Torsion Decomposition of Finite CW-complexes *
PAUL G. LEDERGERBER**
Introduction

Peter Freyd proved in (3), Theorem 7.2, that in the stable category % defined
there, each object X is equivalent to the cone of some morphism

8 v. ... vS8"—T

in &, where the left hand side is the sum of certain spherical objects and the
right hand side is a torsion object in &.

With suitable reinterpretations of these concepts the theorem can also be
proved in the category € ; of finite CW-complexes with basepoint, under the
additional condition that the object X is first sufficiently often suspended
That is the purpose of this paper.

The material is presented in four chapters:

Chapter I: Identification spaces are introduced as sets of equivalence classes
of points of a given space X with the largest topoiogy for which the function
sending each point into the class it represents still is continuous.

A particular type of identification spaces is obtained by generating the equi-
valence relation in the following way: Le A be a closed subspace of the space
X and f:A — Y some map. Then the relation R = {(a, f(a)}|ac A} on
the disjoint union ¥ 14X of X and Y generates an equivalence relation R,
the smaliest one on Y LJX that contains R. Then the identification space
of Y LJX with respect to R is denoted by ¥, L1X and called the adjunction

*Recehido pela SBM em 10 de julho de 1972,
*+*The material of this paper was contained in the author's doctoral dissertation writien at the
Swiss Federal Instituto of Technology under the direction of Professor B. Eckmann.
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space of X and Y with respect to . Intuitively one may think of ¥, L1X
as being obtained by gluing X along A to Y by means of f The adjunction
~ operation is compatible with the operation of forming the topological product.
with a locally compact space and the universal property for identification
spaces has the special form of a pushout for adjuntion spaces. The latter
property will guarantee a certain amount of freedom in the tepresentation
of iferated adjunction spaces‘"‘(cf. Theorems 6 and 7). Theorem. 7 actually
makes a statement about mapping cones. special adjunction spaces which,
are obtained by gluing along the base of the cone-of a space. '

Using the particular homotopy properues of mapping cones it will be shown'
that the suspension of any mapping cone has the -same homotopy type as
some new mapping cone into which an additional map and an additional space
are built such that the base space of the new mapping cone is the mapping cone
of the additional map (cf. Theorem 10).

Chapter II: Torsion spaces are defined as spaces with base point having a
homotopy-commutative coproduct structure for wich the constant map is a
homotopy left and right identity, and the class of the identity map has finite
order in the semigroup of homaotopy classes of maps from the space into itself.

Pseudo=projéctive spaces prove to be the most elementary-not-trivial torsion
spaces from which all the others, which have the same homotopy type as
a finite CW-complex may be obtained in much the same way as C W-complexes
are obtained from spheres. This follows. from the. Theoremns 13 and i4. The
reduced integral homology of any torsion space of the same homotopy type
as a CW-complex is finite. This homology condition is also sufficient for a
simply connected finite CH-complex to be torsion, after it has been twice
suspended (cf. Corollary 15).

Chapter III: In accordance with the inductive construction of finite
CW-complexes the main Tesult of this paper will be obtained by induction.
The induction step depends on the right choices of the additional map and
the additional space in the reinterpretation of a suspended mapping cone
by a ngw mapping cone (cf. Theorem 10). The choices will be made on the
bases of the finiteness of almost all homotopy groups of spheres. The non-
finite case m,,_, (5" is avoided by a sufficient number of suspensions, while
the other non-finite case 7, (S™ which cannot be removed by suspensions
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is further transformed until the top-space of the new mapping cone has the
form of a sum of spheres together with possibly one pseudo_-projective space.

Chapter IV- All the previous results are organized in the induction step.

Chapter 1: Adjunction Spaces

1) IDENTIFICATION SPACES. If X is any topological space and R < X xX
some relation on X, then there exists a smallest equivalence relation R on X,
containing R, called the equivalence relation generated by R.

If f:X —> Y is any map such that R-related points of X have- the same
image under f, then also R-related points will have the same image under /.
Further, there exists a unique space X' and a continuous surjection p:
X — X' such that any map g: X — Z which also sends R-related points
to the same image point uniquely factors through p giving rise to a new map
g': X’ — Z making the following triangle of maps commutative:

Under these conditions p will be called the identification map with respect
to the equivalence relation R generated by the relation R on X.

X’ will be called the identification space of X with respect to the equivalence
relation R generated by the relation R on X.

This general situation may be specialized by defining the relation R as follows:
Let A be a closed subspace of the space X and f: A — Y some map,
where X Y = . Then R = {{a, f(a))| € 4} is a relation on the disjoint
union ¥ LJX. '
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2) DeFiNITION. The identification space of ¥ | X with respect to the equi-
valence relation R gencrated by the relation R = {(a, f(a))|a€ A} is called
the adjunction space obtained from X and Y by means of gluing X to Y along
A using f It is denoted by Y, LI X and fiYuUx — Y, L1X denotes the
identification map.

3y OBSERVATIONS. a) gt Y |1 X — Z maps R-related points (R as in defi-
nition 2) to the same image point iff the following square of maps is commu-
tative:

A —p— X

F

Y — 7
gl¥

Here i is the inclusion of the closed subspace A into X.
Hence the following commutative square of maps is a pushout:

i
A —— X

i

y —=Y. 11X

Here ‘the following notation is introduced:

LN
il

H

“-\; "-\,

b) If p: X — X' is an identification map and Z a locally-compact space then
also px 1;:X x Z — X' x Z is an identification map. Applying this to
the special case of an adjunction space it follows that the pushout square of
observation a) multiplied by Z anew yields a pushout.
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ix 1,
Ax 2 ——————pX x 2

fx1 fxlz

Y x2Z—— (Y, LX) % Z

Px 1,
Since with i, also i x I, is the inclusion of a closed subspace there is a push-
out determining the adjunction space (¥ x Z),, LI{(X x Z).

