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Abstract .  Marl6 suggested the following question: Consider a C'  flow on a compact 
manifold without boundary and suppose that the co-limit set of a point p intersets the 
c~-limit set of q, i.e. co (p) N o~ (q) r 0. Can the flow be C"-perturbed so that either (a) p 

is connected to q (p and q in the same orbit) or (b) co(p) A o!(q) = 0 for the new flow? 
Here we solve positively a stronger version of this problem for C I small perturbations 
of the original flow. 

I(eywords: homoclinic orbits, connecting lemma, Morse-Smale systems, Kupka- 
Smale systems, ergodic measures, generic properties. 

Introduction 

In [3], the following C l Connecting Lemma was proved: it is possible to make 
the stable and unstable manifolds of  an isolated hyperbolic set to intersect by 
a C 1 small perturbation of  a dynamical system on a smooth compact manifold 

without boundary, if one of such invariant manifolds accumulate on the other. 
Still, other kind of "connecting problems" still remains open even for the C 1 
case. The problem we address here is the following: 

Problem. For p and q belonging to the unstable and stable manifolds of a 
hyperbolic singularity respectively, if the co-limit set of p, co(p) intersects the 
o~-limit set of q, oe(q), then is it possible to have a homoclinic point associated 
to the hyperbolic singularity by a C 1 small perturbation? 

This problem is mentioned in [6, p.150] and [8]. Pugh [8] gave an example 
showing that it is not always possible even for the C j case when the ambient 
manifold is not compact. As applications of theorems that will be proved below, 
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we get partial results to this problem. Indeed, it has an affirmative answer for 

the following systems on a compact  manifold without boundary: 

�9 C t Kupka-Smale systems; 

�9 Any systems in the closure of  the set of  transitive systems. 

In this Introduction, we will state three C 1 perturbation theorems (Theorems 

A, B and C) and prove three corollaries to Theorems A and B. The essential parts 

of  the perturbations are in the proof  of  the C 1 Connecting Lemma in [3], which 

will be just  referred as [3] in this paper. 

Let  M be a compact  smooth manifold without boundary and let X ~ (M) (resp. 

Diff r (M)) denote the set of  C r vector fields (resp. diffeomorphisms) on M with 

the C r topology for r > 1. It is well-known that C r Kupka-Smale systems form 

a residual subset in X~(M)  and D i f f ( M ) .  Without such a kind of  C ~ generic 

(residual) condition, we don' t  know how to solve the question. Instead, we have 

a dichotomy "Make or Break" in Theorem C, which is an affirmative answer for 

the C 1 case to the following question suggested by Marl6: 

Quest ion.  Let  X c X r ( M )  and p, q c M with Cox(p) N ax(q)  ~ 0 be given. 

Does there exist a vector field Y C r close to X c X r (M) such that either (a) Y 

has an orbit including p and q, or (b) coy(p) A o~,(q) = 0? 

Denote by Sing(X) the set of  singularities of  X ~ X I ( M )  and by Per(X) 

the set of  periodic points of  X. Let  Ox(p)  = {Xt(p) " t c R}, O+(p) = 
{Xt(p) " t >_ O} and Ox(P) = {Xt(p) �9 t _< 0}, where t ~+ Xt(.) is the flow 

generated by X. Set M* = M - Sing(X) and denote by I~I;,e with p c M*, 

the e-ball in the orthogonal complement  of  the span of  X (p) in TpM. Without 
^ 

loss of  generality, we may assume that l-Ip,r = eXpp(1-Ip,r) is a topological 

(dim M - 1)-dimensional disk when 0 < r _< 1. We say that p is forwardly 
(resp. backwardly) related to q by X '~ --+ X if q r O+(p) (resp. q ~ Ox(P))  
and there exists a sequence of  strings (finite parts of  orbits) gn, n > 1 such 

that ~'n = {Xt(pn) " 0 < t _< tn} (resp. g,, = {X~(pn) �9 t,~ < t < 0}) 
with X ~ c X 1 (M) converging to X E X 1 (M), p,, --+ p and X ~ (p,,) --+ q as t,, 
n ---> +oe .  

