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will prove that the action of the monodromy group on a single Lefschetz vanishing cycle 
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0 I n t r o d u c t i o n  

Let F and G be two homogeneous  polynomials  in C n+l . The following function 

is well-defined 

f p 
f -- �9 C P ( n ) \ R  --~ C, 

Gq 

F ( x ) ;  
f ( x ) -  G ( x ) q ,  x = [x0; X l ; " - ;  xn] 

deg(F) q and p and q are relatively pr ime where :R = {F = 0} N {G = 0}, ae~(C) --  p 

numbers.  We can view the fibration of  f as a codimension one foliation in C P  (n) 

given by the 1-form 

co = p G d F  - q F d G  
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306 HOSSEIN MOVASATI 

Let :Pa denote the set of homogeneous polynomials of degree a in C ~. 

Proposition 0.1. There exists an open dense subset U Of Pa X Pb such that for 

any (F, G) c U we have: 

1. {F = 0} and {G --- 0} are smooth varieties in CP(n)  and intersect each 

other transversally; 

2. The restriction o f f  to C e ( n ) \ ( { F  = 0} kJ {G = 0}) has nondegenerate 

critical points, namely Pl, P2 . . . . .  Pr, with distinct images in C, namely 

Cl, c2 . . . . .  cr respectively. 

Throughout the text the elements of U will be called generic elements. We 
will prove this proposition in Appendix A. Put 

C = {Cl,  c2 . . . . .  Cr} 

From now on, we will work with the function f which has the generic properties 

as in Proposition 0.1. The foliation f associated to f has the following singular 

set 

S i n g ( f )  = {Pl, P2 . . . . .  p,-, RI  

The value 0 (resp. ec) is a critical value of f if and only if p > 1 (resp. q > 1). 
Let A be a subset of {0, c~} which consists of only critical values. For example 

F p if p = 1, q = 1 then A is empty. The set of critical values of ~- is C tA A. 

Proposition 0.2. f is a C~  fiber bundle map over C \ ( C  U A). 
We will prove this proposition in Section 3. 
The above proposition enables us to use the arguments of Picard-Lefschetz 

Theory to study the topology of the fibers of f .  But, for example, the critical 
fiber {F = 0}, when p > 1, is not considered in that theory (as far as I know). To 
overcome with this obstacle, we will construct a ramification map r �9 C/~(n) 

1 ~ I 1 

C P (n) for the multivalued function f ~ .  The pull-back function f N = f p~ o r 
1 

of f ~ is univalued and has no more the critical values 0 and oc. Next, we 
will embed the complex manifold C/4(n) in some C P ( N )  in such a way that 
the pull-back foliation f is obtained by the intersection of the hyperplanes of a 
generic Lefschetz pencil with CP-(n). 

The study of the topology of an algebraic variety by intersecting it with hy- 
perplanes of a pencil has been started systematicly by Lefschetz in his famous 
article [121. We will use the arguments of this area of mathematics, specially 
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the articles [ 11], [3], to understand the topology of the leaves of f .  Note that the 

leaves of f do not contain the points of the set {F = 0} N {G = 0}. 
In the first section we will construct such ramification map r, and in the second 

section we will review Picard-Lefshetz Theory. In the third section we will apply 
our results to the foliation f .  

I want to use this opportunity to express my thanks to my advisor Alcides Lins 
Nero. Discussions with him during this work have provided valuable information 
and new ideas. Also, thanks go to Cesar Camacho and Paulo Sad for their 
interest and support. I also thank Eduardo Esteves for his comments on algebraic 
geometry. The author is also grateful to the exceptional scientific atmosphere in 
IMPA that made this work possible. 

1 Ramification Maps 

In the first part of this section we will introduce ramification maps with a normal 
crossing divisor. In the second part we will use a method which gives us some 

examples of ramification maps. This method will be enough for our purpose. 
The following isomorphism will be used frequently during this section: 

Leray (or Thom-Gysin) Isomorphism: If a closed submanifold N has pure 
real codimension c in M, then there is an isomorphism 

r : Hk_c(N)-~ H~(M, M\N)  

holding for any k, with the convention that H~ (N) = 0 for s < 0. Roughly 
speaking, given x E Hk-c(N), its image by this isomorphism is obtained by 
thickening a cycle representing x, each point of it growing into a closed c-disk 
transverse to N in M (see [3] p. 537). 

Let N be a connected codimension one submanifold of the complex manifold 
M. Write the long exact sequence of the pair (M, M\N)  as follows: 

�9 . . -+ Hz(M, M \ N )  ~ H~ (M\N) & HI (M) ----> ..- (1) 

where cr is the boundary operator and i is induced by inclusion. Since N has 
real codimension two in M, H2(M, M\N)  (~_ Ho(N) ~-- Z) is generated by the 
disk A transverse to N at a point y ~ N. By the above long exact sequence it 
follows that if a closed cycle x in M \ N  is homologous to zero in M then it is 
homologous to a multiple of or(A) = ~ in M\D.  The cycle 3 is called a simple 
loop around the point y c N in M\N.  
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1.1 Normal Crossing Divisors 

The following well-known fact will be used frequently: 

Proposition 1.1.1. Let  3 : lfI --+ M be a f ini te  cover ing  m a p  o f  degree p. Then 

the f o l l o w i n g  s ta tements  are true: 

1. r ,  : zrl (~r -+ zrx (M) is one to one, where  Zr l ( M )  denotes  the f u n d a m e n t a l  

group o f  M ;  

2. I f  Zr l ( M )  is abel ian then JF 1 (1~1) i s  also abel ian and  zq ( M ) p C 3, (ZCl (3))), 
where  rc l (M)  p = {?'P [ g c 7rl(M)}. 

Proof: The proof of  the first statement can be found in [ 19]. If  7z- 1 (M) is abelian 
then 

r , ( a b a - l b  -1)  = r , ( a ) 3 , ( b ) r , ( a ) - l r , ( b )  -1 = 1 

where a, b c ZCl(/l)). The map r,  is one to one and so a b a - l b  -1 = 1 which 

implies that ab = ba. 

For any closed path a c Zrl (M, x), its inverse image by 3 is a union of  closed 
paths al ,  a2, . . .  , ak in )1). Choose a point y i n / ~  and points xi in the path 
ai, for i = 1 . . . . .  k such that 3 ( x i )  = r (y)  = x and put bi = Ay~laiAi and 
b = b~b2. �9 �9 bk, where Ai is a path in / I )  which connects y to xi.  The image of  
Ai by 3 is a closed path in M and 7rl (M) is abelian, therefore 

3 , ( b )  = I--13,(Ai) 1 3 , ( a i ) T , ( A i )  = l--13,ai = a p 

The last equality is true because 3 has degree p and the paths ai 's  are the inverse 

image of a. [] 

In what follows, if the considered group is abelian, we use the additive notations 
of  groups; for example instead of a p we write pa .  

Definition 1.1.1. Let M be a complex manifold of dimension n. By a reduced 
normal crossing divisor we mean a union of finitely many connected closed 
submanifolds, namely D1, D2 . . . . .  Ds of  M and of codimension one, which 
intersect each other transversally i.e., for any point a c M there is a local 
coordinate (x, y) E C k x C ~-k, k ___ s around a such that in this coordinate a = 

(0, 0) and for any j = 1 . . . . .  k, the component Dij i s  given by x j  = 0, where 
{il . . . . .  ik} = {i [ a c Di}. We say this coordinate normalizing coordinate of 
D at a. We will denote a reduced normal crossing divisor by 
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When D has only one component  i.e., s = 1, then D is called simple. The 

following fact i.s a direct consequence of  the definition. 