%1,
AXxZ ———l X x 2

fxle fx1
z

Y xZ ——————m (¥ x Z)p,, LI(X x 2)
ix1;
From the universal property of pushouts it follows that
(Y, LX) x Z=(Yx Z)py, X x Z)
i.e. the topological product with a locally-compact space and adjunction are

compatible operations. {cf (1), Theorem 4.6.6).

This property will be of particular use for Z = I (closed unit interval), to show
that cone- and suspension-construction respectively are compatible with the
adjunction operation. In view of .observation b) it will suffice to show that
identification and adjunction are compatible operations. More precisely.

4) LEMMA. /
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If this diagram commutes and i, 7, ky , k4, ky are inclusions of closed subspaces,
and if A = A" n X % F is saturated with respect to f', ihen

a) Y, L1 X can be considered as a closed: subspace of Y, UX
b) A’/A can be considered as a closed subspace of X'/X.
c) there exists a um‘éue map g: A'fA — Y'[Y such that

(Y, UXHY, UX) = (Y/n, LXYX)
ProoF. a)

The solid-arrow subdiagfam is commutative by hypothesis. The universal
property of pushouts implies the existence of a unique map % such that the
whole cube of maps commutes.

It remains to show that & : Y, LIX — k(¥, LX) c (¥',. LU X’) induced by
k is a homeomorphism'with respect to the subspace topology on fc(Yf LX)

al) k is 1-1; It suffices to show this set-theoretically. But as sets

Y, UX =Y LU(X-4)

and

Y, LUX =¥ X -A).

If v;, y,eY such that R(y,) = k(y,) then also koil(y,) = koily,). However
koi =70k, . Since both ky, and 7 are monomorphic, it follows that y, = y,.

If x, , x, € X - A such that k(x,) = K{x,) then also k o F(x,) = ko F(x,). How-
evet ko f = 7o ky . Since both ky and f7|._ . are monomorphic and 4 =
= A" n X, it follows.that x; = x,.
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Finally, if xe X - 4 and ve Y such that &(x) = E(v) then k » F(x) =kaiv) or

equivalently f'° ky(x) = 7ok, (y)- mdlcatmg that ky(x), k,(y) are R'-related
{where R’ = {(a, f'(a))|a’ € A’}). Since Y’' and X' are d]Sjomt, this implies
that ky{x)e A" -and f'(ky(x)) = k,(y). However ky maps X -4 into X'- A’
by hypothesis, so that this case cannot occur. Hence % is 1 - 1.

a2) k is open: Since K is 1-1 and onto, being open is equivalent to being
closed. Let C < ¥, LJX be any closed subset. Hence i~ '(C) js closed in Y
and therefore also in ¥, and f~4C) is closed in X and therefore also in X".

Since the only non-trivial identification of f*: ¥’ L X' — Y, LX is due
to f': 4" — Y’ and 4 is saturated with respect to ', it follows that oy
S NC) e Y UX is saturated with respect to f'. Since it is also closed
in Y' LJX', its image under f” which is equal to KC) is closed in ¥/, LJX
and therefore closed in k{(Y, LX) as a subspace of Y, LIX".

Since k is also continuous and. onto by construction, it follows from al) and
a?) that it is a homcomorphismf

1
i

YIY madoe /A o XX

/
————
S
.

--—:A--—«::a

¢ —— g ———

Pxoi maps A to the basepoint of X'/X and so factors uniquely through p,
giving rise to the map i”. (Also py . f’ maps 4 to the basepoint of ¥//¥ and
so factors uniquely through p,, giving rise to the map S which will be the
map g of part ¢) of the lemma). It is claimed that i induces a homeomorphism
7' AT A s (A {A) = X'/X with respect to the subspace topology of
(A} A).

b1) ¥ is 1-1: Let a;, a, € A'/A such that i"(a,) = {'(a,). There exist elements
i, € A’ such that p,(a;) = a, and p,a;) = a,. Then also pyoild)) =

= pyoi{ay). However, the only non-trivial identification effected by py is
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the collapsing of X to one point. Hence #{a}), i(a.) € X, which lmphes that
a,,a,€ A, Hence a; = a, .

b2) ¥ is closed: For any € = A'/A closed, p; '(C) is closed in A’ and hence
in X' It is py-saturated if p; ' (C)n A =@ UpH{C)nA#J, pHOUVX
is py-saturated and py(p;'(C)u X) = py(p;'(C)). In both cases i"(C) =
= py(p; '(C)) is closed in X'/X and therefore in i(4'/A4) as a subspace of X*/X.

i is onto by definition and 1 -1 by bl), hence.it is open by b2). By construc-
tion it is also continuous and so actually a homeomorphism.

) P ky -4 Pa - AA
N N, Ny
5 ky ™ Px N
X -y - -— X
1
; 5 o
;
| 4 1
k !
N —— v Pr -}
= ad ] '!
J\V k N ' P AN
y,_ux——-——-—-y;.ux ------ {71, L0,

[ / 1

1
" 1

Ty,

N

(Y I_IX)/(Y, I_IX)

I

¢1) The solid-arrow subdiagram is commutative. The universal property of
pushouts implies the existence of a unique map p such that

pn? = Imu Py
and

pof = f"opx.

