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Abstract. In this paper we survey recent results on the decay of periodic and almost 
periodic solutions of conservation laws. We also recall some recent results on the global 
existence of periodic solutions of conservation laws systems which lie in B Vloc and are 
constructed through Glimm scheme. The latter motivates a discussion on a possible 
strategy for solving the open problem of the global existence of periodic solutions of 
the Euler equations for nonisentropic gas dynamics. We base our decay analysis on a 
general result about space-time functions which are almost periodic in the space variable, 
established here for the first time. This result is an abstract version of Theorem 2.1 in 
[311, which in turn is an extention of the combined result given by Theorems 3.1-3.2 in 
[91. 
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1 Introduction 

In this paper we survey recent results on the decay of periodic and almost periodic 
solutions of conservation laws. We also recall some recent results on the global 
existence of periodic solutions of conservation laws systems which lie in B V1oc 

and are constructed through Glimm scheme. The latter motivates a discussion 
on a possible strategy for solving the open problem of the global existence of 
periodic solutions of the Euler equations for nonisentropic gas dynamics. We 
base our decay analysis on a general result about space-time functions which are 
almost periodic in the space variable, established here for the first time. This 
result is an abstract version of Theorem 2.1 in [31 ], which in turn is an extention 

of the combined result given by Theorems 3.1-3.2 in [9]. 
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2 HERMANO FRID 

The study of the asymptotic behavior of the solutions of nonlinear conservation 
laws goes back to the pioneering paper of E. Hopf [40] on the Burgers equation, 
which started the modern analytical theory of conservation laws and may be 
seen as its second major landmark after the foundational 1860 paper of Riemann 
[52]. In the referred paper Hopf introduces the vanishing viscosity method 
which means to add an artificial viscosity to the original equation, solve the 
approximating equation, and then send the viscosity coefficient to zero. By 
means of a tricky tranformation of the dependent variables, the now called Hopf- 
Cole transfomation, which transforms the viscous Burgers equation into the heat 
equation, he was able to obtain an explicit formula for the solutions. This was 
then used to prove the convergence of the vanishing viscosity solutions and 
also provided an explicit formula for the solution of the inviscid equation. The 
work of Hopf was followed by a series of papers of Oleinik surveyed in [51] 
establishing existence and uniqueness of solutions of scalar conservation laws in 
one space variable with strictly convex flux function, which satisfy an admissible 
(entropy) condition on the points of discontinuity introduced by her. Oleinik's 
entropy condition was not only crucial for the uniqueness of the solutions but 
alone can explain the asymptotic behavior of such solutions in two important 
representative cases: periodic and compact supported initial data (see [56]). 
However, the problem of the asymptotic behavior of the entropy solutions of 
scalar conservation laws with strictly convex flux function was first solved and 
to a large extent by Lax, in his well known paper [44]. Therein, Lax considered 
the general class of initial data u0 c L~~ satisfying the condition that the limit 

1 [ a + L  
M(uo) = lim -- uo(x) dx 

L~oc L Ja 

exists uniformly in a 6 R. This includes the two special cases mentioned above. 
For this general class of initial data, Lax proves the decay of the solution in the 
L ~176 norm to M(uo) as t --~ co. His analysis is heavily based in an explicit 
formula for the solution found by him, motivated by Hopf's formula. The decay 
property for such general class of initial data is still unknown for flux functions 
which are not strictly convex. Also, as far as the author knows, the same general 
result is not known for the corresponding viscous equation! 

Concerning periodic initial data, an important progress was achieved by Glimm 
and Lax in their influencial paper [38]. Therein, they prove the global existence 
of entropy solution of the Cauchy problem for a general class of strictly hyper- 
bolic genuinely nonlinear 2 x 2 systems of conservation laws, for L ~ initial data 
of small oscillation. The solutions are constructed through Glinkrn scheme and 
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the regularization property is also shown to be a consequence of stronger esti- 
mates for the interaction of waves holding for 2 x 2 systems, proved by Glimm 
in his celebrated paper [37]. For periodic initial data, they prove that the solution 
so obtained decays in the L ~ norm at a rate O (t - l). More recently, the study of 
the asymptotic structure of general periodic B Vjo~ entropy solutions of systems 
in the same class considered by Glimm-Lax, possessing the same decay prop- 
erty, was analized in detail by Dafermos [20], using his method of generalized 
characteristics. For scalar conservation laws in two space variables with B Vjo~ 
periodic initial data and a nonlinearity condition on the flux functions, the decay 
of the periodic entropy solutions in the L~o c norm was proved by Engquist and 
E [28]. 

In [9], Chen and Frid establish a connection between the decay of peri- 
odic entropy solutions, u(x,  t), in the L~oc(R a) metric as t --+ cx~ and the 
pre-compactness in r l  (T~a+la of the associated scaling sequence u r ( x ,  t) = ~loc  axe+ ) 

u ( T x ,  T t ) ,  T > 0. Here and in what follows we denote the L p spaces with 
no reference to the range Rn. They show that the pre-compactness of u r in 
Ltloc ~rl~d+~a+ j implies the decay in L~oc(IR a) of those solutions, as t --+ ec. With 
the help of compactness results, such as those based on the compensated com- 
pactness theory (e.g. [24], [25], [7], [46], [47], [41], [8], [14], [35], etc.) and 
the one based on the kinetic formulation for scalar conservation laws in several 
space variables in [45], it was possible to obtain the decay in L[o c as t -+ ec 
of large L ~ periodic entropy solutions of many among the most representative 
systems of the theory, including, in particular, the Euler equations for isentropic 
gas dynamics, nonlinear elasticity and scalar conservation laws in several space 
variables with flux functions satisfying a nonlinearity condition. The result was 
also applied to obtain the decay of periodic solutions of systems of conservation 
laws with relaxation, in connection with results in [16], [17] also based on the 
compensated compactness theory. On the other hand, for viscous systems of 
conservation laws which are endowed with a strictly convex entropy, the decay 
of periodic solutions is in general easier and may be obtained by usual energy 
estimates as, for instance, those obtained in [39]. 

