A Note on First Integrals of Vector Fields and Endomorphisms*

RICARDO MANE

Introduction

The purpose of this paper is to provide a simple proof that C^r -generically $(1 \le r \le \infty)$ vector fields on a compact, smooth, boundaryless *n*-dimensional connected manifold have the following property:

(P) C"-first integrals are constant functions.

We recall that a C^k -first integral of a vector field X on a manifold M is a C^k -function $f: M \to \mathbb{R}$ (the real numbers) such that is constant on the orbits of the flow generated by X. We shall also prove that a similar property is C^r -generically true in $\mathscr{C}^r(M, M)$, the space of C^r -endomorphisms of M.

Recently, T. Bewley [5] proved the genericity of \mathscr{P} in the case $1 \le r < \infty$. In the two dimensional case this property follows from Peixoto's theorem [2]. R. Thom, in an unpublished paper [4] observed that the C^r -closing lemma implies the C^r -genericity of \mathscr{P} . For ε -structurally stable vector fields J. Arraut [1] proved that property \mathscr{P} is true.

In [3], Peixoto observed that if a vector field has a Morse first integral then it can be approximated by a gradient like vector field.

Our proof of the genericity of \mathcal{P} uses a lemma due to F. Takens [6] (lemma 1.1 in this paper). In section 2 this lemma is generalized and applied to the case of endomorphisms of M.

REMARK 1. Peixoto's observation is not true, even taking C^{c} -approximations, if the first integral isn't a Morse function. To see this, consider an Anosov

^{*}Recebido pela SBM em 15 de agosto de 1972.

Let V be a C^n -first integral of X. Then $(\nabla_p V, X_p) = 0 \,\forall p \in M$. If V is non constant, by Sard's theorem there is a regular value $\alpha \in \mathbb{R}$, and by well known facts about differentiable functions, there is neighborhood U of $V^{-1}(\alpha)$, an $\varepsilon > 0$, and a diffeomorphism:

$$F: (\alpha - \varepsilon, \alpha + \varepsilon) \times V^{-1}(\alpha) \to U$$

such that the following diagram is commutative

$$(\alpha - \varepsilon, \ \alpha + \varepsilon) \times V^{-1}(\alpha) \xrightarrow{F} U$$

$$\downarrow V$$

where π is the projection onto the first factor. Let

$$W = F\left(\left(\alpha - \frac{\varepsilon}{2}, \alpha + \frac{\varepsilon}{2}\right) \times V^{-1}(\alpha)\right)$$

Obviously $\Omega(X) \cap W \neq \emptyset$. Then there is a neighborhood \mathscr{U} of zero in $\chi_r(M)$ such that:

$$y \in (X + \mathcal{U}) \cap \mathcal{B}_r \Rightarrow \Omega(y) \cap W \neq \emptyset.$$
 (1)

Let $\mathscr{W} = \{Z \in \chi_r(M) : (\nabla_p V, Z_p) > 0 \ \forall p \in W\}$. \mathscr{W} is non vacuous because a C^r -vector field C° -near to $\nabla_p V$ is in \mathscr{W} . Then \mathscr{W} is an open non vacuous cone in $\mathscr{X}_r(M)$ and it follows that:

$$(X + \mathcal{U} \cap \mathcal{W}) \cap \mathcal{B}_r \neq \emptyset$$

But if $Z \in (X + \mathcal{U} \cap \mathcal{W}) \cap \mathcal{B}_r$, then it is easy to see that $\Omega(Z) \cap W \neq \emptyset$ and this is in contradiction with (1).