P ropos i t ion  1.1.2. Let D be a reduced normal crossing divisor in a complex 
manifold M. For any subset I o f { l ,  2 . . . . .  s }, the set 

M I  = A i e l D i  

is a complex manifold of  codimension # I  in M and 

Dr = D A M 1  = ~ Di (3Mx 
ir 

is a reduced normal crossing divisor in MI. 
In what follows for a given function r : M --+ M, and for any subset x of  M 

(resp. a meromorphic function x on M) we denote by 2 the set r -~ (x) (resp. the 

meromorphic  function x o r on M). 

Defini t ion 1.1.2. Let M and 3) be two compact complex manifolds of  the 

same dimension, D = ~ Di be a reduced normal crossing divisor in M and 

P~, P2 . . . . .  Ps be positive integer numbers greater than one. The holomorphic 

map r : )l) ---> M is called a ramification map with divisor D and ramification 

i n d e x  Pi at  Di  if  

1. r -  1 (D) = / 3  is a reduced normal crossing divisor; 

2. For any point fi c 3)  and a normalizing coordinate (x, y) 6 C k x C n-k 

around a = r(f i) ,  there is a normalizing coordinate (2, Y) 6 C k x C n-k 

around h such that in these coordinates a = (0, 0), fi = (0, 0) and r is 
given by: 

(~, 7) -+ (x, y) ((~l~, -v,+ -p,~, = , x 2 - ,  . . . .  x/~ ) ,~)  

From the definition, we can see that 

1. The critical points and values of  r a r e / )  and D, respectively; 

2. r [;0\z5 is a finite covering map of  some degree p;  

3. For any subset I of  {1, 2 . . . .  , s}, if MI is not empty then FIielPi divides 
p. 
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We have also the subramification maps of  r ,  which is stated in bellow. 

Propos i t ion  1.1.3. Keeping the notations in Definition 1.1.2 and Proposition 
1.1.2, f o r  any ramification map r : IV1 --+ M and I a subset o f { l ,  2 . . . . .  s} , 
the restriction o f  7: to M:, namely 7:i, is a ramification map with divisor Dr and 
ramification multiplicity Pi at Di N M1, where i f~ I. Moreover, I f  T: is o f  degree 
p then 7:I is o f  degree P 

I -[ i~ l  P i  �9 

Propos i t ion  1.1.4. Let r : 1(4 -+ M be a ramification map of  degree p and 

with reduced normal crossing divisor D and let 7q ( M \  D ) be abelian. Then the 
fol lowing statement are true: 

1. rq (1(/1) is abelian; 

2. pzr~(m) C r , ( r q ( 3 ) ) ) ;  

3. I f  D is simple then 7:, : 7rl (/1)) --+ 7rl (M) is one to one; 

4. I f  D* = Y~.7*I D* is a reduced divisor in M such that D* + D is a normal 
crossing divisor, then D* + [) is also a normal crossing divisor. 

Proof :  The set D is a finite union of  some submanifolds of  M with real codi- 

mension greater than two, therefore every path in Jrj (M, x),  where x ~ M \ D ,  is 

homotopic to some path in 7rl ( M \ D ,  x) .  Now the first and second statements are 

the direct consequences of  Proposition 1.1.1, Definition 1.1.2 and the mentioned 

fact. 

Let  E be a small disk transverse to D at y ~ D and x ~ E N M \ D .  Let also 

a ~ Jrl (/~, 2), where r (2 )  = x, and r , ( a )  be homotopic to zero in M and a do 

not in te rsec t / ) .  

Considering the long exact sequence (1) and the fact that i(7:,(a)) = 0, we 

conclude that r , ( a )  is homotopic  to k~ in M \ D ,  where k is an integer number 

and ~ is a simple loop in E around y. By Proposition 1.1.1, this means that a is 

homotopic to a closed path around ~ in r -1 (E) ,  where r@ )  = y, which means 

that a is homotopic to the point ~ in M, and this proves the third statement. 

Let  a ~ ( n i ~ i D i ) n ( N i c ~ , D * ) , w h e r e I  C {1, 2 . . . . .  s } an d I*  C {1, 2 . . . . .  s*}. 
Choose a normalizing coordinate (x, x*, y) c C r • C ~* x C n-~-'* around a such 

that the components of  D (resp. D*) through p are represented by the coordinate 

x (resp. x*), where r = # I  and r* = #I*. Now the fourth statement is a direct 

consequence of  Definition 1.1.2. [] 
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1.2 Construction of Ramification Maps 

For any abelian group G and a positive integer number p define Gp = G / p G .  

We have the following properties with respect to Gp: 

Proposition 1.2.1. The fol lowing statements are true: 

1. Every morphism f : G -+ G f o f  abelian groups induces a natural mor- 

phism f p " G p -+ G~p; 

2. (Gp)q = G(p,q), where (p, q) denotes the greatest common divisor of  p 

and q; 

3. I f  f : G --+ G' is surjective then f p is also surjective. I f  f is one to one 

then f p may not be one to one and so we cannot rewrite exact sequences 

o f  abelian groups by this change o f  groups and maps; 

4. Let f : G -+ G' be a morphism of  abelian groups and p,q be two positive 

integer numbers. I f  f is one to one, pG '  C f (G) and (p, q) = 1 then fq 

is an isomorphism between Gq and G'q; 

Proof: We only prove the fourth statement, since others are trivial. There exist 

integer numbers x, y such that px  + qy = 1. 

For any a c G'  we have 

a - q(ay)  = p (ax )  ~ f ( G )  

and so fq is surjective. 

If fq(a)  = 0 then f ( a )  = qb for some b 6 G'. We have 

b = p (bx )  + f ( a y )  = f ( s ) ,  s c G 

which implies that f ( a  - qs)  = 0. The morphism f is one to one and so we 

have a = qs, which means that f,t is one to one. [] 

The following statement gives us an example of  ramification map with simple 
divisor. 

Proposition 1.2.2. Let M be a complex manifold with Jr1 (M)  = 0 and D be 

a simple divisor whose complement in M has abelian fundamental  group. Let 

also p'  be a positive integer number and 

re1 ( M \ D ) j  = Zt) 
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Then there exists a degree p ramification map with divisor D and ramification 
multiplicity p at D. 

Proof:  For any e c D define 7q ( M \ D ,  e) = {Oe} and 

1(/1 = U e e M T r l ( m \ D ,  e)p, 

2l) has the structure of  a complex manifold. For any [ae] c re1 ( M \ D ,  e) we must 
define a base open set and a chart map around [ae]. Consider two cases: 

1. e c M \ D  

Let Ve be a simply connected open neighbourhood of  e in M \ D .  The following 
function is well-defined: 

rl " Ve --+ 1(/1, rl(y ) : [AeyaeAey 1 ] 

where Aey is a path which connects e to y in V~. The image of  0 is a base open 
set around ae and 77 is a chart map. 

2. e 6 D  

Let (V~, (x, y)),  (x, y) 6 (C n-1 • C, 0), be a coordinate around e such that in 

this coordinate e = (0, 0) and D is given by y = 0. By Leray isomorphism, for 
any e' = (x', f )  c Ve the group n-j ( M \ D ,  e')p, ~ Zp is generated by a simple 
loop around (x ~, 0) in 

E(x,,0) = {(x, y) E (C n-I X C, 0) I x = x ' }  

In particular, we have p ] p'. This gives us the following construction of a chart 

map around [ae]: 

For any Y0 c (C, 0), let j (Y0) be a point in (C, 0) such that 

2Jr 
yP = j (yo)  p & 0 <_ a r g ( j ( y o ) )  < - -  

P 

and let 3y 0 be the path which connects Y0 to j (Yo) in {y e (C, 0) I YP = YP} in 
the clock direction. 