¢2) Also p maps the entire subspage Y, LJX to the basepoint of
(Y7Y),» LI(X'/X) and therefore uniquely factors through p' giving rise to
g such that p = g.p!
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¢3) Furthermore

pFo7 maps Y < Y to the basepoint
p-f maps X < X' to the basepoint.

Hence, these maps respectively factor uniquely through p, and py giving
rise to maps ry and ry such that

Pol = FyopDy

and

pPof =ryep
C4) rl"°f"°pA =-rrapyof”"i}:)p'of—’uf —pof I —-r'xopxo! A-?'xol "pA

But p, is surjective, hence ry o f = ry o i” and the universal property of push-
outs implies the urigue existence of 2 map r, such that

Fy = to i Fx =rtaf"
¢5) Claim: g and r gre mutuallv inverse homeomorphisms.

To prove this it suffices to show that

It
—_

o) geor

and
1] rog =1

) By the universal property of pushouts it suffices to show:

gorol =i

and

[
~

qol"a}"7

Since py and py are surjectlons these equalitiés are equivalent to the follow-
ing: geroi"e py =1"opyand gore f7o py = 7o py
However

""{L

gorol opyPgoryap, Dgop i Dpod B py
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and

qoro [T spx EqeryopryEqop o [T Rpo ffR f7opy
B) Since p' is a surjection it will suffice to show.that ragep’ = p'. Further,
the universal property of pushouts implies that this equality is equivalent
to the following two:
rogops T wp'ol
and
regep o f’ =pof’
‘However
rogep o T @roqoryopy Drogorot opy @rol opy®ryapy Do o
and

rggo'__p o?gé-"r:)QOfxopxqé)roqarD opx -—ropopx =TyoDy -—p’ _7.

5) COROLLARY.

Y, LX) = CYp LICX
and ,

(Y, LX) = ZY;, LIZX

With this the compatibility between_ cone- and suspensaon coustrucuon res-
pectively and the adjunction operation is establlshed

The following theorem provides a certain amount of freedom in the repre-
sentation of spaces obtained by an iteration of adjunction operations (e.g.
CW-complexes). e o

‘ Y s A7 e X7
6) THEQREM. _ |
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If this diagram of maps commutes, and i ¥, V"', k., ky, ky are the inctusions
of closed subspaces where A = A X # (Fis sarurated with respect to gy and
S’ then there exist unigue maps

F:A”, L4 — Y, LY
and
GiY, X — Y UX
such that
(Y LX) LY LX) = (Y7, LY LI(X e LIX)
Proor (cf diagram on the next page) The solid-arrow subdiagram is commu-

tative and the ugiversal property of pushouts uniquely induces, on¢ after
another, the following maps: '

. a) 3! k such that ko f = [ oky and koi=Toky.

Lemma 4 implies that k is the inclusion of a closed subspace.

b) 3! 1 such that Jok, = Kyoi’ and Tog, =gyei-

Lemma 4 again implies that I is the inclusion of a closed subspace.

¢} 3! G such that Go7 =1 vgy, and Gof =F"ogy.
d) 3! F such-that Fo.g, =gyof and Faky =kyo "

Using the maps of a), b), ¢} and d) it is possible to form in two ways new
adjunction spaces, the ones which appear in the statement of the theorem
and which will be shown to be homeomorphic. The existence of the mutually
inverse homeomorphisms .is established in the following six steps:

e) 31 ry such that ryog% =G Fand r oky =fof

because

J{t)



Y iUX === g ~=~=f=~|-- --------i—- Y. X

f 1
A I j P QA-'_-"A ! \
- / N
| 4 9x ;—‘:x" ' \
ka ky 17 5 ' \
k
52
k .
. kx I kx | \
Y gy ==Y || Y. [ ] \
/ \ ?\i ’l "'----._h T ra -.:' ..... "
1728 U G S SN Mg Vo b8
' . T
! | / VP
"/ ] v / ]
A - r— g, Ay LA oy i
\ ‘ 7o 4 - | ,F - 1 'I
d /- |- Sl VO :
\X' I — gy - X X |
| !
L_2¢ f !
Abbreviations: M = (Y, 1Y), L{(X",, LX)
N=Y"p JX") LY, LIX)
) 3! r, such that ryegy = GoF and rpoky = K7’
because
Eoi_"o gy Q Eu Go-f = G_ckai = Go 170 kY
g) Claim: r;o T =r,;- F, or equivalently
I;'IOI_OQ'_A =‘F20F0Z' and l"'lo_Iuk_'A =T20FD'E;
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But

nelog, bopegyel g Gefof =Gelof Brpegyef dr,oFog,

- and

rlolé]—(: b riok_‘xoi" g_lEoF_aj" =E°‘F°f” Qrzuﬂof” al r;“F“k—A.
Hence 3! r such that roF =r; and ref =r,.

h) 31 s, such that 5, of7 = Fogy and 5,1 = Iegy

because

F_Q.—xul'gFOIOgA—TnFGQ: Q‘jo_yof'
i) 31 s, such that 5,01 =Tok, and s;of" = Foky
because

Folyoi" & Folok, =TaFok, 2 Tokysf"
j) Claim: s,°G = s,°k, or equivalently
sjoks} =5,0Gei and  spkof =5,0Gof.
But
so kol = sjoT oky BTegyoky = Tokyogy & 5,070y £ 5,0G i
and
51‘:|°k°7.=51'°f_'° ky 8 Fogyoky = Fokxogx j—lszf‘)ﬁ"Qx Ls,0Gof

.Hence 3! s such that s-G =5, and sok =5,

1t remains to show that r and s are mutually inverse homeomorphisms. This
will be done in the final two steps.

k} Claim: res = 1.
‘Dug to the universal property of pushouts it will be enough to show:

rosh G= G, or equivalentiy

rogoGel =Gei and  ressGof =Geof
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as well as

resok =k, or equivalently

FoSokoi® =kei and rosoke [ =kaf",

However

rosoGol &ros of Brology £r,0g; 2 Gol
resaGaf’ Lros,of B roFajy Lrogy &Gof
rosokoi” Lrosy,el Lrolok, Lok, L ko
rosokof" R ras, of " & paFaly &rok, &Kof"

) Claim: sor = L.