2. First Integrals of Endomorphisms

Let $f \in \mathscr{C}'(M, M)$, $1 \le r \le \infty$. We say that $p \in M$ is a non wandering point of f if for every neighborhood U of p, there is an integer $N \ge 1$ such that $f^N(U) \cap U \ne \emptyset$. We define $\Omega \colon \mathscr{C}'(M, M) \to S(M)$ as the function that to each endomorphism assigns the set of his non wandering points. We shall consider $\mathscr{C}'(M, M)$ as a metric space with the usual C^r -metric.

diffeomorphism $f: T^2 \to T^2$ such that $f_*: H_1(M) \to H_1(M)$ is hyperbolic [7]. The diffeomorphism $f: T^2 \times S^1 \to T^2 \times S^1$ defined by f(p,q) = (f(p),q) has C^{∞} -first integrals non constant on open sets. If g is C° -near to f then $g_* = f_*$ because they are homotopic. But f_* is not unipotent on homology [8]. Then by [8], g is not Morse-Smale, The suspension of f is then a vector field, with a first integral non constant on open sets, and cannot be C° -approximated by a Morse-Smale vector field.

REMARK 2. The method used in the proof of Lemma 2.1 can be used to prove that given a connected Lie group G there is a residual subset S of $\mathscr{A}_r(G, M)$, the space of C'-actions of G on M with the C'-topology such that if S(M) is the space of subsets of M with the Hausdorff pseudometric then $\Omega: S \to S(M)$ is continuous and is upper semicontinuous at points of S.

1. Genericity of P in $\chi(M)$

Let M be a compact connected smooth n-dimensional boundaryless manifold, with a smooth Riemannian structure. Let $\chi_r(M)$, $1 \le r \le \infty$, be the Frechet space (Banach if $r < \infty$) of C^r -vector fields with the usual C^r -metric. Let S(M) be the pseudometric space of subsets of M with the Hausdorff pseudometric.

If $X \in \chi_r(M)$, and ϕ , is the flow generated by X, we recall that $p \in M$ is a non wandering point of X if for every neighborhood U of P there exists $T \in \mathbb{R}$, $T \ge 1$, such that $\phi_r(U) \cap U \ne \emptyset$. Let $\Omega: \chi_r(M) \to S(M)$ be the function that to each vector field assigns the set of his non wandering points.

LEMMA 1.1. There is a residual subset $\mathscr{B}_r \subset \chi_r(M)$ such that $\Omega \colon \mathscr{B} \to S(M)$ is continuous.

PROOF. See F. Takens [6], or apply a method similar to the one used in the proof of Lemma 2.1.

THEOREM 1.2. If $X \in \mathcal{B}_r$, then X has property \mathcal{P} .

PROOF. Let $(\cdot, \cdot)_p$ and ∇_p be the scalar product and the gradient operator of the Riemannian structure of M.

LEMMA 2.1. There is a residual subset $\mathcal{B}_r \subset \mathscr{C}^r(M, M)$ such that:

$$\Omega: \mathcal{B}_r \to S(M)$$

is continuous.

PROOF. Let \mathcal{N} be a countable basis of compact neighborhoods of M. Given $U \in \mathcal{U}$ we define:

$$\mathcal{C}_{\ell}^{\Lambda,m} \colon \mathscr{C}^{r}(M,M) \to S(M)$$

as

$$\mathcal{O}_U^{N,m}(f) = \bigcup_{N \le k \le m} f^k(U).$$

We also define

$$\bar{\ell}_{\mathcal{U}}^{N}\colon \mathcal{C}^{r}(M,M)\to S(M)$$

as:

$$\bar{\mathcal{C}}_{\mathcal{U}}^{\Lambda}(f) = \overline{\bigcup_{N \leq k} f^{k}(U)}.$$

It is easy to see that $\mathcal{C}_{\mathcal{U}}^{N,m}$ is continuous and

$$\bar{\mathcal{O}}_{\mathcal{U}}^{N}(f) = \lim \mathcal{O}_{\mathcal{U}}^{N,m}(f).$$

By a well known lemma due to Baire, there is a residual subset $\mathscr{B}_r^{N, \odot} \subset \mathscr{C}^r(M, M)$ such that $f \in \mathscr{B}_r^{N_0 U} \Rightarrow f$ is a point of continuity of $\bar{\mathcal{C}}_U^N$. Then if we define:

$$\widehat{\mathscr{B}}_r = \bigcap_{\substack{U \in \mathcal{N} \\ 1 \leq N}} \mathscr{B}_r^{N_{\overline{0}}U}$$

it is easy to see that $\Omega: \mathscr{B}_r \to S(M)$ is upper semicontinous. By well known properties of set valued functions, we deduce that there is a residual subset \mathscr{B}_r of \mathscr{B}_r such that $\Omega: \mathscr{B}_r \to S(M)$ is continuous.