The image of 3y 0 by the map i (y)  = yP, (3yo)P, is a closed path with initial and 
end point yP and so the following function is well-defined 

/] . ( c n  1 X C, 0) ~ J~, t](X, y) : {X} x (~y)P 

The image of t/ is a base open set around the point e and q is a chart map. 
The reader can verify easily that 3) with these base open sets and chart maps 
is a complex manifiold and the natural function r �9 M -+ M is the desired 

ramification map. [] 
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Theorem 1.2.1. Let M be a complex manifold with 7g 1 (M) = 0 and D = 

}--~=1 Di be a reduced normal crossing divisor such that the complement of  each 

Di in M has abelian fundamental group. Let also p'~, p~ . . . .  p's be positive 

integer numbers which are prime to each other. Put Pi = #7rl ( M \ D i ) p  I. Then 

there is a degree PlP2" " Ps ramification map with divisor D and ramification 

multiplicity Pi at Di, i = 1, 2 . . . . .  s. 

Proof:  The proof is by induction on s. For s = 1 it is Proposition 1.2.2. 

Suppose that the theorem is true for s - 1. Let r : 3) --+ M be a degree pj 

ramification map with simple divisor D1 and multiplicity Pl at D1. We check 
the assumptions of the theorem for the divisor/)2 + . . .  + / ) s  in the manifold ~/, 
to apply the hypothesis of the induction. 

By the third part of  Proposition 1.1.4 r ,  : re1 (3)) -+ zr~ (M) is one to one and 
by hypothesis rot (M) = 0, therefore Jrl (3)) = 0. 

Applying Proposition 1.1.4 to the ramification map 77 ] ~t \ 6i' we see that Jr i (M \ D i) 

is abelian; also 4 of Proposition 1.1.4 implies tha t / )  is a normal crossing divisor. 

The morphism 

77, : rc1(3)\/)i) --+ 7rI(M\Di)  

is one to one and by 2 of  Proposition 1.1.4 

p l / r l  ( M \ D i )  C r , ( : r r l ( M \ D i )  

But g.c .d . (p l ,  Pl) = 1 and so by 4 of Proposition 1.2.1 we have 

7rl (~/ l \L) i )p;  = 7~1 ( M \ D i ) p ;  

S Now we can apply the hypothesis of the induction to 3) and D' = ~--~2 Di. There 
exists a degree P2 " Ps ramification map r '  : 3)'  -+ 5) with divisor D r and 
multiplicity Pi at Di, i = 2 . . . . .  s. The reader can check that the map r o r '  is 
the desired ramification map. [] 

1.3 Multivalued Functions 

To study multivalued functions, we will need to study a certain class of ram- 

ification maps. First, we give the precise definition of  multivalued functions. 
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Definition 1.3.1. Let r : /I) --+ M be a degree p holomorphic map between 
two complex manifold 21) and M i.e., r is a finite covering map of degree p out 
of its critical points. Every meromorphic function g on M is called a p-valued 
meromorphic function on M. Roughly speaking, the image of a point x 6 M 
under g is the set g ( r  -1 (x)). The map r is called the ramification map of g and 
the set of critical values of the map z- is called the ramification divisor of the 
multivalued function g. 

Given a complex manifold M, a meromorphic function f on it and an integer 
number N. Can we construct a ramification map of the multivalued function f ~- 
according to the above definition? Here we will answer to this question for some 
limited classes of meromorphic functions. 

Let f be a meromorphic function on the manifold M and r : M --+ M be 
S 

a ramification map with reduced normal crossing divisor D = }--~i=1 Di and 

multiplicity Pi at Di, i = 1, 2 . . . . .  s. Let also d i v ( f )  = Y~ mj  Vj. Then 

d i v ( f )  = Z a j m j V j  

where f = f o r ,  aj : Pi if Vj = Di  for some i and aj = 1 otherwise. 

Proposition 1.3.1. Keeping the notations used above, suppose that H 1 (2(4, ZN) = 

0 and N I d i v ( f )  i.e., N divides the multiplicities o f  the components o f d i v ( f ) ,  
where N is a positive integer number. Then f l is a well-defined meromorphic 

function on M. Therefore, we can view f ~ as a multivalued function on M with 

the ramification map r. 

Proof: For any point x 6 /~r there is a neighbourhood V/ of x such that in this 
neighbourhood f = gU, where gi is a meromorphic function on Vi. Let cij -- g-~ - -  g j ,  

then c N = 1. Since H 1 ( f / ,  ZN) = 0, there exist complex numbers ci's such that 
Cij : cj'Ci NOW g I vi = g-Ci's define the global meromorphic function which is the 

desired candidate for f-~. [] 

2 Picard-Lefschetz  Theory  

In 1924 S. Lefschetz punished  his famous article [12] on the topology of al- 
gebraic varieties. In his article, in order to study the topology of an algebraic 
variety, he considered a pencil of hyperplanes in general position with respect 
to that variety. Many of the Lefschetz intuitive arguments are made precise by 
appearance a critical fiber bundle map. In the first part of this section we intro- 
duce the basic concepts of Picard-Lefschez Theory and in the second part we 
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introduce the Lefschetz pencil and state our two basic theorems 2.2.1, 2.3.2. 

This section is mainly based on the articles [11],[3]. Homologies are considered 

in an arbitrary field of characteristic zero except it mentioned explicitly. 

2.1 Critical Fiber Bundle Maps 

The following theorem gives us a huge number of  fiber bundle maps. 

Theorem 1. (Ehresmann's Fibration Theorem [7]). Let f : Y --+ B be a 
proper submersion between the manifolds Y and B. Then f fibers Y locally 
trivially i.e., for  every point b ~ B there is a neighbourhood U orb and a C ~-  

diffeomorphism 4) : U x f - l ( b )  ~ f - l ( u )  such that f o 4) = zrl = the first 
projection. Moreover if  N C Y is a closed submanifold such that f ] N  is still 
a submersion then f fibers Y locally trivially over N i.e., the diffeomorphism 
above can be chosen to carry U x ( f  1 (b) n N)  onto f -~  (U) n N. 

The map q~ is called the fiber bundle trivialization map. Ehresmann's theorem 
can be rewrite for manifolds with boundary and also for stratified analytic sets. 
In the last case the result is known as the Thom-Mather theorem. 
In the above theorem let f not be submersion, and let C' be the union of critical 
values of f and critical values of f IN, and C be the closure of C' in B. By 
a critical point of the map f we mean the point in which f is not submersion. 
Now we can apply the theorem to the function 

f : Y \ f - l ( C )  -+ B \ C  = B' 

For any set K C B, we use the following notations 

Y K =  f - I ( K ) ,  Y K = Y K N N ,  L K = Y K \ Y ~  

and for any point c ~ B, by Yc we mean the set Y(c/. By f : (Y, N) --+ B we 
mean the mentioned map and we call it the critical fiber bundle map. 

Definition 2.1.1. Let A C R C S be topological spaces. R is called a strong 
deformation retract of S over A if there is a continuous map r : [0, 1] x S ~ S 

such that 

1. r(0, .) = id; 

2. r (1 , x )  E R & r ( l , y ) = y V x ,  y E S ,  y c R ;  

3. r ( t , x )  = x Vt e [O, 1], x e A .  
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Here r is called the contraction map. In a similar way we can do this definition 
for the pairs of spaces (R1, R2) C ($1, $2), where R2 C R1 and $2 C S1. 

We use the following important theorem to define generalized vanishing cycle 
and also to find relations between the homology groups of Y \ N  and the generic 
fiber Lc of f .  

Theorem 2.1.1. Let f : Y --+ B and C' as befor, A C R C S C B and S (~ C 
be a subset of  the interior of  A in S, then every retraction from S to R over A 

can be lifted to a retraction from Ls  to LR over LA. 