Again it is enough to verify the following:

sor-F =F, or equivalently
SchFog—)_l =F_oﬁ and Snr.uFok; =F_6E;

as well as sord =1, or equivalently

Soro—iog*y =7og_y and Sorqiok_l: '—"Ioi(;.

However

soroFog_X‘_lscrlog; QSOGOJGQSIQJ‘ 1Ny o g—
Sci’oFokX‘—lScrlok_X‘—lso_ f—”-u-s of Y E
{ & o

o)

Sofolofy Lsoryogy R5eGoi L5007 &

Scro—ioky ﬂSoP'zoky ——.S'okut" 'D'S/{ i’

P:-i Sl gl

L7,

RemMARK. The Observations 3, Lemma 4 and .Theorem 6 can be obtained
identically if the gluing takes place along an open instead of a closed subspace.
However, only the latter case will be studied in detail, since the final aim is
at analysing the stucture of finite CW-complexes which are iterated mapping

cones.

For such iterated mapping cones the following is true:

7) THEOREM. Given three spaces X, Y and Z, X compact and Hausdorff as
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well as two maps f: X — Y and g C; -+ Z then there exists a map
hEX — Z,, L€, Y such that

Z,UC{Y, UC, X} = (Z"_,_IY UG, Yy ULICZTX
The proof of Theorem 7 depends on the following.
8) LEMMA. If X is a compact Hausdorff space, then there exists ¢ homeomor-
“. phism ’ :
' qf1.C,C X —CZX
extending the obviousone
CXx,, UC, X -~ EX

Proor. Let : -
K=(x{-1, 1} x hu(X-x =1, 1] x Dule x [-1, [} x 1
and
L=(Xx1xI)ulX xI, x Dulx I; x 1)
Then ' '
CIX=Xx[-1,1]x1/K
and

C,C,X =X x1, x /L.
ff:X x[-1,1} x I — X x I, x I is the map defined by

e s+t-sty i Ts20
f{x’s’[)_{gc; _t,_t—s+5f) if SSO '

it 15 readily verified that f(K) < L, and therefore f iuduba a map f':
:CEX - C,C, X making the following square of maps commutative:

Xx[-L 1] x] ———®X xI %1y

(21} pzl

CEX = = C,C;X

where p, and p}-are-the identification maps.
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The construction of f implies that ' 1s 1-1 and onto. Since both CZ X
and C,C, X are compact Hausdorff spaces, f’ actually is a homeomorphism
extending the obvious one from £X to C,X,, LIC, X.

ProoF oF THEOREM 7 (cf. diagram on the next page). The solid-arrow sub-
diagram is commutative, in particular

Jolzogofoip =glyeCyfviy,
hence
a) 3! k such that
hoiy =glyeCyf and  hoiy = jolgsgef.

h is the map the existence of which is claimed in the theorem. The following,
diagram con:ains all information about it for future reference.

sz, - C, ¥

iy / \

Lx X f Zp LG, Y
EN i
4 1
! \ i qlr 4 :
: T
i
i C, X j —=v, UCcX g —= z :
|= :
1 1
e e m e e = s —— . — fommmmremm et e e —. e .l

The definition -of h andrq imply:
BoqoCyi = hek ai] =kohai, =kog[yeC,f.
Hence
b) 31 s such that
seCri=kogly and  s.Cyf =heq
c) 3! ¢ such that
toj =mal,”"  and  togly = FoCii,

because rizl, Yo gly = FaClicf
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C,¥
A\
C,f Cyi
/ N
C X Co(¥, LIC, X)
N\ 7N\

Here

M =Z,LICy(Y, LiC,X)

and

koY j
N o
zslfué \
A X e
h g|v j
AN yd
C,¥
_ 4
g sz
N\
C.X
 N=(z,,UCY), LICEX



d) Claim: toh =§oC, oq ok, or equivalently
-goqfuq._loko--i‘l ——-toh'évﬂ-
and '

qvlckoi; = Iuho_/f;

wi
)
o

However

GoCafoq tokoi; =goCofo Czt---goCzlc,C2 f R tagly:Cof Lishod
and | . :
ga(:?'uq'lokoi; =Gomof =tioge] =Mmol; tolgogaf Litsjalzogaf
‘ ’ ' ik pofiod, :
I:ience 31 » such 'that

vk =1t and

‘-Ql
‘...5

e) Claim: kojolyog = sem, or equivalently

Suﬂ'!ollt c]olzogc-l;

and
Csemo f =i_c_=jolzogof
However
Somol = 80,00 L koglyoj =kojalzegei
and
samof = 500 o q - okoiy B hogoq=tokoi; = Fokol; = kohoiy

= §o
L kijolzoge]

Hence 3! w such that

f) Claim: vew =1, or eqﬁiv_a]ently

‘Uowofﬁ=ﬂ.“l . an(_i_ ’UDWOE =g.

108



Hrwever
poworit & vskojoly & tofol; Bofial, 1ol =mi
while the second equality is equivalent w0 tbe following pair:

vowago O3l = o Gy

and
vowagoCyf =7-GF
But
vawoagaCol L vess Coi £ vokoyly & tagly % goCai
and

vawgdoCrf B voseCrf B oshog L §sC foq tsq=gsCof

g) Claim: wop = |, or equivalently

wstvsh =h - and waevsk = k.