T h e o r e m  A, Given a neighborhood %l o f X  c X1 (M) and p, q ~ M* - Per(X) 
such that p is forwardly related to q by X n --+ X, then there exist r > 0 and 
Z ~ %1 coinciding with X outside an arbitrarily small tubular neighborhood of 
{Xt(p) : 0 < t < s +} U {Xt(q) : s -  < t < O},forsome s+(%1, p, X)  > 0 and 
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s -  (U,  q, X) < 0 and such that there are p' and q ', respectively arbitrarily close 

to p and q independent o f  r, satisfying the following properties: 

(a) 0+,, (p') = q' for  arbitrarily large n; 

(b) ZT (p') = q~ for some T > O; 

(c) (np. , .  v 1-Iq,,.) cl { Z , ( p ' )  : 0 < t < T} = {p' ,  q'}. 

Not only Theorem A, but also the following version of  it will be needed to 

prove Theorem C. 

T h e o r e m  A'. GivenaneighborhoodUofX e X I ( M )  and p, q ~ M * - P e r ( X )  

such that p is forwardly related to q by X '~ ~ X for a sequence of  strings 
{X'~(p) " 0 < t < t,.~}, then there exist r > 0 and Z e U cinciding with X 
outside an arbitrarily small tubular neighborhood of  {Xr (q) " s -  < t < O} for  
some s - ( U ,  q, X) < 0 such that there is q ' arbitrarily close to q independent of 
r, satisfying the following properties: 

(a) 0+ ,  (p)  ---- q~ for  arbitrarily large n; 

(b) ZT(p )  = q' for  some T > O; 

(c) Flq., A {Z,(p) " 0 < t < T} = {q'}. 

The proof of  Theorem A' is essentially contained in that of Theorem A. In 

fact, it is easy to see that Theorem A' is obtained by applying the perturbation 

used twice in the proof of Theorem A only once along a finite part of  Ox(q),  
Moreover, it is also simple to see from the proof  that a similar statement for the 

backward case also holds. 

Corollary 1 (An extended C 1 Connecting Lemma). Let X e X l ( M ) ,  a 

neighborhood U of X and an isolated hyperbolic set A of X be given. I f  there 
exists a sequence p,~ c Per(X"), n > 1 such that lim~,_~+~ d(p,~, A) = 0 and 

l im, ,~+~ X,, = X, then there exists Y ~ U having a homoclinic orbit associated 
to the continuation A y of A for  Y. 

Proof .  Since A is an isolated hyperbolic set, there exist x" E W" (A) - A 
and x" e W s (A) - A such that x U is forwardly related to x s by X '~ -+ X. 
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From Theorem A it follows that there exist Z CI close to X, r > 0, T > 0 and 

x . ,  y.  E M with O+,, (x.)  = y~ and ZT(X~) = y~ such that 

(I7~,, ~ U rI~., r) N {Z t (x , )  " 0 < t < TI  = (x~, y,} ,  (1) 

where x,, and y ,  can be arbitrarily clvse to x" and x" respectively independent 

of  r.  Note that r depends on q_/, and Z can be obtained without perturbing a 

neighborhood U of  A such that 0 + (x ' )  U O} (x") C U and FIx,,.,. U lq ~ ,  C ~ U, 

By continuous dependence of  compact parts of  stable and unstable manifolds 

with respect to vector fields, there exist x.  E W~,~(Ax,,) and x.  c W~,,(Ax,,) 

arbitrarily close to x" and x s respectively for large n, where A x., is the continu- 

ation of  A for X ~. Then, by property (1). it is easy to get Y having a homoclinic 

orbit associated to Ax,, = A r  containing {Zt(xn) : 0 < t < T}, Ox,, (X~I (x~)) 
and + , s Ox,  (X  1 (xn)), proving Corollary 1. 

We need also Theorem B below to prove Theorem C. For the statement, we 

generalize the previous definition as follows: p is forwardly  (resp. backwardly) 

related to q with m jumps  at {xl . . . . .  xm} by X" -+ X i f  xi is forwardly (resp. 

backwardly) related to xi+l for any 0 < i < m with Xo = p~ x,~+l = q by the 
same sequence X n --+ X independent of  0 < i < m. In particular, if  X '~ = X for 

all n > 1, we say that p is X-forwardly  (resp. X-backwardly)  related to q with 

m jumps  at {xl . . . . .  Xm}. For simplicity we will sometimes omit the notation 

J(" --+ J( in the above definitions. 

T h e o r e m  B. Let p, q E M* - Per (X)  be auch that p is forwardly  (respJ 

backwardly) related to q with one j u m p  at same xo E M ~ - Per(Y) .  then p is 

forwardly  (resp. backwardly) relo~ed to q. 