In [32] a periodic version of the Glimm scheme is presented, applicable to 
special classes of 2 x 2 systems for which it is available a simplication first noticed 
by Nishida [49] and further extended by Bakhvalov [1] and DiPerna [26]. For 
these special classes of 2 x 2 systems of conservation laws the simplification of the 
Glimm scheme gives global existence of solutions of the Cauchy problem with 
large initial data in L ~ N B Vloc (R), for Bakhvalov's class, and in L ~ A B V (IR), in 
the case of DiPerna's class. It may also happen that the system is in Bakhvalov's 
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4 HERMANO FRID 

class only at a neighboorhood V of a constant state, as it was proved for the 
isentropic gas dynamics by DiPema [27], in which case the initial data is taken 
in L ~ N B V (IR) with TV (U0) < const., for some constant which is O ((y - 1)-1) 
for the isentropic gas dynamics systems, ;e > 1. For periodic initial data, our 
periodic formulation establishes that the periodic solutions so constructed, u (-, t), 
are uniformly bounded in L ~ Cq BV([0, s for all t > 0, where s is the period. 
We then obtain the asymptotic decay of these solutions by applying the theorem 
of Chen and Frid [9] combined with a compactness theorem of DiPerna [24]. 
The question about the decay of Nishida's solution was proposed by Glimm-Lax 
[38] and remained open since then. The classes to which the methods of [32] 
apply include the p-systems with p ( v )  = y v  -Y,  - 1  < 3/ < + o e ,  ~, ~: O, 

which, for t' > 1, model isentropic gas dynamics in Lagrangian coordinates. 
The results in [32] motivate a discussion on a possible strategy for the solution 
of the longstanding problem of the global existence of periodic solutions of the 
3 x 3 Euler equations in gas dynamics. 

In [31] the main result in [9] is extended to allow the study of the decay of 
generalized almost periodic solutions of inviscid and viscous conservation laws. 
Therein, several applications are presented including inviscid and viscous scalar 
conservation laws in several space variables, some inviscid systems in chro- 
matography and gas dynamics, as well as many viscous 2 x 2 systems such as 
those of nonlinear elasticity and Eulerian isentropic gas dynamics, with artificial 
viscosity, among others. In the case ofinviscid scalar equations and chromatogra- 
phy systems, the class of initial data for which decay results are proved includes, 
in particular, the L ~ generalized limit periodic functions. As remarked in [31], 
following a procedure similar to the one in [9], the discusion about existence and 
decay of almost periodic solutions can be transported to the relaxation approx- 
imations. This extension becomes specially easier for the semilinear or kinetic 
approximations. In connection with semilinear and kinetic approximations we 
mention the recent L ~ stability (of constant states) and compactness results of 
D. Serre [54]. 

2 A general result for space-time functions almost periodic in the space 
variable 

In this section we recall some basic facts about almost periodic functions and 
establish a general result on space-time functions which are almost periodic in 
the space variable at each time. 

The theory of almost periodic functions was founded by H. Bohr [5], in the 
context of continuous functions, and further extended to the context of  measur- 
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able LlPoc functions by Stepanoff [58], Wiener [63], Weyl [62], Besicovitch [2] 
and Besicovitch-Bohr [3] (see also [30]). For a complete account of this theory 
we refer also to the books of Bohr [4], Besicovitch [2] and Favard [29]. Here we 
will use a generalized concept of almost periodic functions which was introduced 
independently by Wiener and Stepanoff in the just referred papers. 

Almost periodic functions were introduced by H. Bohr [4] in the context of 
continuous functions defined in the real line. According to the original definition, 
a function f : R --+ R (or f : ~ --+ C) is called almost periodic if, given e > 0, 
there exists a number le > 0, called inclusion interval with respect to e, such that 
for all x0 ~ R there exists a number r, with x0 < r < x0 § l~, called an e-almost 
period or translation number with respect to e, such that 

s u p l f ( x  + r) - f (x)]  < e. 
xcIR 

If f ,  g : R --+ R are almost periodic functions, then l f I, f + g, f g  are almost 
periodic, and so is g-1 if Ig(x)l > S > 0, for all x ~ IR. Also, the limit (mean 

value of f )  
1 [a+L 

Mx(f)  = lim -- f ( x ) d x ,  
L - ~ e c  L ~, a 

exists uniformly with respect to a c N. 
The first fundamental theorem of the theory developed by H. Bohr asserts 

that any almost periodic function admits a unique represention by means of a 
Fourier series. In case f is real valued (which we assume henceforth) this may 
be represented by 

oo 

f ( x )  ~ ao + ~__~(an cos),nx + bn sin)~nx), 
n : l  

where an, b, c R and ),n c IR - {0}. The coefficients a0, an, bn, n = 1, 2 . . . . .  
are given by 

ao : Mx(f) ,  an = Mx(f(x)  cos)~nX), bn = Mx(f(x)sin), ,x) .  

