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Uniformization and the Poincaré metric on the
leaves of a foliation by curves

A. Lins Neto*

Abstract. In this paper we prove that a holomorphic foliation by curves, on a complex
compact manifold M, whose singularities are non degenerated and whose tangent line
bundle admits a metric of negative curvature, satisfies the following properties: (a):
All leaves are hyperbolic. (b): The Poincaré metric on the leaves is continuous. (¢):
The set of uniformizations of the leaves by the Poincaré disc I is normal. Moreover, if
(ctn)n>1 1s a sequence of uniformizations which converges to a map «: D — M, then
either o is a constant map (a singularity), or « is an uniformization of some leaf. This
result generalizes Theorem B of [LN], in which we prove the same facts for foliations
of degree > 2 on projective spaces.

Keywords: holomorphic foliations, Poincaré metric on the leaves, uniformization
of the leaves.

1 Introduction

Let F be a holomorphic foliation by curves, with isolated singularities, in a
complex compact manifold of dimension n > 2, say M. We will denote by
sing (F) the set of singularities of F and by H (DD, F) the set

H@O, F)={a: D — M;a is a holomorphic and

(D) is contained in some leaf of T}

with the topology of uniform convergence on the compact parts of I = {z €
C; |z| < 1}. In this paper we will deal with the following questions:
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Question 1. When all leaves of F are uniformized by the Poincaré disk? If this
is the case, we will say that the foliation is hyperbolic and we will denote by
UCTF) the set

UF) = {a € H(D, F); « is an uniformization of some leaf of F }.

Question 2. Let F be a hyperbolic foliation on M. When ‘U(F) is normal?
When the Poincaré metric on the leaves of F is continuous?

Let us clarify the last question. Fix a point p € M \ sing(F) and (A, (x, y))
be a foliated chart, where p € Aandx: A — C, y: A — C"~! are such
that x(p) = 0, y(p) = 0 and F|, is defined by dy = 0. Since the leaves of
F are hyperbolic and the Poincaré metric in a hyperbolic Riemann surface is
unique, the Poincaré metric of the leaf passing through (0, y) can be written as
wp = fa(x, y)|dx|?. Of course, the function fy is real analytic with respect to
the variable x, but it could be not continuous with respect to y. Let us observe
that, if (B, (i, v)) is another foliated chart such that ANB # @, thenu = U{x, y)
and v = V(y) in AN B, so that, in this new coordinate system w » can be written
as fp(u, v)|dul?, where fa(x, y) = fp(U(x, ), V(3))-|Ux(x, y)|*. Therefore,
the functions f4 and fz have the same class. We say that the Poincaré metric
on the leaves of F is continuous, if f,, defined as above, is continuous for every
foliated chart (A, (x, y)). In fact, it is known that the Poincaré metric on the
leaves of F is continuous if, and only if, U(F) is normal and for any convergent
sequence (@, ),>1 in U(F), where o, — o anda(0) ¢ sing(F),thena € U(F)
(cf. [V], [C] and [LN]).

In this paper we intend to generalize some of the results of [LN], which were
proved for singular holomorphic foliations on projective spaces. In order to
state our main result we recall the concept of tangent bundle associated to a
holomorphic foliation. A foliation F on a complex manifold M can be defined
by an open covering (U, )qea, a colection of holomorphic vector fields (Xg)yeca
and a multiplicative cocycle ( fug)v,nu, 2 such that (cf. [Br]):

(1) X, is a holomorphic vector field on U,,.
@Ky, N Uﬁ #* 4 then fmﬂ e O*(U, N Ulg) and Xﬁ = faﬁ - X,onU, N Ulg.

The tangent bundle of the foliation F is the holomorphic line bundle associ-
ated to the cocycle (fop)u,nu,-p. We will denote this line bundle by 7 and its
dual by Tz. Now we can state our main result,
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Theorem L. Let 'F be a foliation by curves on a compact complex manifold M.
Suppose that Ty has a metric of negative curvature and that all singularities of
F are non degenerated. Then:

(a) All leaves of F are hyperbolic.

(b) U(F) is normal. Moreover, U(F) = U(F) Using(F), that is, if (tp)n>1
is a convergent sequence in U(F), say o, — «, then, either a € U(F),
or o = c, is a constant map, where ¢ € sing (F).

