ($0.0)> P0.1))

We can assume that deg(F) > 2 and deg(G) > 1. With this hypotheses the
reader can check that dim(Im(¢)) > 8. Now our assertion is the direct conse-
quence of Lemmas A.0.1, A.0.2.
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Proof of Proposition 0.1: According to Proposition A.0.4, it is enough to prove
that generically the image of nondegenerate critical points are distinct. Let

FP
={(F,G) € Acc | (0) —q(l)}

Let (F,G) e P, x Py and have r nondegenerate cr1t1ca1 points py, -+, p,.
There is an small perturbatlon (F, G)of (F, G) such that = has r dlstmct critical
values. Suppose that this is not true, then we can assume that G,, _ has maximal
number »’ of critical values in some nelghbourhood of (F, G) and 7’ < r. There
exist two critical points py, p; of =7 such that Z= i (pl) = Gq (pz) and for any
(f‘ , G) near (F, ) with corresponchng critical point p,, p> near p; and p»,
respectively, we have
Fr I

a (p1) = E‘; (P2)

Let L be the linear automorphism of CP(2) which sends 0 and 1 to p; and p,,
respectively. In some neighbourticod U of (F o L, G o L) in P, x P, we have

A, .NU C SNU. Since A, is an irreducible variety we conclude that A.. C §
which is contradiction because

q

(xy“_‘+y“’;_a+x+ay)EACC\S =
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