Another application of  Theorem B is the following corollary, which is a result 

connecting several orbits with more than one jump. Sirra]at resulls have been 

obtained by Wen and Xia [11] and Arnaud [1]. 

Coro l l a ry  2. Let X E X I ( M )  and a neighborhood 21 o f  X be given. I f  

p, q c M* - Per(X)  is X- forwardly  (resp. X-backwardly)  related to q with 

bounded number  o f  j umps  at points in M* - Per(X),  then there exists Y E %l 

such tha tq  E O+(p)  (resp. q E OF(P)).  

Proof .  We consider only for the forward case since the backward case is com- 

pletely the same arguing by f 1 instead of  f .  Let  {Xl . . . .  , xm} be bounded 

number of  jumps at points in M* - Per(X).  Set p = x0 and q = Xm+l. Then, 
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xi is X-forwardly related to xi+l for all 0 _< i < m and therefore there is a 
/ /  

string V/'~ = {Xt(xl ~) " 0 < t <_ ti(n)} with x i --+ xi and Xt~(~)(x~ z) --+ xi+l 

as n -+ +oc .  Note that l i m ~ + ~  ti ( n )  = +OC for every 0 < i < m. In fact, 
if inf{ti (n) " n > 1} < + o c f o r s o m e 0  < i < m, t h e r e i s i  > 0 s u c h t h a t  
Xi(x~ ~) is arbitrarily close to xi+l for some large n, implying that X~(xi) = xi+l, 

which contradicts the definition. Applying Theorem B at xl, we get a sequence 
X", n > 1 with lim,,__,+~ X ~ = X by which p is forwardly related to x2. The 
perturbations of  X to X ~', n' > n might change strings ),/~, 2 < i _< m, but 

continuity implies that the sequence X ", n > 1 has strings by which p becomes 
forwardly related to q with jumps at {x2 . . . . .  xm }. Apply Theorem B again at x2 
for X n, n >_ 1. Then there exists a sequence yn __+ X by which p is forwardly 

related to x3. Repeating the argument above for yn instead of X '~, we obtain p 
forwardly related to q with jumps at {x3 . . . . .  x,~} by Y~ ---> X. Inductively, p 
can be forwardly related to q. Then, by Theorem A, we can easily find some 
Y c X I ( M )  arbitrarily C ~ close to X and such that q ~ O+(p).  This proves 
Corollary 2. 

The following theorem is the solution to a strong form of  Mafi6's question for 
the C 1 case. Define 

#ox(p) = {x e M �9 3t,, --+ +oo, 3p,, ~ p, 3X"  --+ X 

such t h a t x =  lira X n n ~ + ~  ',~(P")} 

and 6x (P) is defined similarly with tn --+ - o c .  Then: 

Theorem C (A C 1 M a k e o r B r e a k L e m m a ) .  Let X ~ X J ( M ) ,  p, q c M with 

~ox(p) fq &x(q) (- ~, and a neighborhood 21 o f  X be given. Then, there exists 

Y ~ 21 such that either (a) q c O-~(p), or (b) ffgr(p) f) (~r(q) = 0 holds. 

The last corollary is an extension of  Corollary 2 in [3]. The proof will be given 
at the end of Section III, where the proof of Theorem C is provided, since it is 

essentially contained in that of Theorem C. For an isolated hyperbolic set A, we 
say that a point x is a prolongational homoclinic point  associated to A if there 
exist p c W"(A) and q ~ WS(A) such that co(p) f3 e~(q) - A ~ 0. 

Coro l la ry  3. C 1 generically (residually), the set of  transversal homoclinic 

points associated to an isolated hyperbolic set is dense in the set o f  prolongational 

homoclinic points associated to the isolated hyperbolic set. 

All the results so far have corresponding versions for diffeomorphisms, which 
are also true with simple changes in the arguments in the proofs for flows. The 
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last theorem is an application of the diffeomorphisms version of Corollary 1, 
which is in the direction of a program by Palis. Informally speaking, Palis has 
conjectured that dynamical systems with simple dynamical behavior together 
with ones exhibiting complex dynamics but having good statistical properties 
(including some kind of robustness), form a dense subset in the space of dy- 
namical systems. (See [5] for the formal statement.) In the following theorem, 
"simple dynamical systems" mean Morse-Smale diffeomorphisms and "complex 
dynamics" mean C 2 Kupka-Smale diffeomorphisms for which there exists an er- 
godic measure supported on infinitely many points. Similar problem and result 
are in Gorodetski and Ilyashenko [2], where they considered minimal attractors. 