(c) The Poincaré metric on the leaves of F is continuous.

As a consequence, we have the following result, which includes Theorem B
of [LN]:

Corollary 1. Let F be a foliation by curves on a compact complex manifold
M. Suppose that all singularities of ‘F are non degenerated and T; is ample.
Then F satisfies (a), (b) and (¢) of Theorem 1. In particular, if F is a foliation
on CP(n) of degree d > 2 with non degenerated singularities, then ‘T satisfies
(a), (b) and (¢c) of Theorem 1.

Proof. It is well known that if L is a ample line bundle on M, then L* has a
metric of negative curvature. This implies the first assertion. On the other hand,
if /F is a foliation on CP(n) of degree d, then T} = (d — 1) H, where H denotes
the divisor of a hyperplane. It follows that, if d > 2 then T is ample. This
implies the last assertion. U]

The following result is a consequence of Corollary 1 and of the Nakai-Moi-
shezon criterion (cf. [F] pg. 18).

Corollary 2. Let F be a foliation by curves on a compact complex surface M.
Suppose that all singularities of F are non degenerated and that ( Tj’ﬁ)2 > Oand
T} - C > 0 for all irreducible curve C on M. Then F satisfies (a), (b) and (c)
of Theorem 1.

Example. We can apply Corollary 2 in the following case: Let F be a foli-
ation of degree d on CP(2) with sing(F) = {p1, ---» Pk> Pk+1, -.., Pn}, Where
Pr+1, --., pn are non degenerated and p, ..., p; are degenerated singularities of
F. Suppose that:
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(a) Foreach j = 1, ..., k, the foliation F is reduced (in the sense of Seidemberg
[Se]) with just one blowing-up at point p;. Denote by M the manifold
obtained from CIP(2) by blowing-up at the points py, ..., pr, by 7 : M —
CP(2) the blowing-up map and by G the strict transform of ¥ by 7. Let

E; =n"'(p)).
(b) All singularities of G are non degenerated.

(c) Foreachj =1, ..., k, letm; be the generalized multiplicity of F at p; (cf.
[Br]). Assume that:

(c.1) For any irreducible curve C on CP(2) we have

Y im;—1) < td—1)
J

where ¢ = dg(C) and £; = mult(C, p;).
€2) Y ;m;—1)* < (@d—1)*

Then g satisfies (a), (b) and (c) of Theorem 1.

The generalized multiplicity of F at p; is defined as follows: let @ be a
holomorphic 1-form which represents F in a neighborhood of p;. Since p; is a
singularity of w, the form 7 *(w) is identically zero along E;. Then, m; is order
of E; in the divisor of zeroes of 7" (w).

Proof. We know that T; = (d — 1)H, where H denotes the divisor of a
hyperplane on CP(2). It follows from [Br] that T} = (d — 1) H — > jm;—
1 E;, where H = n*(H). Now, as the reader can check, condition (c.2) implies
that (7, G’“)2 > 0 and condition (¢.1) that 7 - C > 0, for any irreducible curve C
onM. U

Remark 1. Concerning the hyperbolicity of the leaves of a foliation by curves,
with degenerated singularities, the following result is known (cf. [G]):

Theorem. Let F be a foliation on a nonsingular projective manifold defined
by a meromorphic vector field with an £-ample divisor, £ > 0. Suppose that
either F has no singularities or that it has isolated singularities, say pi, --., Ps,
and that i

dUF. py-D <t

j=1
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where L(F, p;) is the Lojasiewicz exponent of F at p;. Then all leaves of 'F
are hyperbolic.

According to [G], a divisor D on M is £-ample if there exists an embedding
of M on a projective space, such that D is equivalent to —¢ - H, where H is the
hyperplane section of M. Therefore, the hypothesis of the Theorem, corresponds
to the fact that the foliation F can be defined by a meromorphic vector field X
on M such that its divisor of zeroes is empty and its divisor of poles is £ - H. The
Lojasiewicz exponent of a holomorphic vector field X with an isolated singularity
at p € C", is defined by

L(X, p) = min{k > 0; |X(2)| = Clz - pl*, C >0,
for any z in a neighborhood of p}.