However
wevoh & wajeC,foq ! &5:C,fog ' B hogeg ' =h
while the second equality is equivalent to the following pair:

WdUOEd}: = on

and
wovikig[, = kogly
But
| Witeke] & wote] & worlis 1,71 & Rojulyol, ™! = FKoj
and

wovokegly L wotsgly L wegiCyi £ 50Co0 £ kaygly.

So far only the topological type of adjunction spaces has been considered.
The following result will permit to deduce the central fact about the homo-
topy type of iterated mapping cones as a consequence of Theorem 6.
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9) Turorem (cf. (4), Theorem 6.6).

h—-—

@ v—

J

—— — ¥

A ——
f

X

If this square of maps is commutative up to homotopy, and h, k are homotopy
equivalences then

C, =G

ie. the homotopy type of a mapping cone does not change when any of its
ingredients are changed within their respective homotopy class.

Y’ =gy of—r A >—i -—m=C A

} b

gr Ly lga
¥ e f—— A e | (A
ky k, ke,a

& ' +

C,Y ~aC,[—C,A>— C,i—wmC,C1 A4

The diagram above satisfies the hypotheses of Theorem 6. The map F which
therefore exists has the special form

F=gy.C.f

le. F is homotopic to the constant map.

Hence the following topological equivalence holds:.
(Y ey LIC1A)g LI(C, Y, LC,C Ay = (Y7, LIC, Y, 0 cxy UGG A

Using Corollary 5 on the left and Theorem 9 twice on the right, this topo-
logical equivalence goes over into the following homotopy equivalence:

(Ygr LIC ) LICK(Y, UCA) - ¥, LiC,Y
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If
Ji Y, UCA —— (Y7, - LIC ) LIC,(Y, LiC,A)
is the inclusion of the base space into the mapping cone of G, then two more

applications of Theorem 9 infer

10) THEOREM

A ——f = ¥ eemengy e Y

i i

J '

C\A—— j ==Y LIC A

EC, =G
where 7
Ioj :Cg‘hf I Car
ReMark. The value of this theorem lies in the possibility of building two

new elements, namely Y” and g, into the'suspension of any mapping cone,
without changing its homptopy type.

Chapter II: Torsion Spaces

11) DeFiNITION. X be a topological space with a basepoint * on which a ho-
motopy associative coproduct structure m: X — X v X is defined for
which the constant map »: X — X is a left and right homotopy identity.
Under these conditions the set [X, X7 of homotopy classes of maps from X
into itself forms a semigroup with respect to the operation

[/1-le) =1x.(f v g).m]-

where x: X v X --— X is the folding map. The class [»] is the left and right
identity.

X is called a torsion space with respect to the coproduct structure m if [1;]
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has finite order in the semigroup [ X, X]. This order will be called the torsion
number of X with respect to m: 1.

12) ReMaRKS. a} Up to a homotopy equivalence, the only coproduct struc-
ture known for topological spaces is the one due to the suespension structure.
In the sequal always that one is meant and m will not be mentioned any more.

b) Obviously, the space containing omly its bascpoint is torsion and has
torsion number 1.

c) Any finite sum of torsion spaces is again torsion.

d) Simply connected pseudo-projective spaces, §", LI CS" with k, n > 2, are
torsion. (cf. (8), Theorem 1.5).

) For any finitely generated abelian group G and integer n > 1, there exists
a finite CW-complex K'(G, n) with abelian fundamental group and reduced
integral homology as follows:

P _ G if i=n

H{K'(G,m) = {0 £ i#n

If n > 2, the finite CW-complex K'(G, n) is determined up to homotopy type
by G and n (cf. (2), 1.3.¢).

The spaces K'(G,n) are called Moore spaces.

If G is a finite abelian group, then G = Z, ©...® Z, . Hence, if n > 2,

KZ, &...82Z,, n=~(5y LICS’?‘V SV (8, LICST)

since for finite CW-complexes, finite sums and homology with integral coeffi-
cients are interchangable. By Remarks c) and d) it follows that Moore spaces
with finite integral homology in dimension n = 2 are torsion.

The following two theorems describe methods for the construction of new
torsion spaces from given ones.

13) TueorEM. Let T be a tc-)rsion space and f: 8" v ... v §8% — T some
map, where r > 1 and ¢, =0, i=1, ..., r

112



If

P UCE" v.. v 8 — Sy v sw+t
is the identg"icﬁtion-map, collapsing T to a point, and \/k, =k v...v%&
is the map from l '

Vsqi+1 ____Sm+1 V...V S""+1
i .

to itself, being the k,:—fold identity on the component §%*' where k; = 2, then
the two-fold suspension of the mapping cone of (\ k)-p is also torsion.
i

PROOF. Let t;, be the 1,-fold identity map of Z X acting on the last suspen-
sion coordinate.

a) T LT, ——=E'T
£ 3 ' \zz;
Vs x ('r, uaV s-i)) ------ - If - (1} Hay 3‘")
=1 / =1 =1
T4 by =f
N/ /
Tio \r/ F oA S — £Cty, —— EC V bl

(=1 i=1

"The solid- -arrow subdiagram commutes and induces the unique map T,
which is the 1o-fold identity map acting on the first coordinate of the dou-
ble-suspension.

b) By Theorem 7, the two-fold suspension of the mapping cone of (\/ kjop
is homeomorphic to =1
DS v L v STV ET), LGS v .. v ST Y]

where h is uniquely determined by the next diagram (cf. pi114).
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Vs <.f o T

1 iy d ’
zV:'/ \\'/sw — 7 T/ \"/:HVIT

i iy ) N !