Proof: According to Ehresmann's fibration theorem f : Ls\c  --+ S \ C  is a C a 
locally trivial fibre bundle. The homotopy covering theorem, see 14,11.3 [19], 
implies that the contraction of S \ C  to R \ C  over A \ C  can be lifted so that LR\c 
becomes a strong deformation retract of Ls\c  over  LA\C. Since C n S is a subset 
of the interior of A in S, the singular fibers can be filled in such a way that LR 
is a deformation retract of Ls over  LA. [] 

Monodromy:  Let )~ be a path in B' = B \ C  with the initial and end points bo 
and bl. In the sequel by )~ we will mean both the path ~. : [0, 1] --+ B and the 
image of )~; the meaning being clear from the text. 

Proposition 2.1.1. There is an isotopy 

H :Lb0 • [0, 1] --+ Lz 

such that for all x c Lb0, t 6 [0, 1] 

H(x ,  O) = x, H(x ,  t) ~ Lz(t) (2) 

For every t ~ [0, 1] the map ht = H(., t) is a homeomorphism between Lbo and 
Lz(t). The different choices of  H and paths homotopic to )~ would give the class 

ofhomotopic maps {hz : Lbo --+ Lbl} where hA = H(.,  1). 

Proof: The interval [0, 1] is compact and the local trivializations of Lz can be 
fitted together along y to yield an isotopy H. [] 

The class {hz : Lb0 --+ Lb~ } defines the maps 

h~ : 7r,(Lbo) --+ Yc,(Lbi) 

hz : H,(Lbo) --+ H,(Lbl) 

In what follows we will consider the homology class of cycles, but many of the 
arguments can be rewritten for their homotopy class. 
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bi 

Figure 1: 

Definition 2.1.2. For any regular value b of f ,  we can define 

h " 7"( 1 ( B ' ,  b) x /4, (Lb) --+ /4, (Lb) 

h(X, .) = 

re1 (B', b) is called the monodromy group and its action h on H,(Lb)  is called 
the action of monodromy on the homology groups of Lb. Following the article 
[3], we give the generalized definition of vanishing cycles. 

Definition 2.1.3. Let K be a subset of  B and.b be a point in K \ C. Any relative 

k-cycle Of L K modulo Lb is called a k-thimble above ( K,  b) and its boundary in 

Lb is called a vanishing (k - 1)-cycle above K. 

Let us consider the case that we will need. Let Y be a complex compact 
manifold, N be a submanifold of Y of codimension one, B = C and f be a 
holomorphic function. The set of critical values of f ,  C, is a finite set. 
Let ci c C (which is an isolated point of C in C), Di be an small disk around 

C i and s be a path in B' which connects b 6 B' to bi E ODi. Put )~i the path s 
plus the path which connects bi to  Ci in Di (see Figure 1). Define the set K in 
the three ways as follows: 

)~i S = I  

K" = ,ki [.-J Di s = 2 (3) 

~i U O Di S = 3 

In each case we can define the vanishing cycle in Lb above K ' .  K I and K 3 a re  

subsets of K 2 and so the vanishing cycle above K 1 and K 3 is also vanishing 
above K 2. In the first case we have the intuitional concept of vanishing cycle. If 
ci is a critical point of f IN we can see that the vanishing cycle above K 2 may 
not be vanishing above K 1 . 

The third case gives us the vanishing cycles obtained by a monodromy around 
ci. In this case we have the Wang isomorphism 

v " H k _ I ( L b ) - 2 > H ~ ( L K ,  Lb)  
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Roughly speaking, The image of the cycle a by v is the footprint of o~, taking 
the monodromy around ci. Let Yi be the closed path which parametrize K3 i.e., 
gi starts from b, goes along ~i until bi, turn around ci o n  ODi and finally comes 
back to b along )~i. Let also hye : Hk (Lb~) --~ Ilk (Lb~) be the monodromy around 
the critical value ci. It is easy to check that 

f f  o v = h ) ~ i - I  

where o- is the boundary operator, therefore the cycle ~ is a vanishing cycle above 
K 3 if and only if it is in the image of h~i - I. For more information about the 
generalized vanishing cycle the reader is referred to [3]. 

Lefsehetz Vanishing Cycle: Let f have a nondegenerate critical point Pi in 
Y \ N  and Pi be the unique critical point of f �9 (Y, N) --+ C within Y~i, where 

Ci = f (Pi). 

Proposition 2.1.2. In the above situation, the following statements are true." 

1. For all k # n we have Hk(Lzi, Lb) = O. This means that there is no 

(k - 1)-vanishing cycle along )~i for k ~= n; 

. H, (Lz i , Lb ) is infinite cyclic generated by a hemispherical homology class 
[Ai] which is called the Lefschetz thimble and its boundary is called the 

Lefschetz vanishing cycle; 

. Let )~i be another path which connects b to c i in B' and is homotopic to 

)~i in B' (with fixed initial and end point), then we have the same, up to 

homotopy and change of  sign, Lefschetz vanishing cycle in Lb. 

For the proof of above Proposition see 5.4.1 of [11]. By a hemispheri- 
cal homology class, we mean the image of a generator of infinite cyclic group 
14, (B n, S ~-1) under the homeomorphism induced by a continuous mapping of 
the closed n-ball B n into L~ i which sends its boundary, the (n - 1)-sphere S "-1 , 
to Lb. Let B be a small ball around Pi such that in B we can write f in the 
Morse form 

= c, + x, + + . . .  + 

For b such that b - ci is positive real, the Lefschetz vanishing cycle in the fiber 

Lb is given by: 

2 = b - c i }  ~i = ((Xl, . . -  , xn) e I~ '~ I xj 
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which is the boundary of the thimble 

Z 2 < b - c i }  A i  = {(Xl,  - - -  , Xn) C IR n I xj _ 

In the above situation the monodromy hi around the critical value ci is given by 
the Picard-Lefschetz formula 

h ( 3 ) = 3 + ( - 1 ) ~  < 6 , 3 i  >6 i ,  3 C H n  l(Lb) 

where < . , .  > denotes the intersection number of two cycles in Lb. 

Remark: In the above example vanishing above K 1 and K 2 a re  the same. Also 
by the Picard-Lefschetz formula the reader can verify that three types of the 
definition of a vanishing cycle coincide. In what follows by vanishing along the 
path )~i we will mean vanishing above K 2. 

2.2 Vanishing Cycles as Generators 

Now let {Q, c2 . . . .  , cs} be a subset of the set C of critical values of f ,  and 
b c cXC. Consider a system of s paths )~j . . . . .  )~s starting from b and ending 
at cl,  c2 . . . . .  es, respectively, and such that: 

1. each path )~i has no self intersection points ; 

2. two distinct path A, i and )~j meet only at their common origin )~i ( 0 )  = 

)~j (0) = b (see Figure 2). 

This system of paths is called a distinguished system of paths. The set of van- 

ishing cycles along the paths )~i, i = 1 . . . . .  s is called a distinguished set of 
vanishing cycles related to the critical points cl, c2 . . . . .  cs. 

Theorem 2.2.1. Suppose that Hk- l  (L~x{a }) = O f o r  some positive integer num- 

ber k and a 6 C, which may be a critical value. Then a distinguished set 

o f  vanishing (k - 1)-cycles related to the critical points in the set C \{a}  = 

{Q, c2 . . . . .  cr} generates Hi~-l (Lh). 

Proof: We use the arguments of the article [11] Section 5. Note that in our case 
the fiber is Lb = YbXN and not lb. 