IfY = f- X, where f is holomorphic and f(p) # 0, then £(X, p) = L(Y, p).
Therefore, £(X, p) depends only on the germ at p of the foliation generated by
X. The Lojasiewicz exponent of F at an isolated singularity p is defined as

L{F, p) = L(X, p),

where X is any holomorphic vector field defining /F in a neighborhood of p.
This result answers Question 1 in this case, but not Question 2, that is, it is
not known if the foliation F satisfies properties (b) and (¢} of Theorem 1. The
proof of the above result in [G] is done by contructing a C? hermitian metric in
M \ sing(F) which induces strictly negative gaussian curvature in the leaves
of F. On the other hand, in the proof of Theorem 1 (and also of Theorem B
of [LN]) we construct a continuous hermitian metric in M \ sing(F) which is
complete and induces an ultrahyperbolic metric (in the sense of Ahlfors [Ah-1]
and [Ab-2]) on the leaves of F. The completness of the metric implies that F
satisfies (b) and (¢) of Theorem 1. The following problem is natural:

Problem. Let 7 be a holomorphic foliation with isolated singularities, on
a complex compact manifold. Suppose that all leaves of F are hyperbolic.
Is the Poincaré metric on the leaves of F continuous? Is U(F) normal and
UF) ="UF) Using(F)?

We would like to observe that the answer is known to be positive only in two
cases: the case of Theorem 1 and in the case in which the singular set of F is
empty (cf. [C]).

2  Proof of Theorem 1

In the proof we will use the concept of ‘F-ultrahyperbolic metric and Ahlfor’s
lemma. In 1938 Ahlfors introduced the concept of ultrahyperbolic conformal
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metric in a Riemann surface (cf. [Ah-1] and [Ab-2}). A conformal pseudo-
riemannian metric in a Riemann surface S, is a quadratic form g in S, which
can be written in a holomorphic coordinate system (z, U) as g, = f(2)|dz|%,
where f is a continuous function on the open set z(U) C C, such that f > 0
and the set £7'(0) is discrete. In this case, we define the lengh of a C! curve
v [a, b] — S with respect to g, by

b
Le(y) =/«/§=/ V& oy @®)dr. (1)
y a

It is not difficult to see that if y (a) # y(b) then £,(y) > 0. Therefore we can
define a distance in S by

dg(p, q) = inf{fy(y); yis aC! curve joining p and q}. (2)

Definition 1. Let g be a conformal pseudo-riemannian metric in S. We say
that g is ultrahyperbolic of curvature bounded by a < 0, if for every p € U
with g, # 0, there exist a holomorphic coordinate system (z, U) around p with
z2(p)=0,gly = f(z)]a’z|2, f > 0inz(U) = V,and a positive C? function 4 in
V, such that £(0) = f(0), & < f in V and the gaussian curvature of the metric
h(z)|dz)?, say k, satisfies k < a < 0in V. We say that g is ultrahyperbolic, if it
is ultrahyperbolic of curvature bounded by a < 0, for some a < 0.

Remark 2. We would like to observe that Ahlfors’ definition i1s more general,
in the sense that he demands that f is just upper semicontinuous. However, in
this paper all metrics that will appear will be continuous.

Remark 3. It is not difficuit to see that this concept is well defined and invariant

by biholomorphisms. Moreover, if S} and S, are two Riemann surfaces, F': §; —

S, is a holomorphic non constant map and g is a conformal pseudo-riemannian

metric in S,, ultrahyperbolic of curvature bounded by a < 0, then F*(g) is also.
The following resnlt was proved by Ahlfors:

Theorem (Ahlfors Lemma). Let S be a Riemann surface and suppose that
there is a conformal pseudo-riemannian metric g in S which is ultrahyperbolic
of curvature bounded by —a* < 0. Then S is hyperbolic and g < a%PS, where
Py is the Poincaré metric of S. In particular, we have

1
dg(lh‘]) S ;dp(ps Q) ] vpaq € S7

where dp is the Poincaré distance in S.
Let us state anoother result that will be used.
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Proposition 1. Let S be a Riemann surface and gy, ..., gr be ultrahyperbolic

on S of curvature bounded by —a, < 0, ..., —a; < 0, respectively. Define
gy = max{gi, ..., &}. Then gy is ultrahyperbolic of curvature bounded by
—ay < 0, where ay = min{ay, ..., a;} respectively.