Theorem D. The set of  C 2 diffeormorphisms having an ergodic measure sup- 
ported on infinitely many points forms a dense subset in the complement of  
Morse-Smale diffeomorphisms in Di f f  ( M). 

We will prove Theorem A in Section I and Theorem B in Section II referring to 
[3]. Theorem C will be proved using Theorems A and B in Section III. Theorem 
D will follow from Corollary 1 in the last section. 

I. Proof of Theorem A 

Let us recall the essence of our perturbation used in the proof of the Connecting 
Lemma in [3], where we defined a bi-ordered index set f2N0 = {W = (0)j, 092)}. 
Here No is the number of places for one push (whose size is proportional to that 
of a neighborhood ~/ in  which we make perturbations) in each direction, which 
is fixed in advance. Generally (for flowsL we push in dim M - 1 directions. 
The index set f2m0 is defined after we fix the number of  pushes. The first index 
o91 means the location of places for pushes and the shape of boxes (each of 
which contains a pair trying to connect as in the proof of Pugh's Closing Lemma 
[9]) coming from a norm I �9 I A, which has been taken appropriately considering 
the dynamics of linear part of the X-flow from a point P0 ~ M* - Per(X). 
Perturbations are made along a finite part of O+(po) and, as seen from the 
choice of o91, its length is determined by 'U, P0 and X. Once these factors in our 
framework of the perturbations are fixed, the next procedure is to implement an 
approximation by linear dynamics. In fact, we took o9i observing the forward 
linear dynamics from P0, and have fixed the finite places for pushes in O + (P0)- 
Therefore, taking boxes in a sufficiently small neighborhood of P0, which is the 
second factor 0)2 of f2N0, we get the dynamics arbitrarily close to the linear one. 
It turns out that approapriate choice of 0) = (COl, 0)2) 6 S2N0 is good enough to 
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realize the perturbations we need. Here errors coming from this approximation 
does not cause any difficulty in the actual situation we are dealing with. Thus, 

as long as we have the modified flow sufficiently close to linear dynamics along 

a finite part of O+(po) determined by o)1, the errors can be neglected. 
Now let us apply this reasoning in the situation of Theorem A. We apply such 

a kind of perturbation twice to disjoint parts; that is, first to a finite part of O + (p) 
with length s + and then to that of O~ (q) with length - s - ,  where Y e X 1 (M) is 
a perturbation of X, to finally get Z E X 1 (M) satisfying the following property 
(which implies Theorem A): 

(*) There exist r > 0, to > 0 and/5 ~ M such that/5 and Zt0 (/5) are arbitrarily 
close to p and q (independent of r) respectively, and 

(Hp.~ U rlq.,.) A (Z,(/5) �9 0 < t < to} = (/5, Z,0(/5)}. 

Indeed, since there exists a sequence of strings {X~(pn) �9 0 < t < tn} such 

that X '~ --+ X, Pn --+ P, tn --+ + o z  and X~, (Pn) --+ q as n -+ + ~ ,  we can 
apply the above perturbation twice to this sequence as we did in the proof of 
the original Connecting Lemma [3]. Note that the strings are not for X, but an 
arbitrarily good approximation to the linear dynamics of X along a finite part of 
O+(p) and that of Ox(q)  is obtained for X" as above with large n. Hence, as 
mentioned above, the errors can be neglected and property ( , )  is proved. 

II. Proof  of Theorem B 

Now let us prove Theorem B. We apply again the perturbation used in the previous 

section along a finite part of O+(xo) with x0 c M* - Per(X) given in the 

hypothesis of Theorem B. The differences between this case and the previous 
one are the choice of an ordered finite set (which is X0 in [3]) and that of the set 
o f  pairs from the ordered finite set. By hypothesis, we have sequences of strings 
yn + and V,,-, n > 1 written as: 

z +,, = { x ; ' ( p , , )  �9 o < t < t,,} 

and 

z #  = {x7  (q,,) "s,,  < f < 0}, 

X n  / ~ X#7 where p,~ --> p, q,, ---> q, X'~r,, (Pn) ---> xo, s,~.q,,) ---> xo and --> X as 
n --+ +oo.  Without loss of  generarity, we may assume that X~, (Pn) and Xns,, (q,,) 
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are the closest points to x0 in y+  and y~- respectively (by taking smaller t~ and 
larger s,~ if  necessary), and we may identify 13 = expx (lal~, 1) with l:Ix, 1. Define 