Moreover, Parseval identity holds: 

OQ 

Mx(Ifl  2) = laol z + ~ ( [ a n l  2 + Ib,12). 
n = l  

The second fundamental theorem asserts that the almost periodic functions can 
be uniformly approximated by trigonometric polynomials, that is, finite linear 
combinations of functions of the form sin )~x, cos ),x, with ), 6 IR. 
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6 HERMANO FRID 

The definition and all the properties of the almost periodic functions in IR can be 
immediately extended to continuous functions of several variables, f : IR d --+ IR. 

So, denoting I f  = Ix1, Xl + K] x . . .  x [xa, xd + K], K > 0, a continuous 
function f : IR ~ --+ IR is said to be almost periodic if, given e > 0, there exists a 
number l~ > 0, called inclusion interval, such that for all x0 6 IR n one can find 

a vector r c IxZ 0, called an e-almost period, such that 

sup If(x + r) - f (x ) l  < e. 
x6N  d 

A particular subclass of the almost periodic functions is that of the limit-periodic 
functions, that is, those continuous functions which can be uniformly aproxi- 
mated by continuous periodic functions. 

The concept of almost periodic functions was generalized by Stepanoff [58], 
Wiener [63], Weyl [62] and Besicovitch [2[. According to a definition due to 
Stepanoff and Wiener, used in this paper, a function f : R d --+ R (or f : 
IR a ~ C) in L~o c (R d) is a generalized almost periodic function, or briefly S-a.p. 
function, if, given e > 0, there exists a number l~ > 0, still called inclusion 
interval, such that for all x0 E 1R a, there exists a vector r c I~;, called e-almost 
period, such that 

# 

] If(Y + r) - f(Y)ldY < e, s u p  
x eN d d lx  

where Ix = I2, The absolute values and sums of S-a.p. functions are S-a.p. 
functions. For S-a.p. functions f,  g ~ L~(1Ra), it is again true that their product 
is a S-a.p. function. Also, in the case of a single variable, the unique represen- 
tation by means of a Fourier series holds for S-a.p. functions in general, and 
Parseval identity is true for  S-a.p. functions belonging to L~ The fun- 
damental property of the S-a.p. functions is that they can be approximated by 
trigonometrical polynomials in the metric ds given by 

ds(f, g) = sup f If(Y) - g(Y)] dy. 
XCN d dlx 

In particular, the limit (mean value of f )  

Mx(f) = lim f (x)dx,  
L--+ ~ 

exists uniformly in a 6 IR d, and so we may also write 

1 L Mx(f) = lim f (x)dx,  
L - - ~  ~ i~<_ L 
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where Ix 1~ = maxl<j_<d Ixj ]. The extention of all the above concepts to vector 
valued functions is trivial. 

Now, we consider a space-time bounded measurable vector valued function 
0 : IRd x [0, oc) --+ R ~, which is S-a.p. in the space variable x c IR d. We say 
that 0 ( x ,  t) is S-a.p. in x locally uniformly with respect to the time variable 
t c [0, ec), if  whenever r c R a is an e-almost period of 0 (x, t), for certain 
t > 0, then ~: is an e-almost period of 0 ( x ,  s), for all s E [0, t]. For T > 0 we 
use the notation 

O r ( x ,  t) = O ( T x ,  Tt) .  (2.1) 

Theorem 2.1. Let O " IRd • [0, oc) --+ IR ~ be a bounded measurable function 

which is S-a.p.  in the space variable x ~ IR d, locally uniformly in t ~ [0, ~ ) .  
Let l~(t) denote the inclusion interval with respect to e of  O(x ,  t). Suppose: 

(i) l~( t) / t  --+ 0 as t --+ oc; 

(ii) For t, L > O, 

( / - - ~ f x , ~ < L  o ( x ' t ) d x  

(iii) 

Then,  

where 

1 f O (x, O) dx 
(2L) d Jlxl~ <L 

where O(s) is a function such that O(s) --+ 0 as s --+ O; 

t 
<_ 

(2.2) 

O r ( x ,  t) is sequentially pre-compact in L]oc(IR d x [0, oc)) as T --+ cx~. 

lim -- Mx(lO(x ,  t) - ~ l ) d t  = 0, (2.3) 
T-+OO T 

=- Mx(O(x ,  0)). Moreover, if  there exists a continuous function ot �9 
R n • I~ n --+ [0, e~), satisfying 

ClIU --  1)12 ~ Ol(U, V) ~ e21bl - -  /)12, (2.4) 
/,/ 

for  u, v in a bounded set K c_ IR , for  certain positive constants cl, c2, depending 
only on K, such that, for  any v E ~m and c > O, 

d oe(0(~t, t), v) d~ < -- ,  (2.5) 
dt I<c - t 

for  some C > O, in the sense of  the distributions over (0, ~ ) ,  we have 

lim Mx(IO(x,  t) - ~}1) = 0. (2.6) 
t - ~  
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8 HERMANO FRID 

Proof.  Let Tk be a subsequence of  T going to infinity such that g, Tk(x, t) 
converges in ~ d+l L ~ LIo~(R + ) to a certain function ~ ( x ,  t). We will show that 
~}(x, t) = ~}, a.e. in Rd+ +1, where ~ is given in the statement of  the theorem. 

1. We first show that, for almost all t > 0, ~ ( x ,  t) is independent o f x .  For that, 
given e > 0 and to > 0, we consider the set 

"/7 
Q,,to = {T-kk " 7: is an E-almost period of  ~p(-, Tkto)}. 