We consider our system of distinguished paths inside a large disk D+ so that 
a 6 CXD+, the point b is in the boundary of D+ and all critical values ci's in 
C\{a}  are interior points of D+. Small disks O i with centers ci i = 1, . . .  , r 

are chosen so that they are mutually disjoint and contained in D+. Put 

Ki  = )vi [,..J Di ,  K = t._Ji'=iK i 
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b 

Figure 2: 

The pair (K, b) is a strong deformation retract of (D+, b) and so by Theorem 
2.1.1 (L~;, Lb) is a strong deformation retract of (LD+, Lb). The set 2 = U)~i 
can be retract whithin itself to the point b and so ( L x ,  Lb) and (LK, L 2) have 
the same homotopy type. By the excision theorem (see [14]) we conclude that 

Hk(LD+, Lb) ~ ~ Hk(LK~, Lb) ~-- ~ Hk(LD~, Lb~) 
i = 1  i 1 

Write the long exact sequence of the pair (LD+, Lb)" 

�9 .. --+ Hk(LD+) --+ Hk(LD+, Lb) ~ Hk- l (Lb)  --+ H~_1(LD+) --+ . . .  (4) 

Knowing this long exact sequence, it is enough to prove that Hk_ l (L D+) = 0. A 
contraction from C\{a} to D+ can be lifted to the contraction of L~\{a } to LD+ 
which means that LD+ and L~\{a } have the same homotopy type and so by the 

hypothesis Hk-1 (L D+) = O. [] 

2.3 Lefschetz  Penci l  

In this section we repeat some notations and propositions of [11] Section 2. All 
the proofs can be found there. 

The hyperplanes of C P  (N)  are points of the dual projective space CP~(N). 
We use the following notation: 

Hy C C P ( N )  , y c CP~(N) 
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Let X be a closed irreducible subvariety of C P ( N )  and let X e C X be the 
nonempty open subset of its regular points. Define 

V' x = {(x, y) 6 C P ( N )  x CP~(N) I x 6 Xe & Hy is tangent to X at x} 

This is a quasiprojective subset of C P ( N )  x CP~(N), because the set 

9 = {(x, y) E C P ( N )  x CP~(N) ] 

x is a singular point of X or Hy is tangent toX at x} 

is closed in C P ( N )  • CP~(N) and V' x is a zariski open in ~). The closure Vx of 
V' x is called the tangent hyperplane bundle of X. Consider the second projection 

7f2:  gx ~ C.P~(N), (x, y) --+ y 

its image X is a closed irreducible subvariety of CP~(N) of dimension at most 
n - 1 which is called the dual variety of X. If X is a smooth variety then 

~; = {y e CP~(N) I H~' is tangent to x at some point } 

In general x has singularities even i fX  does not. Ifdim(Y;) = N - 1 the degree 
of X is well-defined and if dim(X)  < N - 1 we define deg(~;) = O. 

Proposition 2.3.1. (Duality Theorem [11] 2.2) The tangent hyperplane bundles 
of X and X coincide 

Vx = V 2 and hence X = X 

A pencil in C P  (N) consists of all hyperplanes which contain a fixed (N - 2)- 
dimensional projective space A, which is called the axis of the penc!l. We denote 
a pencil by {Ht}t~a or G itself, where G is a projective line in C P ( N ) .  

The pencil {Ht}t~6 is in general position with respect to X if G is in general 
position with respect to ~'. From now on, fix a pencil {Ht }tea in general position 
with respect to X. 

Proposition 2.3.2. ( [11], 1.6.1) The axis A intersects X transversally. 

For the pencil {Ht}tca put 

X t  = X O t t t ,  L t  = X t \ A ,  C = G N X  = {Cl,C2 . . . . .  Cr}, X ' =  A f~X 
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We will sometimes parametrize G by C and denote the pencil by {Ht}r In 
order to have a map whose level surfaces are the Xt's, we need to do a "blow up" 
along the variety X'. Let 

Y = { ( x , t )  6 X •  

There are two projections 

x P + _ y f  ~ 

Put Y' = p-~ (X') = X' x C then 

Proposition 2.3.3. ([11] 1.6.2, 1.6.3, 1.6.4) I f  X is a smooth variety then 

1. The modification Y of X is smooth and irreducible; 

2. p is an isomorphism between Y \ Y '  and X \ X '  and also an isomorphism 

between f - I  (t) and Xt; 

3. For every critical value ci, i = 1 . . . . .  r of  f ,  the hyperplane Hc~ has 
a unique tangency of  order two with X which lies out of A. The other 
hyperplanes He, c ff C are transverse to X; 

4. The projection f �9 Y --+ C has r = deg(f() nondegenerate critical points 
Pl . . . . .  p,. in Y \  Y' such that f (Pi) = ci 's are distinct values in C. 

Now we have the critical fiber bundle map f : (Y, Y') --+ C. Note that f It' 
has no critical points. We conclude that the natural function f �9 X \ A  --+ C is a 

fiber bundle map over C\C.  

Definition 2.3.1. We can view f �9 X --+ C as a meromorphic function on X. 
f is called the Lefschetz meromorphic function. The foliation induced by the 
pencil { Ht }ic~ is called the Lefschetz foliation. 

Proposition 2.3.4. The pencil { Hr } t ~  is in general position with respect to X if 

and only if 

1. Choosing a good paramerization of  G, ( f ) ~  ----- f l(oc) and (f)o = 
f -1  (0) are smooth irreducible varieties and intersect each other transver- 

sally and ; 

2. f has only nondegenerate critical points with distinct images. 
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Proof: If {Ht}tc6 is in general position with respect to X, then the axis of the 
pencil, A, intersects X transversally. Knowing that 

( f ) 0 = H o G X ,  ( f ) o ~ = H ~ n X ,  / 4 0 N H ~ = A  

we conclude that ( f )0  and ( f ) ~  intersect each other transversally. The second 
statement is Proposition 2.3.3, 4. 
Now suppose that f satisfies 1 and 2. Suppose that G is not in general position 
with respect to X at x E G N X. We can disitinguish two cases 

1. x is a smooth point of J) and G is tangent to X at x; 

Let H~. be a hyperplane which passes through x, contains G and is tangent to J) 
at x. By Duality Theorem the information 

x c G C Hs, Hs is tangent to J( at x 

can be translated to 

s ~ A C H x ,  Hx is tangent to X at s 

But this contradicts the first statement. 

2. x is a singular point of )); 

This case also cannot happen. By the argument used in the proof of 1.6.4 of [11], 
we have: x is a smooth point of X, if and only if, Hx has a unique tangency point 
of order two with X. [] 

Theorem 2.3.1. Suppose that the pencil {Ht}te6 is in general position with 

respect to X and Let a be a point in C \ C .  Then for  every b c C \ C  

1. Hi(Lb) ~-- H i ( X \ H , ) ,  i 7~ n, n - 1 

2. I f  H,~ I (X \Ha)  = O, then a distinguished set of  vanishing cycles related 
to the critical values C l, c2 . . . . .  cr generates the group Hn-l ( Lb ). 

Proof: This is a direct consequence of Theorem 2.2.1 and Theorem 2.1.2 and 
the long exact sequence (4). [] 

Blow up: Fix the point b E CP(n) .  All lines through b in CP(n)  form a 
projective space of dimension n - 1, namely P. Define 

ClY(n) = {(x, y) E C P ( N )  • P [ x c y} 
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Ct~(n) is a smooth subvariety of  C P  (N) x P.  We have two natural projections 

CP(n) L C (n) P 

The reader can check that f is an isomorphism between i 1 (b) and P and i is 
an isomorphism between CP(n)\{b} and C / r ( n ) \ i  -1 (b). C/~(n) is called the 
blow up of  C P ( n )  at the point b. Roughly speaking, we delete the point b from 
C P  (n) and substitute it by a projective space of  dimension n - 1. 

Theo rem 2.3.2. Suppose that the pencil {Ht}tc~ is in general position with 
respect to X and let b c C\C, then 

1. For every two Lefschetz vanishing cycles 6o and 61 in Xb there exists a 
closed path s in C \C  with initial and end point b and such that 

h~ (6o) = -t-61 

. 

where hz is the monodromy along the path s 

I f  Hn-l(X\Ha) = O for some a ~ C \ C  and Hn_I(X~) 7 ~ 0 then for every 
Lefschetz vanishing cycle 6 in Lb, the action of  the monodromy group on 
6 generates Hn_I (Lb). 