an ordered finite set 

x 0 , ,  = fI n u 

having the order defined by x < y if  x c y+ and y ~ y,~, x < x I if x, x'  c y+  
with x / = Xt(x) for some t > 0, and y < y '  if  y, y~ ~ gs with y~ = Xf,(y) for 
some t ~ > 0. For this ordered finite set, let us consider the set of  pairs P~o(X0.n) 
(see [3] for the definition) and apply the perturbation along a finite part of O~ (x0) 
for X" with large n. Recall that pairs are written in the form (x, y) with x < y. 

If  there exists a pair in P(o(Xo.n) that can be written as (x, y) with x ~ y+  and 
y ~ ~,~, then, by the same perturbation process as in [3], an orbit of a vector 
field Y'* arbitrarily C l close to X coinciding with X" outside an arbitrarily small 

tubular neighborhood of {Xt(x0) " 0 __ t < s} for some s('U, x0, X) > 0 is 
created, which includes p ,  and q,,. On the other hand, if  there is no such pair in 

:Po)(X0.,), the choice of  pairs implies that there exist two pairs P = (x, x ~) and 
Q = (y, y/) with x f = Xt," ' (p,) and y : X's,~ (qn). Then, instead of P and Q, 

take a new pair P' = (x, y') and consider the set of  pairs 

(P~(Xo,n) U {P'}) -- {P, Q}. 

By perturbing as before X n with large n for this set of  pairs, it is easy to see that 
p~ and qn are in an orbit of  some vector field Y" arbitrarily C 1 close to X again. 

We should remark here that the size of the box of P '  above might be bigger than 
that of P or Q which are in the biggest level of the previous choice JG(Xo,,). 
(See [3] for the choices of pairs and boxes.) But, the size is at most almost twice 
that of P's or Q's i fn  is large enough because X;I ' (p,) and X~,, (q,,) are the closest 
points to x0 in V. + and VS, respectively, and their sizes are determined by the 
positions of P and Q. Easily seen from the proof of the Connecting Lemma in 
[3], this modification does not cause any obstruction for the connecting process. 
This consequence gives a sequence Y'~ --+ X by which p is forwardly related to 

q, completing the proof of Theorem B. 

Il l .  Proof of Theorem C 

In this section, we prove the C 1 Make or Break Lemma. By Theorems A and 
B, when ~ox(p) N ~x(q) -- (Sing(X) U Per(X)) ~ 0, an actual orbit connection 
of p and q is created by a C I small perturbation, which is property (a) of the 
Abstract. Therefore, the remaining case is the following one: 

dgx(p) n 6x(q)  C Sing(X) U Per(X). 
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Using the Kupka-Smale Theorem, we may assume that 

(Sx(p) N 6~x(q) C Ch(X), (2) 

where Ch (X) is the set of hyperbolic critical elements (singularities and periodic 
points). In fact, if the Kupka-Smale vector field Y approximating X has the 
property &y(p) n ~ey(q) = 0, we get property (b) in the Abstract. Hence, 
showing property (a) also in the Abstract from hypothesis Cbx (p) N &x (q) 7 ~ 0 
and property (2) above is enough to get Theorem C. In order to prove property 
(a), we consider the following two cases: 

Case 1. Either p or q is not in Ch (X); 

Case 2. Both p and q are not in Ch (X). 

Let us first consider Case 1. Without loss of generality we may assume that 
p ~ Ch (X) for otherwise consider the backward case changing p and q. Then q 
is a hyperbolic singularity or a hyperbolic periodic point. By hypothesis, there 
exists q' ~ W}(q) - {q} arbitrarily close to q such that q' c (Sx(p). Therefore, 
applying Theorem A' (by regarding q' as q in Theorem A') as in the proof of 
Corollary 1, we get a vector field Y' arbitrarily C 1 close to X, coinciding with 
X in a neighborhood of Ox (q), and p c W~, (g), where y is the continuation of 
Ox(q) for Y'. To get property (a), we shall find Y arbitrarily C 1 close to Y' such 
that q E O+ (p). 