N N7

GV [ T UG (Y= ( bpop e VS

c)

/St y IThx 0 ity v 1) o T S v ET)

\ ! \zr.-

la ITix 1
DV St v T, UGV S0 ] x0T IR, T DIV S I UG s

Iy i

I S L ET) x ! Ity v H) IS v I
I« 1, \zr.-

IV S ET), LG §%° 1j] x | —Tk ———= TI(\/ 51 v IT), UG §%* 1]

As i a) Z(ty, v ¢, umiguely induces the map I T, which is the 7,-fold
identity map, acting on the first coordinate of the double suspension.

By hypothesis, £z,,: Z? ZT — T2 XT is homotopic to the constant map.
Let ZH be this homotopy. Since £?i x 1, is a cofibration, the homotopy
Z%io Z(t,y, v H) has an extension ZK to Z*[(\/$%*' v ET), LIC(\/§%™ )] x I,
with initiat map 2T, and terminal map Zk, say.

Tk maps T IT to the basepoint and therefore has the following unique

factorization:
E(V/$*! v ET), LIC $* Y1—Zk —- FLOV$%* ! v ET), LTV § ]

£ b's
\ /
LIV 5% 0, Lo\ s 4]
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From b) it follows that ' ~ \/ k;. Hence
i=1

z:.[v st UC(VSG-H)] EJ[V‘Sfi+lh UCS..H)]

However, the last space is torsion by Renrarks 12 €} and €} heving torsion
number u, say. The above triangle can now be extended in the foliowing way:

— Tk = BV 5% v ET) UV ST Y] — Uy, — B[OV SV v ET), LIV 547 Y]

4

~
(e @) (koD k' D
\ yd yd

ZZ[V(S"*H, UCS"+])] gy —— El[\/(s‘w‘ltI ucs "+1}]

where t;, and Uy are the u-fold identity maps on the respective spaces,
acting on the second suspension coordinate of the double suspension. Hence
the square is commutative. Further, u, = » implies U oXk = ».

All together it has been shown that U, X7, which is the u - t-fold identity
on ZI(\/ST+! v ZT), LIC(\/S®* Y] is homotoplc to the comstant map,
i.e. the latter space is torsion.

14) THEOREM Lt f: T, —— T, be anv map between tarsion spaces, then *C r
is also torsion. i

Cf. diagram on the next page.

PrOOF. If Xty is the 77,-fold identity of 22’1‘2 acting on the first coordinate
of the double suspension it uniquely induces T tzm , the tr-fold identity map on
I}T,,; LICT,) acting on the first coordinate.

By hypothesis, Xt;;, =~ », by means of a homotopy XH. Also T?ix 1 is
a cofibration and £*7- ZH therefore has an extension XK with initial map
Et"z‘ y and terminal map Xk, say. Zk uniquely factors through Zp giving rise
to ZK.

If ty and i, are the 1, -fold identity maps of Z* X7, and Z*(T;, LICT))
respectively, acting on the second ccordinate of the respective double sus-
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T, x 0 =—Zty,, — = I'T;

™~ AN
T4 x 1y ! Xy
Iy ) \ \
IHT,, LCT) x 0 iy, —# IXT,, LUCT} x 0
J ' ‘ 1
Iy x| ——3TH — r-—‘EITz
] \ . 1y 4 \
x| | bk
i'l . )
\ \ Y
EUT,, UCT) x 1 ]Ik T, UCT)
I} 1
: !
I3 x i * - Z2T, 1
ix1, " 7

T, UT) x |

\\E{ P T /zw

ZET, Tiyg % TIIT,

Tk ——tm THTy LICT,) o T,y — BT, LICT))

pension, then the last square of the diagram is commutative. By hypothesis
tya) = * Hence f)z,0Xiy, = + This means that the ;- 7o fold identity
map of the twice suspended mapping conc of f is homotopic to the cons-
tant map.

15) CorOLLARY. If X is a finite simply connected CW-complex, then Z*X is
torsion iff the reduced integral homologv of X is finite.

ProOF. X has a homology decomposition (cf (4), Theorem 8.2), ie. it has
the same homotopy type as some space X' obtained inductively by adjoining.
cones CK'(H,(X), n—1) along their base space to what already has been
constructed, adjoining the first one to the basepoint. Suspending X' twice and
applying Theorem 14) to each adjunciion operation gives ‘one implication.
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For the other observe that for CW-complexes integral homology and finite
sums are compatibl’e; hence the assumptions on the coproduct structure on
Z%X imply the following equalities, where A stands for A Z2x):

- A— A 1 A—s A .
* *
) 458 | @ Yog=a-4a=-a4a"¢g " @ XL 4
’ A— A A— A
b) LA 424
A—*—*@ (-B mx ¢
Ay A=A -
. \. g
L@ &4
A— A A

Combinations of these equa_litiés yield:

1= "

A A— A — A
. @&, ©54
A——*@ Aw-w—b@ A— A
A A——-—»@ 1*EBNQ
A— A — A

: At alsy

A5 e ® ®

0
e A A
= A ———
® 8 ota
1= 1x

A— A — A -
Hence m, is the diagonal. It further follows from a) that y, is the ordinary
addition. The fact that Z2X is torsmn then implies that 1, has finite order,

or equlvalent]y, that any' element of. }7 (22 X) has finite order Since the inte-

gral homology of a finite C Wcomplex is ﬁmtely generated the second im-
plication also ﬁollows ‘

REMARK. Modulo suspension, all finite CW-complexes which are torsion can
be obtained from the trivial torsion space, », using the two methods descri-
bed in Theorems 13 and 14.
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Chapter 1II: The two Choices _
16) DEFINTTION. {S%3},_" be a sequence of spheres, —1'< g, < ... < g, where
S_ 1 == %,

{X,}.-0 be a sequence of spaces.