Proof. We observe thatif g; = f; (z)|dz)?, locally, then max{g, ..., gz} =
max{fi, ..., fr}|dz|*. Therefore, the proof follows directly from Definition 1.[!

We now introduce the notion of F-ultrahyperbolic metric for a foliation F.

Definition 2. Let M be a complex manifold of dimension > 2 and F be a singular
holomorphic foliation on M. We say that a continuous hermitian form H on M
is a F-pseudo-metric, if for any leaf L < M \ sing(F) of /F, the quadratic form
h, defined on L by the restriction H |, is a conformal pseudo-riemannian metric
on L. We say that H is F-ultrahyperbolic of curvature bounded by a < 0, if for
any leaf L of /F, h; is ultrahyperbolic of curvature bounded by a < 0. We say
that H is F-ultrahyperbolic, if it is F-ultrahyperbolic of curvature bounded by
a < 0 for some a < 0. We say that H is complete, if the pseudo-distance dy,
defined on M \ sing(F) by (1) and (2), is complete.
We now prove a foliated version of Ahlfors’ lemma.

Proposition 2. Let 'F be a singular holomorphic foliation on a complex com-
pact manifold M. Suppose that there exists a continuous ‘F-ultrahyperbolic
hermitian metric (L on M \ sing(F). Then the following properties are true:

(a) All leaves of F are hyperbolic. Moreover, if there exists a metric § on
M such that § < d,,, where d,, is the pseudo-distance induced by u on
M\ sing(F), then U(F) is normal.

(b) Suppose that . is complete in M \ sing(F). Then the Poincaré metric
on the leaves of 'F is continuous. Moreover, if (oy),>) is a convergent
sequence in U(F), say «, — o and o, (0) — p € M, then

(b.1) If p € sing(F), then « = p, is a consiant.
(b.2)If p & sing(F), then a € U(F).
Proof. The first part of assertion (a) is immediate from Ahlfors’ Lemma. On the

other hand, the proof of assertion (b) is similar to the proof of Theorem A in [LN].
Let us prove the second part of assertion (a). Suppose that . is F-ultrahyperbolic
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of curvature bounded by —a? < 0 and let § be as in the hypothesis. Fix o € U.
It follows from Ahlfors’ Lemma that

1
§(a(z2), a(z1)) = dp(@(z2), a(z1)) < dp(a(z2), a(z1)) < a—dp(Z2, 21)

where d; is the distance induced by d, on L = «(ID) and dp is the Poincaré
distance on [D. In particular U(F) is equicontinuous with respect to § and dp.
Now, fix 0 < r < 1. Since M and D, := {z € ; |z| < r} are compact, it
follows from Arzela-Ascoli Theorem that the set

U, = {alp,; @ € UF)} € CU(Dy, M)

is paracompact in the topology of uniform convergence in C°(D,, M), if we
consider in D, the Poincaré metric and in M the metric §. This implies that
UCF) C C°(D, M) is normal. O

Now, Theorem 1 will be a consequence of Proposition 2 and of the following
result:

Theorem 2. Let F be a foliation by curves on a compact complex manifold
M. Suppose that Ty has a metric of negative curvature and that all singularities
of F are non degenerated. Then there exists a continuous, complete and ¥ -
ultrahyperbolic hermitian metric L on M \ sing (F).

Proof. We prove first that, with a metric of negative curvature on Ty, we can
produce a hermitian metric on M \ sing () which induces in the leaves of ¥ a
conformal metric with gaussian negative curvature (in general not bounded from
zero). Let & be a fixed C* hermitian metric on M and v be a C* metric of
negative curvature on T¢. Fix a covering (U;) je; by Stein open sets of M and
colections (X ;) e; and (fij)v.nv; 20, Where

(i) X; is a holomorphic vector field on U; which defines F|y; .
@) IfU; NU; #@then f;; € O(U;NU;)and X; = f;; - X; on U; N U;.
The bundle 7y can be defined as
Tr =W, (U; xC)/ ~
where W denotes disjoint union and 2~ is the equivalence relation on & ; (U; x C)
defined by
(p,v) = (q,v;) &= (Pp,v)elU;xC,(q,v)eU; xC, p=g

3
and v; = fi;(p) v . ©
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Foreach j € J,letusdefine f;: U; — (0, +00) by f;(p) = v(p, 1;), where 1;
denotes the section of Ty which in the trivialization U; x Cis givenby 1;(p) = L.
1t follows from (3) that if p € U; N Uy, then (p, 1) € U; x C is equivalent to
(p, fij(p)) € Ui x C,sothat 1; = f;; - 1; on U; N U;. This implies that:

fi(p) = v(p, 1;(p)) = v(p, fi;(p) - L:i(p))
=PI’ fip) = fi=1fF- fionUiNU;.