Proof :  The first statement and its proof  can be found in 7.3.5 of  [11]. But we 
can give a rather short proof for it as follows: 
Let us consider the pencil {Ht}t~c as the projective line G in Cf i (n) .  Let 60 and 
61 vanish along the paths s and s which connect b to critical values co and cl 
in G, respectively. The subset Z C J) consisting of  all points x such that the 
line through x and b is not in general position with respect to J~ is a proper and 
algebraic subset of  )). Since X is an irreducible variety and Co, ci E X \ Z ,  there 
is a path w in J ) \ Z  from co to cl. Denote by Gs the line through b and w(s). 
After blow up at the point b and using the Ehresmann's theorem, we conclude 

that: 
There is an isotopy H : [0, 1] x G --+ U,G,  such that 

1. H(0 ,  .) is the identity map; 

2. for all s 6 [0, 1], H(s, .) is a C ~ isomorphism between G and G~ which 
sends points of  )) to J); 

3. For all s 6 [0, 1], H(s, b) = b and H(s, cl) = w(s). 
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Let )~'s = H(s,  )~0)- In each Lefschetz pencil {Ot}tEGs the cycle 60 in Xb vanishs 
along the path U s in w (s), therefore 30 vanishes along ;~'1 in C l = w (1). Consider 
)~l and )~'1 as the paths which start from b and end in a point bl near cl and put 
)~ = )~'1 - ;~l. By uniqueness of the Lefschetz vanishing cycle along a fixed path 
we can see that the path )~ is the desired path. 
Now let us prove the second part. Unfortunately the above argument is true for 
the fiber Xb and not Lb. Therefore by Theorem 2.3.1 we can only conclude that 
the action of the monodromy on a vanishing cycle generates Hn 1 (Xb). Since 
H,,-I (Xb) r 0, there is no homologous to zero vanishing cycle in Xb. Let us 
prove that the intersection matrix [ < 6i, 6 j  > ] r x r of vanishing cycles is connected 
i.e., for any two vanishing cycles 6 and 6' there exists a chain 6i l  , 6i2 . . . .  , 6ie of 
vanishing cycles with the following properties: 

6 = 6it , 6 '  = 6i(, < 6ik, 6ik+t > ~ =  0 ,  k = 1, 2 ,  . . .  , e - -  1 

If 6 ' is not connected to 6 as above then by Picard-Lefschetz formula 6' has 
intersection zero with all cycles obtained by the action of the monodromy on 6. 
But the action of the monodromy on 6 generates H,,-1 (Xb). Xb is compact and 
so 6' = 0 in Xb which is a contradiction. Now using Picard-Lefschetz formula 
in Lb we see that the action of the monodromy on a vanishing cycle generates 
any other vanishing cycle in Lb. By Theorem 2.3.1, vanishing cycles generate 
Hn-l(Lb) and so the second statement is proved. [] 

3 Topology of Integrable Foliations 

In this section we will combine the results of the sections l and 2 to generalize 
Theorem 2.3.1 and Theorem 2.3.2 for the foliation f ( p G d F  - q F d G ) .  Note 
that the first Integral of .T has the critical fibers {F = 0} and {G = 0}, if 
p > 1 and q > 1 respectively, which don't appear in the Lefschetz foliation. 
Homologies are considered in an arbitrary field except in the mentioned cases. 

3.1 Integrable Foliations and Lefschetz Pencil 

Let f ( p G d F  - q F d G )  be an integrable foliation satisfying the generic condi- 
tions of Proposition 0.1. Put 

D I = { F = 0 } ,  D 2 = { G = 0 } ,  Lb = \ Gq ] ( b ) \ R ,  Xb = Lb U R 
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Consider the reduced normal crossing divisor D = D1 + D2 and the positive 
integer numbers q, p such that 

deg(F)  = qd, deg(G)  = pd,  g .c .d . (p ,  q) = 1 

It is a well-known fact that the fundamental group of  the complement of  any 
smooth hypersurface V in C P  (n) is isomorphic to Zdeg(V) and therefore 

Yrl ( C P ( n ) \ D l ) q  = Z q  , 7"( 1 (CP(n ) \D2)p  = ~p 

By Theorem 1.2.1 there exists a degree pq ramification map 

r :C/if(n) ~ C P ( n )  (5) 

with divisor D and ramification multiplicities q and p in D~ and D2, respectively. 
We can view the polynomials F ,  G and the coordinates xi, i = 0 . . . . .  n - 1, as 
meromorphic functions with the pole divisor H ~ ,  the hyperplane at infinity. We 
have 

d i v ( F )  = q(D1 - d./4oc) 

d iv (G)  = p(192 - d.ffI~) 

~1 ~ 1  
therefore F q and G 7 are well-defined meromorphic functions on C/if(n). Define 

j �9 C/~(n)\/4oc -+ C 2, j ( x )  = (F~,  G~) 

The following proposition shows that the different sheets of  C/if(n) are due to 
~ 1  ~ 1 

the different values of  F ~ and G 7. 

Propos i t ion  3.1.1. For any x c C P (n ) \ H ~  the map j takes distincts values in 

r -1 (x). ( I f x  ~ H ~  choose another hyperplane as the hyperplane at infinity). 

Proof: The set 

S = {x E C P ( n )  [ 3a, b c Ct~(n) s.t. r ( a )  = r (b)  = x, a (= b, j ( a )  = j (b)}  

is an open closed subset of  C P (n), because the values of  F ~ ( G ~ ) in r -  ~ (x) are 
the same up to multiplication by some q-th (p-th) root of  the unity. Choosing 
normalizing coordinates like in Definition 1.1.2 around the points a 6 D1 A D2 
and r -1 (a), we have 

(xl, x2) J~- (xl, x2, y) -5-> (x q, x p, y) (6) 

r has the degree pq and so S has not any point near a, therefore S is empty. [] 
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The foliation f = r* ( f )  in Cf i (n )  is also integrable and has the first integral 
- !  

F q  with divisor 
G F  

~ I 
F~ 

d i v ( - z T )  = D1 - t52 
G7 

For every b e C, let 

F?  - ~ 
L/~ = (--z-T)-I(b)\J~., 2/~ = L~ U'R, R =  DI OD2 

G5 

The following proposition states the relations between the leaves of f and f .  

Proposi t ion 3.1.2. The fol lowing statements are true: 

1. r maps R to R biholomorphically; 

2. r IL0:L0 -+ L0 (r IGo: /~oo --+ Loo) is afinite covering map o f  degree q 
(repectively p);  

3. For any c # O, oc, r maps I~ to Lcpq biholomorphically. 

Proof: The first and second statements are the results obtained in Proposition 
1.1.3. For the third it is enough to prove that r ]L is one to one. 

l - !  -_L - !  

Fc~ (x) c ,, (x) is a constant which If  r (x)  = r (y )  and F----~'~ (X) = [--~-q! (Y) then ~ -- - i  
G / ,  G P F ,t (y) G 1, (y) 

~ t  - I  
is p-th and q-th root of the unity, but g.c .d . (p ,  q) --= 1 and so F~ (x) = F# (y) 

~ i ~ I 
and G-~(x) = GF (x). By Proposition 3.1.1 we conclude that x = y. E~ 

Define v - Cf i (n)  --+ C P ( N )  by 

�9 - 1  ~ I 
it) il " d ' F ? ( A ) ; G ? ( A ) ] ,  i o +  +i, ,  d v (A )  = [.. " x o x I �9 ~''' . , 

N - 2 is the number of  monomials of degree d with the variables x0, x ~ . . . .  , x~. 