[f)e=1 be a sequence of maps fk:S""'—> X, such that X, = %, and
inductively X, = X,_; , LICS%, then X = X, is the finite CW-complex
determined by these three sequences. '

By Theorem 9, this definition of finite CW-complexes ¢orresponds to the
usual one, where the spheres are not ordered by dimension, up to homoto-

Py type.

In the next and final chapter it will be shown that any fmite CW-complex X,
after it has been sufficiently often suspended, has a torsion decomposition,
ie. has the same homotopy type as the mapping cone of some map

fi8Wy w8 —T
where T is a torsion space.

In case X = « the claim is evident. The general case will be established by
induction where the induction step can be described as follows:

17) Induction step. Given two maps f: §P v...v 8% — T aud ¢:
§P — C,, where T is torsion and -1 < p; < ... < p,, then there exists
another torsion space T' and a map f': 8% v ... v §% — T' such that

", = Cp for some mz=0

18) Theorem 10 suggests the following:

§r——g — T, LIC(S" v ... v §F) - gy Y
| 1
i i

C,8* —— G —w [T, LIC(™ v ... v §7)], LIC,8*

With-the prolongation gy of g, ZC, = C,,; with foj: C,, , — €, .
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19) Choice of the space Y in 18. Theorem 13 suggests to choose for
gyt T, LUC(S” v ... v 57) — ¥
some map of the form

TUCE v...vsmS snviy oy set B e Vg g

where 7 is the identification of 7 to a point, and k; > 2 fori=1,..., r, be-
cause then the twice suspended base space of the mapping cone C, ; will
be torsion, while the top space will have the form:

+1 -+ 1
(SP* v v ST LCse

With this the space Y in 18 has been fixed The rest of this chapter is devoted
to the choice of k;, v ... ~v k, which determines ¢,, and to a convenient
reinterpretation of the top space of the mapping cone C,, i

20) THEOREM (cf. (6), Theorem 3.1), If (X, x,) and (¥, vo) are twvo spaces with
busepoints then for p = 2.

(X VY, #) = 1K, %) @ TV, Yo) @ Ty s (X X Y, X v Y)

where the left hand side is the direct sum of the images of the monomorphisms
induced bv the natural injections

(X, x0) — (X v Y, #) v— (¥, v)
as well as the boundary homomorphism
dim (X xY, XvY) — w X v Y, %)

of the exact hoinotopy sequence for the triple (X x Y, X v Y, =) which also
proves to be a monomorphism.

2I) THEoReM. If 2 =g, = ... < g, and g, + g, = p + 2 = 4 then

D m,(S$")

i=1

np(\/ Sy =~
i=1

und the left hand side is the direct sum of the images of the r monomorphisms
induced bv the natural injections of the spheres into their sum.

PrOOF. Induction with respect to the number r of summands. The claim
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is trivial for » = 1. Let B,_, be the sum of the first r—1 spheres, and assume
the theorem for r—1, r > 1. Then by Theorem 20 it suffices to show that

(B, x 8%, B,_ v §7y =0

for the induction step.

By the Kiinneth Formula for integral homology
[H(B,-,, ») ® H(", #)]), = H(B, , x §*, B,_, v §%)

The first non-trivial group on the left hand side may appear in dimensions
nzq, +4 =4q +q; =p+ 2= 4 Hence by the relative Hurewicz Isomor-

phism Theorem also the first non-trivial homotopy groups of (B,_, x §%,
B,_, v $%) may appear in dimensions n = p + 2; in particular the above
homotopy group vanishes.

ReMARK. This is a corollary of a much more general resuit due to Hilton (cf. (5)).

22) TueoreMm. If 2< ¢, ... =g, and 2q, = p+ 2 =4 and exactlv t = 0
of the g's are equal to p, then if

18— S v .. v ST

is a suspension and

’
a) t = 0, then there exists an integer n > 1 such that (\/ n)s [ ==
i=1

b) t >0 and
S v v S — STy v S

is the natural inclusion, then there exists an integer n = | such that

(\/mpef =ief"  for some map J8— /5P
i=1

i=]

Proor. By Theorem 21

Tc"(.\___/l qu) ~ EB] nplsa.-)
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The homotopy groups of spheres are linite except for the following two cases:
(cf. (7), Theorem 9, p. 516)

n,(S%) for all p>1, and =, (S¥*"*) for odd p.

By hypothesis 2g, > p + 2 so that the second case camnot appear in the
above direct sum, while the first case will furnish precisely ¢ infinite cyclic
direct summands. Assume that the finite part is of order n, say.