Let us consider first the case when q is a singularity, take two small balls Br (q) 
+ and B,.,(q), r < r' such that their boundaries are both transversal to Oy,(p) and 

B,-,(q) N W~,(V) is a local stable manifold of V- 
Then, define a vector field Y on B,. (q) by: 

Y(x) = Y' (x - u) 

for some u c IR ~ with v = d i m M  (identifying Br(q) with a ball in R"). Let 
{/ 6 IntBr (q) N W~,(y). Then, if Y' is sufficiently close to Y, it is easy to take a 
small u above so that 

q ~ O~(q + u) C Br(q). 

If u is sufficiently small, Y' can be perturbed only in B,-,(q) to have Y C I close 
to Y' coinciding with Y on Br(q) and satisfying Cl + u c O+(p) (which implies 
q ~ Of (p )  as required) by connecting a part of O+(p) with that of O~(~ + u) 
in B,.,(q) - B,.(q). 
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Let us consider the case when q is a periodic point. Take a Poincar6 map f on 
FIq,e with some small 8 > 0 for the periodic orbit ? / o f  YC Then, c~ E ?' N lqq,~ 
is a hyperbolic fixed point of  f ,  which can be arbitrarily close to q according to 
the distance between Y' and X. Perturbing f only in rlq,~ with some 0 < e < 
similarly to the case when q is a singularity, we get a diffeomorphism g on VIq,~ C 1 
close to f and having an orbit including q, which corresponds to O + (p) N Br, (q) 
in the previous case. Without loss of  generality we may assume that 

p E ['Iq,6 - -  [ Iq ,e  

and {gJ(p) : 0 <_ j < m} is entirely contained in 1-Iq,~, where m E Z + is such 
that g'~ (p) = q. Then, Cr-Perturbation Principle ([9], p.296) shows that there 
exists a vector field Y C l close to Y' realizing g as its Poincar6 map on Flq,6, 
which implies that q 6 0  + (p) for Y arbitrarily C 1 close to X. This completes 
the proof  for Case 1. 

Now let us consider Case 2. In this case, given a small neighborhood U of  X, 
we first find a vector field X ~ having the following property: 

p e W~(Ox,(p')) and q E W"(Ox,(p')) (3) 

for some p' ~ Ch (X'). By hypothesis, there exist P0 E Ch (X), 

~ (W~(Ox(Po)) - Ox(Po)) N ~ox(p) 

and 

/5 c (W~'(Ox(Po)) - Ox(Po)) N ~,x(q). 

From this and (2) it follows that there exist disjoint neighborhoods U of  f and 

V of 0 such that (Sx(p) N U = 0, ~x(q) N V = 0 and Ox(Po) N (U U V) = 0. 
Shrinking U and V if necessary, we can suppose that 

{Xt(U)  : 0 < t < s + ( U , / 5 ,  x ) }  n {Xt(V) : s - ( U ,  ~, X) < t < 0} = 0, 

where s + ( U ,  f ,  X) is the number given in Theorem A' and s (U,  c~, X) is the 
corresponding one for the backward case. Apply Theorem A' and its backward 
version again as in the proof of  Case 1 in {Xt (U) : 0 < t < s+ (U , /5 ,  X)} and 
{Xt(V) : s - ( U ,  c], X) < t < 0} respectively. Then we get a vector field X' 
arbitrarily C 1 close to X, coinciding with X in a neighborhood of  Ox (Po), and 
having property (3). More precisely, there exist/5 and c~ arbitrarily close to/3 
and c] respectively such that 

4 c o+,(p) c w~,(• 
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and 

/6 c c w},(yo), 

where V0 is the continuation of Ox(Po) for X'. It is easy to create an orbit 
including p and q from this situation. In fact, when Y0 is a singularity, taking 

transversal sections rlp,r C U, FI0,r C V and using the )Memma [6], given 
0 < e < 1, we can find to and an arbitrarily small 0 < ~ < 1 such that 

n # o 

and 

x;(no, r) n (n ,r u n0,r) = 0 

for all 0 < t < to. If  e > 0 and g > 0 are small enough, X' can be perturbed 
a little only in U U V to have an orbit including p and q, passing through q,/6 

and a part of {X~ (y) : 0 < t < to} with some y c 1-Io,~r. A similar argument is 
possible also to the case when g is a periodic orbit. Thus, we prove property (a) 
in the Abstract for Case 2 and complete the proof of  Theorem C. 