We notice that Q~,ro is dense in Rd. This is clear from the fact that, since 
I~(Tkto)/Tk -+ 0 as Tk -+ ~ ,  given any cube with edge of  lenght 3 > 0, if  
l~(Tkto)/Tk < 8, we can find a vector r/Tk C Q~,to inside this cube. We will 
show that for any y 6 IR d we have ~ ( x  + y, t) = ~ (x ,  t), for a.e. x c Nd. 
Now, let 4~(x, t) be any continuous function with compact support contained in 
[ - L 0 ,  Lo] d x [0, to], and let y 6 Rd be given. By passing to a subsequence if 
necessary, we can find y~ ~ Qc,to such that yk --+ y and y~ is an E-almost period 
of  grr~(x, t ) f o r 0  < t < to. We then have, 

]i(x + y, t)g)(x, t) dxdt = 
f 

lim I tp r~ (x + y, t)4)(x, t) dxdt 
k-+~ j~++l 

lira [ ~rk (x, t)gp(x - y, t) dxdt 

= lim f ?T~(x,t)dp(x--yk, t)dxdt 
k--+c~ J~d++l 

= lim [ ~r*(x+yk, t)qb(x,t)dxdt 
k--,~ j~d++ 1 

_< lim [ ~r*(x,t)g)(x,t)dxdt + 

+ C(Lo, t0)llqsll~e 

= f ~(x, t)qb(x, t) dxdt + 
J~ r 

+ C(to, t0)llq~ll~e, 

and similarly we get 

f~ 7t(x + y,t)g)(x,t)dxdt >_ f~ ~(x,t)d?(x,t)dxdt-C(Lo, to)llqSIIo~e, 
d + l  d + l  
+ + 
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where C(L0, to) is a positive constant depending only on L0, to. Since e > 0 is 
arbitrary, we get 

~(x + t)49 (x, t) dxdt = I ~p(x, t)qb(x, t) dxdt 
g 

y, 
d+l J]~d+l 

The function q~ being also arbitrary we finally get ~ ( x  + y, t) = ~}(x, t) for any 
x such that (x, t) and (x + y, t) are Lebesgue points of  ~ .  In particular, since 
y 6 R d is arbitrary, we get 7t(xl, t) = ~(x2, t) whenever (xl, t) and (x2, t) are 
Lebesgue points of  ~ ( x ,  t) and so ~ ( x ,  t) = ~ ( t ) ,  for a.e. (x, t) ERa+ +1, for a 
certain bounded measurable function ~ (t) depending only on t. 

2. Now, from (2.2) it follows that fi(t) = fi, for a.e. t _> 0. Indeed, for a.e. 
t E (0, Oc), 

~ ( t )  = k~lim ~ 1  fxt~<L ~pTk(x, t) dx 

= lira 1 f ~  k-~z (2L Tk) d ~ ~ l ~  <LTk 7t(x, Tkt) dx 

< l i r a  1 gr(x,O)dx + O ( L  ) 
- -  k-+cx~ (2LTk) d I ~ < L T  ~ 

<_ + o(  
L 

Similarly, we get 
t 

 b(t) > + o(T).  

Therefore, letting L -+ ec, we get the assertion. Hence, we arrived at ~ r  ___> 
1 ( d+ l  in Llo c R+ ), as T --+ oc. The latter clearly implies 

lim -- ]ff~(~t, t) - ~l  d~dt = O, 
r - + ~  T L~_<c 

(2.7) 

for any c > 0. So, (2.3) will follow from (2.13) below, letting s --+ 0. 

3. Now, we turn to the last part of  the statement. Let oe (u, v) be as in the statement 
of the theorem, and, for any fixed c > 0, denote 

f 
Y(t) = ] a(~(~t, t), ~) d~. 

Ioo <_c 
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10 HERMANO FRID 

By (2.5), Y(t )  is in BVlo~(0, oo) and satisfies 

d Y  C 
- - ( t )  ___ - ,  (2.8) 
dt  t 

as measures, for some C > 0. The above inequality, together with (2.7), which, 
from (2.4), clearly implies 

lim -- Y(t )  dt  = 0, (2.9) 
r-+oo T 

leads, as in the proof of Theorem 2.3 of [11], to the conclusion that 

ess lira f I~(~t, t) - ~l d~ = 0, (2.10) 

for any c > 0. For the sake of completeness, we briefly outline the proof of 
the last assertion, i.e., that (2.8), (2.9) imply (2.10). Applying, formally, the 
fundamental theorem of calculus to the function (t - T /2 )Y2( t ) ,  between T/2 
and T, we get 

2f  r 4 f  r YZ(t) dt  q- (t - T / 2 ) d Y ( t )  Y( t )  dt ,  
Y2(7 )=T /2 T /2 at  

which, by (2.8), gives 

2 4 o f  r YZ(t) dt  + Y(t)  dt ,  YZ(T) < T /2 T /2 

which, together with (2.9), since Y(t )  is uniformly bounded, gives Y(t )  --> O, 
which in turn implies (2.10). Since the last inequality can also be achieved for a 
mollification of Y (t), the just given formal argument can easily become rigorous. 