Now, consider the hermitian metric g; on U; \ sing(¥) defined by

“

h

gj=fj'm-

Since X; = fi; - X, onU; NU; # @, we have

h

fi o~ = &>

-_— ..2. P .
g =1fil - £ e

h(fij - X0
on U; NU; \ sing(F). This implies that there exists a hermitian metric g on
M \ sing (F) such that |y \sing(r) = &;-

We now use that v has negative curvature. This is equivalent to the fact that
In(f;) is strictly pluri subharmonic (briefly spsh) for all j € J (cf. [G-H]).
Let p € U; \ sing(F), L be the leaf of F through p and let us prove that the
conformal metric g|;, induced by g on L, has gaussian negative curvature at p.
Let z: D, — L be the solution of the ordinary differential equation

d
ﬁ: = X;(2(T))

with initial condition z(0) = p, where D, = {T € C; |T| < €}, ¢ > 0 is small.
Then

hyry(Z'(T)))
hery (X j(z(T)))
= fi@@INAT|* := f(T)|dT|* .

24(8) = gy @ (TNIAT* = f;(z(T))

On the other hand, the gaussian curvature of g|; at p is

1 921
ke(p) = ~2— 0 10t/)

—-(0).
7O aror ®)
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Since f(T) = f;(z(T)) and In(f;) is spsh, we get k,(p) < 0. We observe that
(5) implies that

1
ke = ~2251f; - LUADX) - 18f;(X )1, 6)
J

where L( f;) is the Levi form of f;, whichis defined in a holomorphic coordinate
system (wy, ..., w,) by

n 82 )
£ =Y oL dw,dw;.

This implies, in particular, that k, is of class C*°. Therefore, if sing(F) = @,
then k, < —a®? < 0, for some a > 0, and we could apply Proposition 2 to
this metric to obtain Theorem 1. However, if sing((F) # @, we could have
limsup,_, , k., (g) = 0, where p is some singularity of F. Our work now, will
be to modify this metric in a neighborhood of the singularities of F and obtain
another which is F-ultrahyperbolic and complete. We need a definition.

Definition 3. Let U be a neighborhood of a point p in a complex manifold and
g be a continuous hermitian metric on U \ {p}. We say that g is complete at p,
if for any C! path y: [0, 1] — U, such that y(1) = p and ¥[0,1) C U \ {p},
we have £,(y) = +00, where

vlon

Remark 4. Let F be a finite subset of M. A continuous hermitian metric @ on
M\ F is complete if, and only if, it is complete at all points of F.

Lemma 1. Let X be a holomorphic vector field on B, := {z € C"; |z| < r},
where |z]> = Z'}:l |zj|* and r < 1. Suppose that 0 € B, is the unique
singularity of X in B,, which is non degenerated. Then, for any C™ hermitian
metric h on B, and any pluri-harmonic function u on B,, the hermitian metric

_opw b
P hx)

satisfies the following properties:

(a) u is complete at 0 € B.
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(b) k. <0on B, and limsup,_,, k,(q) <O.

Proof. TLet z(T) be the solution of dz/dT = X (z(T)) such that z(0) = p and

f(T) = i"“gﬁg‘? It follows from (5) that

1 8
£(0) 3TAT
_In’(Ip)) 8% In(in 2(jz)))
~ exp(u(p)) aToT

because u is pluri-harmonic. On the other hand, if we denote by <, > the
hermitian product < z, w >= 3, z,w;, then

k. (p) = [u 0 z + In(In™2(]z[))1(0)

),

9% In(In"*(|z[))
9787  |z[*lIn(|z])]
| < X(@),z> |
21z/*In(|z))

as the reader can check, by using that dz/dT = X(z). Let us denote by ¢(z)

the function in the right side of (7). Since | < X(2),z > |* < |z]*|X(2)|* and

| < X(2),z > |> = |z]?| X (2)|?if, and only if X () = A - z, we get ¢ > O which
implies that k,, < 0 on B, \ {0}. Now, we have