THEOREM 2.1. If $f \in \mathcal{B}_r$, then it has the following property: P') If $V \in \mathcal{C}^n(M, \mathbb{R})$ is such that V = f = V then V is a constant function.

PROOF. If $f \in \mathcal{B}_r$, and $V \in \mathcal{C}^n(M, \mathbb{R})$ is such that $V \cdot f = V$ and if V is non constant, then there is a regular value $\alpha \in \mathbb{R}$, and $\varepsilon > 0$, an open neighborhood U of $V^{-1}(\alpha)$ and a diffeomorphism F such that the following diagram is commutative:

$$(\alpha - \varepsilon, \ \alpha + \varepsilon) \times V^{-1}(\alpha) \xrightarrow{F} U$$

where π is the projection onto the first factor. Let

$$W_1 = F\left(\left(a - \frac{\varepsilon}{2}, \alpha + \frac{\varepsilon}{2}\right) \times V^{-1}(\alpha)\right)$$

and

$$W_2 = F\left(\left(\alpha - \frac{\varepsilon}{4}, \alpha + \frac{\varepsilon}{4}\right) \times V^{-1}(\alpha)\right)$$

There is an open neighborhood \mathcal{U} of f such that:

$$g \in \mathscr{U} \cap \mathscr{B}_r \Rightarrow \Omega(g) \cap W_2 \neq \varnothing.$$
 (2)

Let $X \in \mathcal{X}_{\infty}(M)$ such that $X_p = 0$ if $p \notin W_1$, and $(X_p, \nabla_p V) > 0$ if $p \in W_1$. Let $\lambda \in \mathbb{R}$ be such that the flow ϕ_t generated by λX has $\phi_1 \cdot g \in \mathcal{U}$ $(\lambda \neq 0)$. Let:

By the density of $\mathcal{B}_r \cap \mathcal{U}$ in \mathcal{U} , and because

$$(V\circ\phi_1\circ f)(p)-V(p)\geq 0\,\forall p\in M$$

we can take $g \in \mathcal{B}_r \cap \mathcal{U}$ such that:

$$\left| (V \circ \phi_1 \circ f)(p) - (V \circ g)(p) \right| \leq \frac{c}{4} \quad \forall p \in M.$$

Then $\Omega(g) \cap W_2 = \emptyset$ in contradiction with (2).

BIBLIOGRAPHY

- [1] J. ARRAUT, Note on Structural Stability, Bull. Amer. Math. Soc. 72(1966), 543-544.
- [2] M. Peixoto, Structural Stability on Two-Dimensional Manifolds, Topology 1 (1962), 101-120.

- [3] M. Peixoto, Qualitative Theory of Differential Equations, Hale/La Salle – Differencial Equations and Dynamical Systems, Academic Press, New York (1967).
- [4] R. Thom, Les integrales Premières d'un Systeme Différentiel sur une Variété Compacte (Unpublished).
- [5] T. Bewley, Non Genericity of First Integrals, Thesis, University of California, Bekerley, 1971.
- [6] F. Takens, On Zeeman's Tolerance Stability Conjecture, Proceedings of the Nuffic School on Manifolds, 1971, Springer Verlag 197.
- [7] J. FRANKS, Anosov Diffeomorphisms on Tori, Trans. Amer. Math. Soc. 145 (1969).
- [8] M. Shub, Morse-Smale Diffeomorphism are unipotent on Homology, Proceedings of the 1971 Dynamical Systems Symposium of Salvador, Brasil.

Instituto de Matemática Pura e Aplicada Rio de Janeiro