4. To prove the decay in terms of mean values, let us partition R d in a net of 
d-dimensional cubes with edges of length 3l~ (t) parallel to the axes. Denote by 
St the set of such cubes contained in {x ~ I~ d : Ix] < ct}, for certain fixed 
c > 0. Clearly, for each I c St there is an e-almost period re such that I - Vz D 
[0, 2/~(t)] d. Let N( t )  be the number of elements of St. Since, le( t ) / t  --+ 0 as 
t --+ ec, we have N( t )  > 0 and (2c)d/2 < 3dN(t ) l~( t )d / t  d <_ (2c) d, for t 
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sufficiently large. Hence, we have 

f,~ l fx , ~ ( x , t ) -  ~ [ d x  

-> t-~ ~ I~(x, t) - ~bl dx 
IcSz 

' f, - 7~ ~ I~ (x  - ~ ,  t) - ~1 ax 
IcSt  

t s E ]O(x, t) - O(x - ri, t ) l dx  (2.11) 
l rS t  

[(31s(t))d]N(t) (31~(t))dN(t) 1 
> - e  + 
- t a t s (3/E(t)) d 

f~o [O(x, t) - ~] dx  
,2/,(t)] d 

(2c/3) d 1 f o  -> - e ( 2 c ) e  + ~ l~(t) ~ .21~(0]~ ]~(x,  t) - ~}l dx 

Now, we partition 1R a in a net of cubes with edges of  length l, (t) parallel to 
the axes. For each such cube I '  there exists an e-almost period r~, such that 
I '  - r~, _ [0, 2/~] d. Hence, we get 

Mx(lO(x,  t) - ~}1) = slim (2sle(t))d sI~(O,se~(t~j~ I~(x ,  t) -- (Pl dx 

1 
< lira 
- s-+~ (2sl~(t)) a 

1 
+ lira 

~--,oo (2sl~(t))d 

f 
l ,  [O(x - ~x', t) - dx 
r 

l'C_[-sle (t),sls (t)] d ~ 

E ] i ,  ] l / t(X'  t )  - -  ~ r (x  - -  TI, , t )]  dx 
.11 

I'C_[ sle(t),sle(t)] d 

< le(t) s ,2i,(tl]" ]~p(x, t) -- ~l  dx + 2as 

So ,  frolll (2.1 1) and (2.12) we obtain 

(2c/3)  a 
[~(~t ,  t) - ~ l d ~  > - - M x ( l ~ ( x ,  t) - ~])  

I_<c - 2 

which, together with (2.10), gives 

ess lira sup mx ([~ (x, t) - } p )  < 3 d + l  s ,  
t---+ OO 

(2.12) 

3(2c) d 
- - e ,  (2.13) 

2 
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12 H E R M A N O  FRID 

and, since e can be taken arbitrarily small, we conclude 

ess lim Mx([Tr(x, t) - ~1) = 0, 
t -+~o  

as desired. [] 

R e m a r k  2.1. The assumption (i) in Theorem 2.1 in the applications is usually 
reduced to a restriction on the growth rate of  l~ (0) as ~ goes to 0. Therefore, 
it matters to know whether, given any apriori specified growth rate, it is always 
possible to find a non-periodic S-a.p. function such that its inclusion intervals l~ 
obey the prescribed growth rate as e -+ 0. We show that this is true by means of  
the following construction, which establishes that, given any decreasing sequence 
ek $ O, as k --+ oo, with 

oo 

~ e j < e k ,  k = l , 2  . . . . .  
j = k + l  

it is possible to construct a classical (non-periodic) almost periodic function 
(actually, limit-periodic function) whose inclusion intervals satisfy l~ k = 2(3~). 
This, in particular, shows that there exist (non-periodic) almost periodic functions 
whose inclusion intervals satisfy whatever growth rate as e -+ 0 one may wish 
to prescribe. The construction is trivial. One starts with an interval, for instance, 
( - 1 ,  1), take a function q~0 in C 0 ( - 1 ,  1), and set f = q~0 in ( - 1 ,  1). Then, we 

take ~bo- E C o ( ( - 3 ,  - 1)) and ~bo+ 6 Co((1, 3)), such that IIq~o(. •  - qS0• J[~ < 
e l /2 ,  define q~l = 4)o- + ~bo + q~0+ and set f -- q51 in ( - 3 ,  3). Similarly, we take 
q~l- c C o ( ( - 9 ,  - 3 ) ) ,  q~+ c Co((3, 9)), such that H~bl(- • 6) - ~bl• < e2/2, 
define q~2 -- q~l- + ~bl + ~bl+ and set f = ~b2 in ( - 9 ,  9). In this way we can 
define inductively f in the whole real line. Specifically, assuming that f = 4)k 
in (--3 k, 3 k) with q~ c C 0 ( ( - 3  k, 3k)), we take q~k- 6 C o ( ( - 3  k+l, --3k)) and 
~bk+ 6 C0((3 k, 3k+l)), such that [[~bk(- • 2(3k)) -- q~k• < ek+l/2, define 

q~k+l = q~k- + ~bk + q~k+ and set f = q~k+l in (--3 k+~, 3k+~). It is easy to see 
that the so constructed function is almost periodic (actually, limit periodic) and 
satisfies l~ = 2(3k). For instance, if one wants to have (loge)-a/~ --+ 0 as 

e --+ 0, it suffices to choose, say, ek = e -k(3~). 

R e m a r k  2.2. An important special case of  Theorem 2.1 is the one in which 
7r (x, t) is periodic with period independent of  t, that is, ~ (x +Pi ei, t)  = ~ (x, t),  
for certain positive numbers Pl . . . .  , Pn, where {el . . . . .  e~ } is the canonical basis 
of  R n. In this special case condition (i) is trivially satisfied. 
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3 Inviscid and viscous conservation laws 

We consider a multidimensional viscous or inviscid system of conservation laws 

d 

OtU+EOxkfk(u)=EO2kxak,(U), X6IRd, t>O, (3.1) 
k=l kl 

where u (x, t) c qJ __ R n, for some open set "U, and fk ,  a~z " "U --+ ]R n are 
smooth functions, for which an initial condition has been prescribed 

u(x, O) = uo(x). (3.2) 

In the inviscid case, that is, when the viscosity coefficients a~, I (u) are all identi- 
cally null, equation (3.1) takes the form 

d 

Otu + Z Ox~fk(u) = O, 
k=l 

(3.3) 