1 _In(1z) _In(z)] X @1 < X@,z> )
%0 G PP T mae T wE )

| < X(@),z>
2|z[* exp(u(z))

If |z| < e~"/2 then | In(|z])| > 1/2 and so

1X )|
exp(u(2))lz|*’

(IzZPIX @1 = | < X(2),z > )
7

s

—ku(z) =
for |z] < e /2. Since 0 is a non degenerated singularity of X, there exists
0 < ¢ < lsuchthatc™!|z| > [X(2)| > c - |z|, for |z| small, which implies that
lim sup, o k(g) < —a < 0,wherea = c?/ exp(u(0)). This proves (b).

Let us prove (a). Since % is a continuous hermitian metric, if we fix r; < r,
there exists C > 1such that C~'|v|> < h,(v) < C|v|? and exp(u(z)) > C~' for
any |z] < r; and any v € C". It follows that

expu(@h: () lv|? lv]?

z = = > s
8 = X (@) () X@PI(z) 1z (z)
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where b = ¢2 - C3 > 0. Since the metric |dz|?/|z)* In*(|z|) is complete at
0 € B,, u is also complete at 0. U

Lemma 2. Letsing(‘F) = {p1, ..., pr}, h be a C* hermitian metric on M and
g be the hermitian metric defined before Lemma 1 from h and from the metric v.
There exists a continuous hermitian metric (L on M \ sing(F), neighborhoods
W; C V; C U; of p; and holomorphic coordinate systems ¢;: U; — C”,
Jj =1, ..., k, with the following properties:

@U,NU; =0ifi # jand w coincides with g on M \ U;V;.
j Al

(b) ¢(pj) =0€ C"and ¢;(Wj) = B,; ={z € C"; |z| <1}, wherer; < 1.

(©) = ¢;k(‘;;‘f((ﬁ/‘))) . h(?(,—) on W;, where u is pluri-harmonic on B,, and X ; is

a holomorphic vector field which defines T y;.

(D) w is F-ultrahyperbolic and complete on M \ sing(F).

Proof. First observe that (¢), Lemma 1 and Remark 4 imply that u is complete
on M \ sing(F). Let us show how to modify the metric g in a neighborhood
of p; to obtain a metric satisfying property (¢). Fix holomorphic coordinate
systems y;: U; — C", such that p; € U;, ¥;(p;) =0 € C", ¥;(U;) = By,
j=1,.,kand U NU; =0ifi # j. Let X; be a holomorphic vector field
which defines F|y;, so that, on U; we have g = f; - Rﬁ‘a—)— As we have seen
the function f := In(f;) is C* and spsh. Therefore, in the coordinate system
(Uj, z = ¥;), we can write

f@) =In(f))@) =vi(x) + £;(2) + R;(2) ,
where, £; is the positive definite Levi form
n 2

Li(z) = Z

i,j=1

0z -zj
azgaz—;( 2i 2]

vi(z) = f(0) +k(z) + k(z), where k is degree two complex polynomial

I3 a 1 n 82
k(z) = Z%(O)zj +5 2 8[8’;(0)@- -z
J i ! J

j=1 Lj=1
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and

R;(z) _
=0 z)2
Observe that v; is pluri-harmonic.
Since £ is positive definite, after a linear change of coordinates in C", we can
suppose that

Li) =) 20z =2Iz]
j=1

and thatIn(f;)(z) = v‘,-(z)+2|z|2+Rj(z) isdefinedin B, C ¥;(U;),0 <r < L.
Let £.(z) = € + v;(z) + |z|>. We assert that there exist 0 < r; <ry <73 <
and ¢ > 0 such that

In(f;)(2) > £e(z) if ry < |z| < r3 and In(f;)(2) < Le(2) i lz| <. (8)

In fact, since lim, ¢ |R(2)|/|z|> = 0,1et0 < r3 < r be such that R(z) < 3lz|?
for |z| < ra. If 8(z) = In(f})(z) — £c(z) = |z]> + R(z) — € and |z| < r3, we
have

1 3
5|z|2 —e<z? = |[R@)|—€ <8x) <z + |R(@)| — € < §|z|2 —€.

