O Lema de Krasner Generalizado e Aplicações*

G. G. BASTOS

§1. Introdução

Seja (K, ϕ) um corpo valorizado, i.e. um corpo K munido de uma valorização ϕ . Lembramos que (K, ϕ) é dito henseliano se toda extensão algébrica $L \mid K$ possui uma única valorização que prolonga ϕ . A seguinte versão do lema de Krasner é bem conhecida e pode ser encontrada, por exemplo, em [3] F.

LEMA (Krasner). Sejam (K, ϕ) um corpo valorizado henseliano, Ω um fecho algébrico de K e ω o único prolongamento de ϕ a Ω . Dado $y \in \Omega$, separável sobre K, sejam

$$C(v) = \{ v' \in \Omega \mid v' \in K\text{-conjugado } a \ v \}$$

е

$$\varepsilon(v) = Min \{ \omega(v - v') \mid v \in C(v) \setminus \{v\} \}.$$

Para todo $x \in \Omega$ tal que $\omega(x - y) < \frac{1}{2} \cdot \varepsilon(y)$ tem-se $K(y) \subseteq K(x)$.

O objetivo do presente trabalho é o estabelecimento da generalização do lema de Krasner para um corpo valorizado qualquer. Como aplicações, daremos uma nova demonstração do teorema do elemento primitivo e mostraremos que se (K, ϕ) é henseliano e ϕ é não trivial então se L é uma extensão separável finita de K tomando-se em L a topologia T_{ϕ} , definida pela única valorização de L que estende ϕ , o subconjunto $\mathcal P$ de L, constituido dos elementos primitivos de L K é aberto e denso em L relativamente a topologia T_{ϕ} .

^{*}Recebido pela SBM em 22 de novembro de 1972. Trabalho apresentado à Sociedade Brasileira de Matemática pelo Professor O. Endler.

82. O Lema de Krasner Generalizado

Sejam (K, ϕ) um corpo valorizado, Ω um fecho algébrico de K e $\mathscr V$ o conjunto das valorizações χ de Ω , tais que $\chi | K = \phi$. Dado $y \in \Omega$, y separável sobre K, denotaremos por C(y) o conjunto dos elementos de Ω , que são K-conjugados a y.

Lema (lema de Krasner generalizado). Seja $v \in \Omega$, um elemento separável sobre K. Seja

$$\varepsilon(y) = Inf \left\{ \chi(y - y') \mid \chi \in \mathscr{V}, \ y' \in \mathbb{C}(y) \setminus \{y\} \right\}.$$

I niào,

- i) $\varepsilon(y) > 0$.
- ii) Para todo $x \in \Omega$, tal que $\chi(x v) < \frac{1}{2} \cdot \varepsilon(v)$, para toda $\chi \in \mathcal{V}$, tem-se $K(v) \subseteq K(x)$.

DEMONSTRACAO. i) Seja N o corpo de raízes do polinômio minimal de y sobre K. Então $[N:K] < \infty$ e portanto o conjunto das valorizações de N que prolongam ϕ é finito. Como $C(y) \subseteq N$ e C(y) é finito, segue-se que o conjunto $\{\chi(y-y') \mid \chi \in \mathscr{V}, \ y' \in C(y) \setminus \{y\}\}$ é, também, finito. Logo,

$$\varepsilon(y) = \operatorname{Min} \left\{ \chi(y - y') \mid \chi \in \mathscr{V}, \ y' \in C(y) \setminus \{y\} \right\} > 0.$$

ii) Seja $\sigma: K(x, y) \to \Omega$ uma K(x)-imersão. Mostraremos que $\sigma = id_{K(x,y)}$. Com efeito, seja $\chi_0 \in \mathscr{V}$. Temos

$$\chi_0(\sigma y - \sigma y) = \chi_0(\sigma y - \sigma x + x - y)$$

$$\leq \chi_0(\sigma y - \sigma x) + \chi_0(x - y)$$

$$= \chi_0 \circ \sigma(y - x) + \chi_0(x - y)$$

$$= \chi_y(x - y) + \chi_0(x - y),$$

pura certo $\chi_v \in \mathscr{V}$, pois $\chi_v = \chi_0 \circ \sigma$ é uma valorização de Ω . Por hipótese, temos que $\chi_0(v-x) < \frac{1}{2} \cdot \varepsilon(v)$ e $\chi_v(x-v) < \frac{1}{2} \cdot \varepsilon(v)$. Logo, temos $\chi_0(\sigma v - v)$ $< \varepsilon(v)$. De acordo com a definição de $\varepsilon(v)$, segue-se que $\sigma v = v$, pois $v \in C(v)$. Como $[K(x, v) : K(x)] = (\text{número de } K(x)\text{-imersões } \sigma : K(x, v) \to \Omega) = 1$, segue-se que $K(v) \subseteq K(x, v) = K(x)$. C.Q.D.

Aplicação 1. Seja π_p o corpo primo de característica p>0. Se L é uma extensão finita de π_p , então L é um corpo finito. Nesse caso, é bem conhecido que o grupo multiplicativo $L^*=L\setminus\{0\}$ é cíclico. Se v é um gerador desse grupo, L^* , tem-se trivialmente que L=K(y). Mais geralmente, se K é um corpo localmente finito (i.e. K é uma extensão algébrica de π_p) e $L\mid K$ é uma extensão de grau finito, então $L=K(v_1,\ldots,v_m)$ para certos $v_1,\ldots,v_m\in L$ e, tomando-se o corpo intermediário $L'=\pi_p(v_1,\ldots,v_m)$ tem-se $L'=\pi_p(v)$, para certo $v\in L'$. Logo, $v\in L'$. Logo, $v\in L'$ 0,

PROPOSICAO 1. Seja K um corpo não localmente finito. Então pode-se definir em K uma infinidade de valorizações duas a duas não equivalentes.