A smooth function ~ �9 q./ -+ R is an entropy for (3.1) if there are smooth 
functions qk, bkl " U ~ N, k, l E {1 . . . . .  d}, called the associated entropy- 
fluxes and entropy-viscosities, respectively, such that 

Vqk = V ~ V f  k, Vbkl(u) = Vt/Vakl k, 1 c {1, . . . , d } .  (3.4) 

If  r / is  strictly convex, (3.4) implies that the matrices V f  k are simultaneously 
symmetrizable by V 2 ~ and, in particular, ~1 V f 1 .q_...._~ ~d V fd is diagonalizable, 
for any (~1 . . . . .  ~d) 6 ]Rd. The latter is the condition for the system (3.1) to be 
hyperbolic in the case where akl(u) =-- O, for all k, 1 = 1, . . . ,  d. 

In this paper, we will only consider bounded measurable solutions, although 
the results hold also with slight adaptations in the more general case of  LPoc 
solutions. 

Definition 3.1. We say that u 6 L~(Rd+ +1) is an entropy solution (or simply 
a solution) of  (3.1)-(3.2) if for any non-negative q5 c C01(I~ d+l) and for any 
convex entropy 7, with associated entropy-fluxes and entropy-viscosities qk, bk l, 
k, I = 1 . . . . .  d, such that 

E v~g2~(u)Vakl(U)Vl >-- O, for all (vl . . . . .  Vd) ~ (IRn) d, 
kl 

(3.5) 
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one has 

ff~ d+l {~(U)~I -~ E qk (u)r + ~ bN (u)r dxdt  
(3.6) p 

+ ] ~(u0)r O)dx > O. 
JR d 

In the inviscid case, we have the usual entropy inequality 

ff O(Uo)r (3.7) 

As usual, since the coordinate functions and their opposites rci• = • 
i = 1 . . . . .  n, are obviously convex entropies with associated entropy-fluxes 
and entropy-viscosities •  •  respectively, which trivially satisfy (3.5), 
the inequality (3.6) with O(u) = rri• i = 1 . . . . .  n, implies that u is a weak 
solution of (3.1)-(3.2), i.e., the equation 

f f + Z f k  + E } dxdt  ak l  

Ri+ ~ (3.8) P 

+ ] uo(x)r O)dx = O, 
JR d 

holds for any r e C~(Rd+I). When akl(u) =-- O, k, l = 1 . . . . .  d, entropy solu- 
tions are in general non-smooth, which is a basic fact in the theory of conservation 
laws (see, e.g., [21], [53], [56]). 

4 Decay of periodic solutions of conservation laws 

In this section we recall the main result of [9] on the decay of periodic solu- 
tions of hyperbolic conservation laws and mention some of its most important 
applications. We consider the Cauchy problem (3.3)-(3.2), for an inviscid mul- 
tidimensional system of conservation laws. Given a solution u(x, t) for this 
problem, the scaling sequence ur(x,  t) is defined as in (2.1). So, let u(x, t) be 
an entropy solution of (3.3)-(3.2), periodic in x 6 R d, with periodic interval 
P = I-I~l [0, Pi] ~ ]~d and periodic initial data: 

UO(X + piei) = uo(x), i = 1 . . . . .  d. (4.1) 

The following result of [9] may be obtained as a consequence of Theorem 2.1, 
observing that (3.7) implies 

Ot~(u, Ft) + E Oxk15k(U' ~) <- O, (4.2) 
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in the sense of distributions, from which we easily verify (2.5) with O(x, t) 
replaced by u (x, t), where o~ (u, t7) is the Dafermos' quadratic entropy associated 
with a strictly convex entropy O(u) by 

o~(u,  ~ )  = ~ ( u )  - ~ ( n )  - v ~ ( ~ ) ( u  - n ) ,  

with associated entropy-fluxes fl~(u, fi) given by 

fl~(u, (t) = qk(u) - qk(fi) _ Vrl(t~)(/~(u) _ /~ ( f i ) ) .  

Assume that u ( x , t) ~ L ~ ( IR~_ + 1) is a periodic solution o f  (3.3)- Theorem 4.1. 
(3.2) and that u r (x, t) is compact  in Ltoc(R + 1  d+~). Then 

lim -- Mx( lu (x ,  t) - t~l) dt ,  (4.3) 
T-+oc T 

where 

Ft -- IP~l u o ( x ) d x .  (4.4) 

Moreover, i f  system (3.3) is endowed with a strictly convex entropy rl, then 

lim lu(x,  t) - Ftldx = 0, (4.5) 
'--'~ IPI 

We now describe some of the most important applications of Theorem 4.1, 
given in [9]. We emphasize that many other examples are given in [9]. 

4.1 Multidimensional Scalar Conservation Laws 

An important application of Theorem 4.1 given in [9] is concerned with multi- 
dimensional scalar conservation laws with periodic initial data. The existence 
of global entropy solutions of (3.3)-(3.2), in this case, when u0 c L~(lI~d), 
was proved by Kruzkov [42] by improving an earlier result of Volpert [61] for 
u0 c B V (Rd). On the other hand, compactness of uniformly bounded sequences 
of entropy solutions of such equations was proved by Lions, Perthame and Tad- 
mor [45], for flux functions satisfying 

meas { v 6 IR I r + f ' ( v ) ,  k = 0 } = 0, (4.6) 

for any (r, k) c IR x R d, with r 2 + Ikl 2 = 1. (4.7) 

A direct proof can be found in [ 12]. We then get as a consequence of Theorem 4.1 
the following result of [9]. 
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16 H E R M A N O  F R I D  