If we take r, = ry/2 and € < r32/8, we get for r» < |z] < r3 that §(z) >
z> — € > r3/8 —€ > 0, and so In(f;)(z) > £.(z) for r; < |z| < rs. On the
other hand, if r| < 4/2¢/3 < r3/(2«/§) < ry, we get for |z| < r; that
3 3
§(z) < E|z|2—e < Erf—e <0,
and so In(f;)(z) < £(2) if |z| < ry, which proves the assertion. Define
ki: B, — (0, +00) by

kj(z) = exp(£c(z)) if |z| < ry
kj(z) = max{exp(£c(2)), f;(2)} if <zl <n 9)
ki(z) = f;(@) if |z| >

It follows from (8) that k; is continuous and In(k;) is spsh (because In( f;) and
£, are spsh). We do this construction for all singularities p,, ..., pr € sing(F)
and define a metric pt; on M \ sing(F) by

/ -1
M :kj Oij;(j) on U_I;Zl d’j (Br3)

(10)
=g on M\U:_ 7' (B,)
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This metric is clearly continuous and satisfies the following property: it is F-
ultrahyperbolic in any open set of the form M \ A, where A is an open neigh-
borhood of sing(‘F). This last assertion follows from Proposition 1. We leave
the details of its proof for the reader.

Now, we will modify the metric w«; in w;[(B,I), j = 1,...,k, in order to
obtain the metric u of Lemma 2.

Assertion. Let o(t) = (In(1)) ™2 and ¢, o(t) = acp(fo(i)“ = ago(t;_“t“) =

ap([t/t "), Given0 < t, < 1 thereare e,a > 0 and 0 < a < 1 such

that
(1) @oa(t) <€ ift, <t <t,+e
(11) ¢a,a(t) > e l:fto —e <t =<Ht,.

Proof. Leta > 0 be such that ap(z,) = e'. Observe that ¢, o(2,) = ag(t,) =
e" . On the other hand,

2au 2ee’
= >
I In%(1)] 1] In(t,)]

gD;,a(Zo) = aa(p,(to) =

Therefore, there exists « > 0 such that 0 < ¢ ,(%,) < el = %h:r{,‘ On the
other hand,

2uce’ t,| In(z,)| 1
)= ————— < = a< ——— < — <1,
Yaullo) = o] 2 T2
because 7, < 1, as the reader can check. This implies the assertion. D

Observe that the function ¢, , of the assertion is defined for < 1 because
téa_l)/ > 1.

Letk; and r; < ry be as in (9), so that k;(z) = £(z2) = € + v;(z) + |z|? if
Iz| < r1. Fix0 < r, < min{1, r{} and consider a function ¢, () defined for
t < 1, as in the assertion, by

Paalt) = ap(lt/r2e /)

2 . .
where <pa,a(r3) =€, @uqt) < € if rg <t < rg + e and @, (1) > € if
r? —e <t <r2. Define m; by

mi(z) = exp(|z|?) for r, <z <1,

mj(z) = @a,a([le) for izl <r,
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Since @, (roz) — , m; is well defined and continuous. Moreover,
2 23] i 2 2 2
m(z) = max{exp(|z|"), @uo(I2|)} il r; —€ < |z|” <71, + €. (11)

Define n;: B,; — (0, 4-00) by

[n,-(z) = k;(2) if r <zl <rs 1)

nj(z) = exple +v;(z)) -m;(z) if |z] <ry

It follows from (9) that ; is continuous. Do this construction forall j = 1, ..., k
and define the metric i on M \ sing(F) by

m=njo wlh(]ﬁ on Uljzl Wj_l(Brz)
"= on M \ U/j:[w‘/‘_]<Br3)

It follows from (10) and (12) that & is continuous. On the other hand, if we
a—1

consider the change of variables w = z/r,° , z € B,,, we have for |w| small
enough, that

-1 2{a—1)

nj(w) = exp(e + v; o W)aalra © (W) = exp(u;(w)) In " (jw]) ,

ot
where u ;(w) = In(a/ 4a?) (e +v i{ro® w)) is pluri-harmonic. Now, Proposition
1, (11) and Lemma 1 imply that x is F-ultrahyperbolic and complete. This
proves Lemma 2 and Theorem 2. o
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