Proof of Corollary 3. Let x be a prolongational homoclinic point associated 
to an isolated hyperbolic set A of X 6 X l (M). As shown in the proof of 
[3, Corollary 2] by a usual argument applying semicontinuity of a set-valued 
function on a residual subset, creating a homoclinic point arbitrarily close to 
x by a C 1 small perturbation of any C 1 Kupka-Smale vector field X implies 

Corollary 3. By hypothesis, there exist p ~ W" (A) and q 6 W ~ (A) such that 
co(p) N c~(q) -- A ~: 0. If  there exists x r Ch(X) in co(p) N c~(q) -- A, then this 
is the special case of the proo{of Theorem C, and a homoclinic point is created 
by similar argument applying Only Theorem B. If  co(p) (3 ce(q) - A C Ch(X), 
then the arguments of  Case 2 in the proof of Theorem C can be applied to 

create a homoclinic point. In both cases, we get from our perturbations that the 
homoclinic point is arbitrarily close to x. 

IV. Proof of Theorem D 

We consider a dense subset R 1 in Diff I (M) that is an intersection of three residual 
subsets: 

where R',, R~ and R31 are, respectively, the sets of C '  Kupka-Smale diffeomor- 
phisms, ones with dense periodic points in their nonwandering sets (the General 
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Density Theorem by Pugh [7]), and ones at which the closure of  hyperbolic pe- 
riodic saddles moves continuously with respect to diffeomorphisms. Denote by 
M S  1 (M) the set of  C j Morse-Smale diffeomorphisms on M. Let Ps ( f ) ,  Po ( f )  

and P~ ( f )  be, respectively, the sets of  hyperbolic periodic saddles, sources and 
sinks for f c Diff  1 (M). Now let us prove two claims. 

Claim 1. I f  f c R 1 - M S  1 (M), then # p ~ ( f )  = ~ .  

Proof. If this were not true; that is, 

# P , ( f )  < oo, 

we would have 

(4) 

# ( P ~ ( f )  U Po( f ) )  = oo. (5) 

In fact, if the number of  periodic points of  f c R I • M S  1 (M) is finite, then 
f c R21 implies f 6 M S  j (M),  which is a contradiction. By (5), it is easy 
to see that f can be C l-perturbed to a diffeomorphism having nonhyperbolic 
periodic points exactly on an orbit of  some point in P,~ ( f )  U P0 ( f )  with arbitrarily 
large period, and then a periodic saddle can be created entirely contained in 
an arbitrarily small neighborhood of  the periodic sink or source by a C 1 small 
perturbation. (These perturbations using Franks' lemma are already well-known. 
See [4] and [10].) From (4), if this new saddle point has sufficiently large period, 
it has been created outside a neighborhood of  Ps ( f )  (=  Ps ( f ) ) .  This contradicts 
the fact that f c R~, and proves Claim 1. 

Cla im 2. I f  f is a C 2 Kupka-Smale diffeomorphism in Dif~ (M) - M S  ~ (M),  

then either f has an ergodic measure supported on infinitely many points or f 
can be C ~ approximated by one exhibiting a transversal homoelinic point. 

Proof .  Take a sequence f~, n > I i n R  l - M S I ( M )  converging to a C 2 Kupka- 
Smale diffeomorphism in Diff  1 (M) - M S  1 (M) and, by Claim 1, we can define 
a sequence of  probability measures/*n, n > 1 by: 

1•11 1 

#" = - -  E 5 r,{(p,,)' 
mn j=O 

where p,~ is a hyperbolic periodic saddle of  f~ with the period m, > n. Take 
an accumulation point # of  {#,, �9 n > 1 }, which is an f-invariant probability 
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measure. I f /z  has an ergodic component supported on finitely many points, then 

{Pn : n >_ 1} gives a sequence of periodic points converging to a periodic saddle. 
By Corollary 1, a homoclinic point is created by a C 1 small perturbation, and 

perturbing a little further if  necessary, we obtain a transversal homoclinic point, 

concluding the proof of Claim 2. 

Now Theorem D is an immediate consequence of Claim 2. Indeed, if f can be 
C l approximated by g exhibiting a transversal homoclinic point, then g can be 
C 1-perturbed to a C 2 diffeomorphism so that a transversal homoclinic point still 
remains. It is well-known that a transversal homoclinic point carries an ergodic 
measure supported on infinitely many points. 
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