Theorem 4.2. Let u(x, t) be an entropy solution of (3.3)-(3.2) in Nd++l with 
periodic data Uo(X) and periodic interval P. Assume that the condition (4.6) 
holds. Then 

1 fp  lira lu(x, t) - ul dx = O. 
t ~  [PI 

4.2 Equations of nonlinear elasticity 

Let us consider the system of nonlinear elasticity equations 

{ Otr - OxV = O, 

Otv - Oxa(T) = O, 
(4.8) 

where o-(z) c C 2 satisfies o-'(7:) > 0, T 6 IR, and To-"(T) > 0, for r # 0. 
Existence of L ~ entropy solutions of (4.8)-(3.2), with initial data belonging 
to L~(IR), was proved by DiPerna in [24]. From the latter also follows the 
compactness of uniformly bounded entropy solutions of (4.8)-(3.2). When the 
initial data are periodic the solutions obtained are periodic in x, with the same 
period for each t > 0. Hence, application of Theorem 4.1 gives the following 
result of [9]. 

Theorem 4.3. Let (v(x, t), v(x, t)) 
tion of the equations of elasticity 
(z(x, t), v(x, t)) asymptotically decays to 

c L~(IR2+) be a periodic entropy solu- 
(4.8) with periodic interval P. Then 

(lf  ) = r o ( x ) d X ,  v o ( x ) d x  , 

in the sense of (4.5), with u(x, t) = (z(x, t), v(x, t)). 

4.3 Isentropic Euler Equations 

Consider the isentropic Euler equations for compressible fluids: 

Otp ~- Oxm = O, 
m 2 (4.9) 

[Otm + Ox(-- 7- + p(p)) = O, 

where p, m, and p are the density, the momentum, and the pressure, respectively. 
In a non-vacuum state (p r 0), v = m/p  is the velocity. The pressure p(p) 
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is a given function of the density p depending on compressible fluids under 
consideration. For the polytropic case, p(p) = k2p y, V > 1. 

Consider the Cauchy problem for (4.9) with initial data 

(p, re)b=0 : (po(x), too(X)), 0 ~ po(x) ~ Co, m~ l ~ C0 < ec. 

(4.10) 

Existence of entropy solutions in L ~,  of (4.9), in the polytropic case ( p ( p )  = 
k2p y, y > 1), with (P0, m0) ~ L~(IR), satisfying (4.10), was first proved by 
DiPema [25], in the case y = 1 + 1/(2m + 1), m _> 2 integer. His analysis 
was extended by Ding-Chen-Luo and Chert [23, 7], for 1 < y _< 5/3. Us- 
ing a kinetic formulation for entropy inequalities associated with (4.9), Lions- 
Perthame-Tadmor [46] and Lions-Perthame-Souganidis [47] succeeded to obtain 
the same result for g > 3 and 5/3 < ~, < 3, respectively. More recently, Chen- 
LeFloch [15] extended the analysis in [47] for more general pressure laws. The 
just referred results also give the compactness of uniformly bounded sequences 
of entropy solutions of (4.9), in the corresponding cases. When the initial data 
are periodic the solutions obtained are periodic in x, with the same period for 
each t > 0. Application of Theorem 4.1 then gives the following result of [9]. 

Theorem4.4. Let(p(x, t), re(x, t)), 0 p(x, t) c,  Ira(x, t)/p(x, t)l C, 
be a periodic entropy solution of (4.9)-(4.10) with periodic interval P. Then 

1 
(p (x, t), m (x, t)) asymptotically decays to -~1 fp (Po (x), mo (x))dx in the sense 

of (4.5). 

5 Periodic solutions constructed through Glimm scheme 

In [32] the construction of globally defined periodic entropy solutions of systems 
of conservation laws is achieved using a periodic version of the Glimm scheme. 
Such a periodic version for the Glimm scheme is not possible in general, if 
one has to follow the same procedures originally introduced by Glimm [37] in 
order to prove the uniform boundedness of the total variation of the approximate 
solutions. The main obstruction is that the functional used by Glimm contains a 
quadratic part, consisting of products of strengths of approaching waves, which 
has no periodic equivalent: waves that are approaching in a certain interval 
of one period may not be approaching in another interval of one period. In 
other words, in the cylinder S 1 x [0, cx~), any wave is approaching to any other 
wave of a different family. On the other hand, the notion of approaching waves 
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in the whole line seems to be essential in the process of bounding the effects 
of wave interactions, in general. Nevertheless, as we describe below, starting 

with Nishida [49], there have been found many 2 x 2 systems, and even some 
very special n • n systems, with n > 2, for which it is possible to prove the 
uniform boundedness of the total variation of the approximate solutions using 
functionals which are linear in the wave strengths, that is, which contain no 

products of wave strengths. These classes include the systems of isentropic gas 

dynamics. For them, a periodic version of the Grimm scheme is then possivel as 
we will show. This relatively simple observation allows one to construct globally 
defined uniformly bounded periodic entropy solutions, which in many cases was 
not known. Then, using Theorem 4.1 combined with a compactness theorem in 

[24], one can prove the decay of these solutions, thus solving some important 
open problems. We next pass to a more precise description of our results. 