Proposi t ion 3.1.3. v is an embedding. 

Proof: Consider the following commutative diagram: 

C P ( n )  ~ C P ( N - 2 )  

TI" iI" 
C p~(n) _Z> C P ( N )  

(7) 
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where vd is the well-known veronese embedding and i is the projection on the 
first N -  1 coordinates. 

1. v is one to one; 

Ira,  b c CP-(N)and v(a) = v(b)then Vd(r(a)) = Vd(r(b))andso r(a)  = r(b) 
and by Proposition 3.1.1 we conclude that a = b. 

2. v is locally embedding; 

For any a E C/~(n) choose normalizing coordinates around a and r(a).  For 
example, i r a  c Dl A D2 the diagram (7) has the form 

vd y) (x q, x p, y) --> 

1" t (8) 

(Xl, X2, y) -~ (va(x q, x p, y), xl, x2) 

we have to prove that the bottom map is an embedding at 0. 

i ] 
�9 �9 ~-y 

Dr(0)  = 1 0 0 . 
0 1 0 

vd is the veronese embedding and so Dr(O) has the maximal rank rank n. For 
other points the proof is similar. [] 

The foliation .T is obtained by hyperplane sections of the following Lefschetz 
pencil 

{ m t } t c ~ ,  O t • {[x; X N ;  XN+I] C CP(N) [ X N ---- tXN+I} 
_1 

F q  /~)1 and /)2 intersect each other transversally in 75,. = /~)1 (-'1 /[7)2, and 77- has 
G P  

nondegenerate critical points with distinct images, therefore {Ht }f ~g is in general 

position with respect to X = v(Cfi(n)). 
Now consider the following commutative diagram 

CP~(N) ~ CP(n) 
F q FP + --+ 

- Gq 
G P 

- -  i - -  

C ~ C 

(9) 

~1_ 

where i(z) = z pq. Let C denote the set of critical values of 7r-,Fq then by 
G~ 

Proposition 3.1.2, we conclude that 
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_1 

Corollary 3.1.1. Fp and Fq are fiber bundle maps over C \ ( C  U A) and C\C,  
G P 

respectively. 

Corollary 3.1.2. Let b c C be a regular value of  F~' -dT" Then for every two 
Lefschetz vanishing cycles 31 and 32 in Xb there is a mondromy h)~ such that 

hz(31) = ~32 

Proof: Fix a point/~ e i -  l (b). By diagram 3.2, we have the following commu- 
tative diagram 

~(~ \d , z ; )  x H. (2  s) ~ H.(..'?S) 
i , $  r , $  r , $  

r c I ( C \ ( C U A ) , b )  x H,(Xb) ---> H,(Xb) 

(10) 

~i = r*(3i), i = 1, 2 are two Lefcshetz vanishing cycles in J~g. By Theorem 
2.3.2, there exists a path 2 E Zrl (C\C,  b) such that the related monodromy takes 
gl to ~g2. We can assume that this path doesn't pass through 0 and ec. Now by 
the above diagram the path i (~) is the desired path. [] 

3.2 More About the Topology of Integrable Foliations 

Here we want to prove a theorem similar to Theorem 2.2.1 for the foliation 
_ T ( p G d f  - q f d G ) .  

Let r : CP(n)  -+ CP(n)  be a ramification map with simple divisor D = 
{G = 0} and multiplicity p at D. 

div(G)  = p ( D  - d . f t~ )  

Therefor G ~ is a well-defined meromorphic function on C/~(n). We denote by 

d the set of critical values of @ in C\{oo}. Also 
G P 

= {Y = 0) n {0  = 0} 

The foliation .T = v * ( f )  has the first integral _=~_Fq. Note that 0 E C is no more 

a critical point of --~-F, z . Consider the following commutative diagram 
G P 

ClP(n) --~ CP(n)  
F p 

- Gq G P 
- -  [ - -  

C ---> C 
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where i (z) = z p. Like before we have 

Propos i t ion  3.2.1. The following statements are true: 

1. _P--w- is a fiber bundle map over C \  (C U {oc}); 
GP 

2. ~ maps R (Loo) to R (respectively L ~ )  biholomorphically; 

3. r IL0: Lo --+ Lo is a finite covering map of  degree q; 

4. For any c ~ O, oc, r maps L~ to L~p biholomorphically. 

Theo rem 3.2.1. I f  n = 2 then a distinguished set of Lefschetz vanishing cycles 
related to the critical points in the set C generates the first homology group of  a 

~ 

regular fiber Lb of  - ~ .  
GP 

Proof: (n=2) By Theorem 2.3.1 it is enough to prove that/4,2_ 1 (C P-(n)\/5) = 0. 
According to Proposition 1.1.1, r .  : Hn_~(CP-(n)\ / ) ,  Z) --+ H , _ I ( C P ( n ) \ D ,  Z) 
is one to one, and we also know that Hn-1 ( C P ( n ) \ D ,  Z) = Zaeg(O), which im- 
plies that Hn 1 (CP(n) \D)  = 0 in an arbitrary field. These facts imply what we 

want. [] 

Coro l la ry  3.2.1. Let b be a regular value of  FP -d7 and A be a set of  distinguished 
Lefschetz vanishing cycles related to the critical points in the set C. Let also h 
be the monodromy around the critical value O. Then the set 

A U h ( A )  U . . . U h  p I(A) 

generates Hn- i ( L b ). 

Proof:  Let 7~ be a distinguished set of  Lefschetz vanishing cycles as in Theorem 
3.2.1. We can see easily that r(/X) = A U h(A)  U - . .  U hp-I  (A). [] 

The fiber Lb does not contain the points of  {F = 0} N {G = 0}, so this corollary 
partially claims that the cycle around a point of  {F = 0} f? {G = 0} is a rational 
sum of vanishing cycles. In the initial steps of  this article my objective was to 
prove the following corollary. 

Coro l la ry  3.2.2. Suppose that n 2 and the generic fiber of  FP has genus = ~4 
greater than zero. Then the action of  the monodromy group on a Lefschetz 
vanishing cycle generates Hn-1 (Lb). Let o9~ be a meromorphic 1-form in the 
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projective space of  dimension two whose pole divisor is a union of some fibers 
of Fp ~ .  I f  

tO~l : 0  

for  a continuous sequence ~t of  vanishing cycles, then oJ1 restricted to the closure 

of each fiber ~ FI, Oy ~ is exact. 

We recall that in the above corollary we have assumed the generic conditions 
of Proposition 0.1. 

Proof: The first part is a direct consequence of Theorem 2.3.2 and Proposition 
3.1.2. For the second part it is enough to prove that 

tCOl : 0  

For all 1-cycles in the fibers of Fp 
Using the ramification map r, the reader can verify that: 

Proposition 3.2.2. Let Do be a small disk around 0 and 1 be the straight line 

which connects 0 to bo, a point in 0 Do, then 

I. (Ll, Lbo) is a strong deformation retract of  (LDo, Lbo); 

2. There is a C ~ function cb : l • Lb ---> Ll such that ~b is a f b e r  bundle 

trivialization on l\{0} and the restriction of  dp to {0} x Lbo, namely g, is a 

finite covering map of degree p from Lbo to Lo ; 

3. There is a monodromy h : Lbo --> Lbo around 0 such that for  every x E Lbo 
we have 

g - l ( g ( x ) )  : {x, h ( x ) , . . .  , hp-l(x)} 

in particular h p = I and g o h = g. 