Demonstracao. Seja K_0 o corpo primo de K.

 $1.^{0}$ Caso. $K|K_{0}$ é uma extensão algébrica. Então, K_{0} é isomórfico a \mathbb{Q} . Como existe em \mathbb{Q} uma infinidade de valorizações duas a duas não equivalentes e $K|K_{0}$ é uma extensão algébrica, tomando-se os prolongamentos das valorizações de \mathbb{Q} , a proposição fica provada neste caso.

2.º Caso. $K | K_0$ é uma extensão transcendente. Seja T uma base de transcendência de $K | K_0$. Seja $t \in T$ e $K_1 = K_0(T/\{t\})$. Como em $K_1[t]$ existe uma infinidade de polinômios irredutíveis, segue-se, por um conhecido resultado da teoria das valorizações (V. [2], §4), que se pode definir em $K_0(T)$ uma infinidade de valorizações duas a duas não equivalentes. Como L | K(T) é uma extensão algébrica, a proposição fica provada. C.Q.D.

PROPOSICAO 2 (Teorema do elemento primitivo). Seja $L \mid K$ uma extensão separável de grau finito. Então $L \mid K$ é uma extensão simples.

DEMONSTRACAO. Se K é localmente finito a demonstração é trivial como vimos acima. Suponhamos, então, que K não é localmente finito. Sejam Ω um fecho algébrico de K que contém L e y_1, \ldots, y_m tais que $L = K(y_1, \ldots, y_m)$. Tomemos em K, m valorizações ϕ^1, \ldots, ϕ^m , duas a duas não equivalentes. Seja \mathscr{V}_j o conjunto das valorizações de Ω que prolongam ϕ^j e sejam $\psi^j_1, \ldots, \psi^j_{r_j}$ as valorizações de L que prolongam ψ^j , para todo

 $j \in \{1, ..., m\}$. Em particular as valorizações $\psi_1^1, ..., \psi_{r_m}^m$ são duas a duas não equivalentes. Logo, aplicando o teorema de aproximação em L, relativamente às valorizações $\psi_1^1, ..., \psi_{r_m}^m$ obtemos $y \in L$ tal que

$$\psi_i^j(y-y_j)<\frac{1}{2}\cdot\varepsilon(y_j)$$

para todo $j \in \{1, ..., m\}$ e $i \in \{1, ..., r_j\}$, onde $\varepsilon(y_j)$ é escolhido como no lema de Krasner generalizado. Então,

$$\chi(y-y_j)<\frac{1}{2}\cdot\varepsilon(y),$$

para todo $\chi \in \mathcal{V}_j$. Logo $K(y_j) \subseteq K(y)$, para todo $j \in \{1, ..., m\}$ e portanto L = K(y). C.Q.D.

Aplicação 2. Sejam (K, ϕ) um corpo valorizado henseliano e L|K uma extensão separável de grau finito. Denotemos ainda por ϕ o único prolongamento de ϕ à L e por T_{ϕ} a topologia definida em L por ϕ . Seja $\mathscr P$ o conjunto dos elementos primitivos de L|K. O teorema do elemento primitivo afirma que $\mathscr P$ é não vazio. Mostraremos que $\mathscr P$ é aberto em L relativamente a T_{ϕ} e que se ϕ não é a valorização trivial (caso em que T_{ϕ} é a topologia discreta), então $\mathscr P$ é denso em L relativamente à topologia T_{ϕ} .

Proposicao 3. \mathscr{P} é aberto em L relativamente à topologia T_{ϕ} .

Demonstracao. Segue-se, imediatamente, do lema de Krasner generalizado aplicado ao corpo valorizado henseliano (K, ϕ) . C.Q.D.

Proposicao 4. Se ϕ não é a valorização trivial, $\mathscr P$ é denso em L , relativamente a topologia T_ϕ .

DEMONSTRAÇÃO. Sejam $y, x \in L$ onde y é um elemento primitivo de $L \mid K$. Pela proposição 1, existe uma valorização ψ de K, tal que ψ é não equivalente a ϕ . Sejam χ_1, \ldots, χ_r , os prolongamentos de ψ a L. Dado $\varepsilon > 0$, pelo teorema da aproximação, existe um elemento $z \in L$ tal que

$$\phi(x-z) < \varepsilon$$
 e $\chi_j(y-z) < \frac{1}{2} \cdot \varepsilon(y)$,

para todo $j \in \{1, ..., r\}$, onde $\varepsilon(y)$ é tomado como no lema de Krasner generalizado. Então, $K(z) \subseteq K(y)$, i.e. $z \in \mathscr{P}$ e $\phi(x-z) < \varepsilon$. C.Q.D.

Para outra aplicação do lema de Krasner generalizado ver [1] §4.

BIBLIOGRAFIA

- [1] Bastos, G. G., Sobre um Problema de Existência na Teoria das Valorizações. Tese de Doutoramento (IMPA), Rio de Janeiro (1972).
- [2] ENDLER, O., Valuation Theory. Springer-Verlag, Berlin-Heidelberg-New York (1972).
- [3] RIBENBOIM, P., Théorie des Valuations, Les Presses de l'Université de Montreal (1968).

Instituto de Matemática Pura e Aplicada Rio de Janeiro