The element in o m (5%} corresponding to [ f]em,(\/ §*) is of the form:
= i=1

thys oo Mesrs oo By <00 R with Aien, (8%) and such that precisely
Gue1 = = qgys, = p- Since f is a suspension, [(\/ n}of] =n-{f].

i=1
However, n-(h,,...,h)=(0,...,n hey, .., B Ryrs ..., 0) which corres-

\r/ 5% is the

i=1

ponds to i ([f"]) for some [ /7] e:rp(\[/SP), where i : \I/S" —
1 :

natural injection.
23) Choice of the map \/ k; in 19).
i=1
To satisfy the conditions of :l'hcorem 22 it may be necessary to suspend
Spl+1 V...V Sp'+1(h W w k) emteg UCSP

s times, say. Then if n is the order of the torsion part of

e d \V/ SPF1F9, the choice will be \/ k =\/n
i=1 i

i=1 i

Under these circumstances the top-space of Z°C,,; mentioned in 19) will
be of the form:

Sp.+1+s IVERY Spk+l+s v [(\r/8p+s)¢ UCS'VH] v Spk+,+1+1+s v
I

v v Sp.-+1+s

up to homotopy type.
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It remains to give (\7 §7*%), LICS7** a more convenient form (cf. Remark 27).
Vi ;

24) LEma. Let 2<g, <...<y¢q, be such that g, + g, >p+ 2 =4 B;:
n 3%} - é n,(S%) be the natural injection, and k;: ST v ... v §% —— §%
i=1

be the map which sends all the spheres to the basepoint with the exception of
5% on which k; is the identitv map. Then ‘

(Bretkys ooy Bl )i my (5% ~— @ 7,{5%)
i=1
is the inverse of the isomorphism L P L

ProoF: Enough to show: (B (k). ..., Bolk))e(li), + ...+ (i),) is the
identity.
Let (fa,], ..., [aDen(§") & ... ® n,{S%), then

Broth)eso- s B tk)) i)y + o + B add, - [a]) =

Brotk)gs- s Btk )liimad + ..o+ [heg ) =

CAlkgcigra )+ [k cioa ]S Lkcira ) F o+ [k ce]) =

([ai]... [a D | | o
For p>1, let 'GP = {[x,f]eE8*~ 1|t =0, 1/r,...,k/r,...,1} and define
PP =387 G ‘

25) COROLLARY. if 2<gq, .= g, such that ¢, + q; = p + 2 = 4, then anv
map- . ‘

L4
fi8 — \/ s
i=1
is homotopic to one that factors through the identification « : 87 — F?.

Proor. The element corresponding 10 ([a,],. .-, [2,]) under the isomorphism
(i), + ...+ (i,),) may be represented by [{a, v ... v a)ex], because by
Lemma 24

(ﬁlo{kl)*""’ﬁro(kr)*)([(al V...V ar):lc'K) =
([kicfagv ... va)e ... . [kelay v... v a)ek]) = ([ar]s---» [a D
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In particular [f]en(S" v ... v S‘?’) may be represented by
[ky2f v ... vkeof)K]
ie.
Falkef v vksflrk
26) THEOREM. Let p =2 and t = 1. If f:5° — \/ 8% is not homotopic to

1
the constante map, then C; has the same homotopv tvpe as the Jollowing

Moore space
-1
V §7 v (87, LICSP)
1

where
k=gcd([kyof]....[k o5

ProoF. Consider the following part of the exact homotopy sentence of the

! 1
triplet (C,, \/ $?, ), using the abbreviation V = \/ §7
I t

= Ty i(Cp s Vi) == (V%) s 1 (C ) — 7 (Cy, Vi), —

. 1(Cy, V, #) is generated by the characteristic map ¢ : ([*+1, 7wy ——
(Cy. ¥ %) (cf. (9), Theorem 2.6.17). Also d[¢]) =[] and n(Cp, V%) =0
for g < p + 1. Hence '

T,(Cp, *) = n(V, »)/Im(é).
By Theorem 21,

I

mAV, %) = GP 7, (5P, ) = @ Z.
Further by Corollary 25 [f] may be represented by
[y fv...vik=fy K}

t
and the clement corresponding to it in GP Zis

(ky /1 [k S D0
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Hence

nCyot) = D2/ [Tk S ). [ s 2 @ 2O Z
where ‘

k=ged {[k>f]--- . [kef1)
The relative Hurewicz Isomorphism Theorem now implies

-1
o ©Z@Z if q=p
H(C) = :
0 f  qg#p

=1
Hence by Remark 12 €) C; =~ \/ §° v (8%, LICS?)
1

27) RemarK. Hence the top-space mentioned in 17) under the choice made
in 23) has the same homotopy type as the sum of some spheres together with
possibly one pseudo-projective space, which is torsion by Remark 12 d).

Chapter 1V: Torsion Decompaosition

28) THEOREM. There exists a function ¢ (€| — N7 from the set df spaces
which have the same homotopy tvpe as a finite CW-complex to the set of non-ne-
gative integers such that, whenever X e[% _r| there exists a map

S8 v . v 8T T torsion
such that _
TOY ~ T, UCE™ v ... v 5P,

The sum of spheres is uniquely determined by 6(X) and the infinite cvclic part
of the reduced integral homology of X. On the other hand, T is not-even deter-
mined up to homotopy tvpe.

Proor. It suffices to carry out the induction step annaunced in 17), observing
the special choices made in 19) and 23} as well as their consequences for the

top-space mentioned in 27).
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a) In case the top-space is a sum of spheres only, the desired form is alrcady
present, since the base space is torsion by 19).

b) If the top-space contains a pseudo-projective space in its sum the result
follows from Theorem 7 and Theorem 14, combining the base space, which
is torsion, with the torsion part of the top-space to a new torsion space.

This argument only applies after the initial situation has been sufficiently
often suspended.

From the homology-prope'rties of the refative C W-complex (C,, T} it follows
immediately that the infinite cyclic part of the reduced integral homology
together with the number o(X) determines the sum of spheres uniquely.

It remains to give an example which will show that the torsion space is not
determined up to homotopy type:
Sl (8" LICS") LICS" ~ +, LICS"  for any &k, n22

where i is, as usually, the inclusion of the base space into a mapping cone.
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