A Generic Properties 

Here we will prove Proposition 0.1. The main tool is the transversality theorem 
which appears both in Algebraic Geometry and Differential Topology. We will 
work in the category of algebraic varieties but the whole of this discussion can 
be done in the C ~ category of manifolds. 
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In the sequel by T X  we denote the tangent bundle of the variety X and by 
(TX)o we denote the image of the zero section of the vector bundle TX.  For 
any x c X we have 

Tox(TX) = Tox(TX)o G Tox(TxX) 

and so we can define 

d:  Tox (TX)  --~ To~ (TxX) 

d is the projection on the second coordinate. We will essentially use the following 
transversality theorem in algebraic geometry: 

Theorem 2. Let f : X --+ Z and Jr : X --+ A be morphisms (C cc functions) 

between smooth varieties (resp. C ~ manifolds) and W be a smooth subvariety 

(resp. submanifold) of Z. Also assume that Jr is surjective and f is transverse to 

W, then there exists an open dense subset U of A such that f ]~r-J (~) is transverse 

to W for every ot c U. 

Proof: This theorem is a consequence of Bertini's theorems ( see [17]). For 
more information about the transversality theorem the reader is referred to [1 8] 

and [1], 
Recall that f : X --+ Z is transverse to W if for every x c X with y = 

f ( x )  ~ W, we have TyW + (Txf)(Tx(X))  = Ty(Z). This is equivalent to 
this fact that f l (w)  is empty or is a smooth subvariety of X of dimension 
dim (X) - dim (Z) + dim (W). The following well-known proposition will be 

used. 

PropositionA.0.3. Let f : X --+ Z be a morphism between two smooth varieties 

and d im(Z)  = 1. Then the critical points of f are nondegenerate, Or and only 

if T f  : T X \ ( T X ) o  --+ T Z  is transverse to (TZ)o. 
Let 

X = {(F, G ,x )  ~ Pa • Pb • CP(n)  [ F(x)  (= O, G(x) r O} 

F p 
g " X --+ C, g(F, G, x) = ~-z(x) = f ( x )  

r 

and 27X be the subvector bundle of T X  whose fiber T(F,O,x)X is the tangent 
space of {(F, G)} x CP(n) .  Let also i?g be the restriction of Tg to i?X and 
zr �9 7~X --+ Pa x Pb be the projection on the parameter (F, G). 
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F p Proposition A.0.4. For a generic pair  (F, G), the critical points o f  -tit in 
C P ( n ) \ ( { F  = 0} U {G = 0}) are nondegenerate. 

Proof: According to the transversality theorem and Proposition A.0.3 it is 
enough to prove that 

is transverse to (TC)0. In a local coordinate around (F, G, x ~, v) c TX we have 

F p F p 
T g ( F ,  G, x', v) = ( ~ ( x ' ) ,  D ( ~ ) ( x ' ) ( v ) )  

B = d o T(F,G,x,,v)(Tg)(F , G, u, w) = 

, q D ( f G ) ( x ' ) ( v )  Da f ( x ' ) (v ) (u )  + D f  (x ' ) (w)  + p D ( f  -~)(x  )(v)  - 

If  5Cg is not transverse to (TC)0 at (x', v) with v # O, then B = 0 for all 
u, w, F,  G. Putting P = G = 0 we get 

D f  (x') = O, D2 f (x ' ) (v)  = 0 

I . I ~ ) t  . , L e t x '  = (x ' l , x2 ,  ..x,~) and = @i,  v2 . . . .  vn) then fo r  a l l i  = 1 , 2 , . .  n 
I putting P = x - xi, G = 0, we obtain vi = 0. This implies that v = 0 which 

is a contadiction. [] 

The next step is to prove that generically the images of  the critical points of 
Fp G-T~ are distinct in C. I did not succeed to get this generic property by using 
the transversality theorem, therefore I will prove it in the projective space of 
dimension two, by an elementary arguments in algebraic geometry. The proof 
in higher dimensions is the same. The following lemmas will be used: 

L e m m a  A.0.1. Let (a �9 C. ~ --+ C m be a linear map and A be a subvariety o f  
C m. Then A n Im(@) = A1 U A2 U . . .  is the decomposition o f A  N Im(4)) into 
irreducible components, i f  and only i f  @-I(A) = ~b-l(A1) U q~-l(A2) U - . .  is 
the decomposition of  4)- 1 (A ) into irreducible components. 

Proof: This is due to the fact that we can choose a basis for the vector space 
C" such that ~b �9 C '~ = C n-re' x C m' --+ Im(4)) = C "~' is the projection on the 
second coordinate. [] 
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Let 

A' = {x E C 6 I px4x2 -- qxlx5 = pX4X3 -- qxlx6 = 0} 

A~r = (x E (2 6 I X4 = Xl = 0} 

A~c = {x E C 6 } px4x= - qXlX5 = pxax3 -- qxlx6 = xzx6 - X3Xs = 0} 

Lemma A.0.2. The fol lowing statements are true: 

1. A ~ has two irreducible components A, ~. and Ate; 

/ / 
2. A' • A' has four  irreducible components AIj = A i x A j ,  i, j = r, c; 

3. For any linear subspace V o f  C 12 o f  dimension greater than 8, A t x A t fq V 

has also four  irreducible components Atij f3 V, i, j = r, c. 

In fact, f rom this lemma we only need to the fact that, for any linear subspace 

V of  C 12 of  dimension greater than 8, Atcc N V is irreducible. 

Consider an a n n e  open set C 2 C C P ( 2 )  and let 0 = (0, 0), 1 = (0, 1). 

Define 

A = {co = p G d F  - q F d G  ] (F,  G) ~ 2Pa x LPb & co has singularity at 0 and 1} 

Lemma A.0.3. The variety A has exactly four  irreducible components At,., Arc, 

Ac~, Ace. The component Arc contains all 1-forms in A which have a radial 

singularity at 0 and a center singularity at 1. In the same way other components 

are defined. 

Proof :  For any p E C ~- define the linear map 

~1) : P a  ;< P b  ---> C 6 ,  (bp(F, G) = ( F ( p ) ,  F~.(P), Fy(p) ,  G(p ) ,  Gx(p) ,  G~,(p)) 

where the partial derivatives are considered in the fixed affine coordinate. Also 

we define 

~b : Pa  X Pb  --+ C12, ~ = (r ~(0,1)) 

We can assume that d e g ( F )  _> 2 and deg(G)  _> 1. With this hypotheses the 

reader can check that d im( Im( fb ) )  _> 8. Now our assertion is the direct conse- 

quence of  Lemmas A.0.1, A.0.2. 

Bol. Soc, Bras. Mat., VoL 31, No. 3, 2000 



ON THE TOPOLOGY OF FOLIATIONS WITH A FIRST INTEGRAL 335 

Proof of Proposition 0.1: According to Proposition A.0.4, it is enough to prove 

that generically the image of nondegenerate critical points are distinct. Let 

F p F p 
S = {(F, G) 6 acc I ~-((0) = ~ ( 1 ) }  

FP Let (F, G) 6 :P~ x :Pb and ~-  have r nondegenerate critical points Pl,  �9 �9 �9 , Pr- 
FP There is an small perturbation (/~, G) of (F, G) such that ~-  has r distinct critical 

F p values. Suppose that this is not true, then we can assume that ~-7 has maximal 
number r '  of  critical values in some neighbourhood of  (F,  G) and r '  < r. There 

F p F p F p exist two critical points p~, P2 of  ~ such that 7 ( p l )  = ~ ( P 2 )  and for any 

(F,  G) near (F, G) with corresponding critical point ill,  fi2 near Pl and p2, 
respectively, we have 

Pp pp 

Let L be the linear automorphism of  CP(2 )  which sends 0 and 1 to fil and fi2, 
respectively. In some neighbourhood U of  (F  o L, G o L) in :Pa • :Pb we have 

Ac~ (? U C S N U. Since A~c is an irreducible variety we conclude that A~c C S 
which is contradiction because 

( x S - t  + ya, q - a + x + ay) ~ A ~ \ S  [] 
P 
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