In [49], Nishida proved the global existence of weak solutions of the Cauchy 
problem for the system 

1) t - -  H x = 0 ,  

ut + (1/v)x = 0, 

constructed by an adaptation of Glimm's method, for any bounded initial data 
belonging to BVloc(R), assuming values in the region v > 3 > 0. According to 
Nishida's theorem, the L ~ norm of these weak solutions may increase unbound- 
edly with time. His result was later extended by Bakhvalov [ 1], who identified 
a class of 2 x 2 systems 

Ut 4- F(U)~ = 0, (5.1) 

with U = (ul, u2), F (U)  = ( f l (U) ,  f2(U)), to which Nishida's reasonings 
could be applied. The systems in the class determined by Bakhvalov are char- 
acterized by some conditions satisfied by the image of the corresponding shock 
curves in a plane of Riemann invariants. Here we will not give a description of 
Bakhvalov's conditions but instead we will consider the main representative of 
this class: 

vt - ux = 0, (5.2) 

ut + p(V)x = O, 

where p is a smooth function defined in v > 0 satisfying 

p'(v) < O, p"(v)  > 0, 3(p"(v)) 2 < 2p ' ( v )p" (v ) ,  for v > 0. (5.3) 
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For instance, p(v)  = y v  ix ,  with - 1 < y _< 1, y # 0. It is not difficult to show 

that if Pl and p2 satisfy (5.3) then Clp l  + C2P2 satisfies (5.3), for any pair of  
nonnegative constants (C1, Q )  # (0, 0). 

Set U = (v, u) and 

z(U)  = u + ~/--l-p'(v) dr ,  w(U)  =- u - x/--l-p'(v) dr .  (5.4) 

Consider the initial condition 

with 

U(x ,  O) = Uo(x) ,  x c R, (5.5) 

0 < ~ < Vo(X) <_ M,  [u0(x)l < M, 

for some positive constants 5, M. Suppose that 

and 

If 

TV (Uol[O, g)) < oc, 

Uo(x + ~) = Uo(x).  

i 
v 

* ( v )  = - vE--p ' (v)  ely -~ +oo ,  

(5.6) 

(5.7) 

(5.8) 

as v --+ 0, (5.9) 

which is the case, for instance, when p(v)  = gv  Y, with - 1  < g < 1, g # 0, 
we further assume that 

(5.10) w0 --- sup w(Uo(x)) < z o  = i n f  z(Uo(x)). 
xcR xcR 

Concerning the problem (5.2)-(5.8), the following result is proved in [32]. Let 

= ~ Uo(x)dx .  (5.11) 
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w(U(x, t)) 
property 

Theorem 5.1. There exists a global periodic entropy solution of  (5.2)-(5.10), 
which belongs to L ~ N BVIoc(R • R+). This solution U(x, t) also satisfies 

<_ Wo, z(U(x,  t)) > zo. Furthermore, it has the following decay 

ess lira r]e [U(x, t) - 0l  dx = 0. (5.12) 
t --+ oQ J 0  

We recall that the problem of the decay of the large data solutions obtained by 
Nishida was proposed in [38] and remained open since then. On passing from 
Lagrangian to Eulerian coordinates, Theorem 5.1 gives a global periodic entropy 
solution in L ~ ~ BVloc(R x IR+) of the corresponding problem for the system 

{ pt + (pu)x = o, 
(5.13) 

(pu)t + (pu 2 + P(P))x = O, 

where p = v -1 and P(p) = p(1/p) .  
An important fact concerning Bakhvalov's conditions was noticed by 

DiPerna [27]. Namely, he proved that if in (5.2) one has p'(v) < O, p"(v) > O, 
for v > 0, and 

d j 
lim v~+J-d~vj p(v) # 0, 
v--+0 

�9 d j 
l im  v ~+J ~vj  p(v) # O, c~,f i> 1, j = 0  . . . . .  5, 

(5.14) 

then, given any U ~ {(u, v) �9 v > 0}, there exist Riemann invariants, z' = 
q~(z), w' = ~p(w), and a neighborhood V = V ( U )  such that the image in the 
(z f, w')-plane of the segments of shock curves contained in V satisfy Bakhvalov's 
conditions. As a consequence, DiPema proves the global existence of an entropy 
solution of the Cauchy problem, provided that the total variation of the initial data 
is less than C(p)~, where C(p) is a constant depending only on the nonlinear 
function p(v), and ~ = l imx_~{w(Uo(x))-z(Uo(x))} .  In particular, for p(v) = 
v -z,  1 < g < +cx~, which clearly satisfies (5.14), one has C(p) > Co, for 

some fixed constant Co > 0, and ~ - 1 limx_++~ v~l-y)(x). In other 
y - 1  

words, the restriction on the magnitude of the total variation of the initial data is 
O((F - 1)-1). This shows that the closer V is to l the larger the total variation 
of the initial data can be. For these systems of isentropic gas dynamics, a similar 
result had also been obtained by Nishida and Smoller [50] through different 
means. Concerning the systems (5.2) satisfying the conditions (5.14), using our 
periodic formulation based on DiPerna's analysis, we have the following result 
of [32]. Set ~(U) = w(U) - z(U), and ~ = ~(0).  

Bol. Soc. Bras. Mat., Vol. 32, No. 1, 2001 



PERIODIC AND ALMOST PERIODIC SOLUTIONS OF CONSERVATION LAWS 21 

Theorem 5.2. Consider the problem (5.2)-(5.10) with p(v) satisfying (5.14). 
Let U be as above. There exists and a constant C (p), depending only on p, such 

that if 

TV(U01[0, e)) _ C(p)~, (5.15) 

then there exists a global periodic entropy solution of  (5.2)-(5.10), which belongs 
to L ~ n BVloc(R • ~+). This solution U(x, t) also satisfies w(U(x ,  t)) <_ wo, 
z(U(x,  t)) >_ zo. Furthermore, it has the decay property (5.12). 

A class of systems identified by DiPerna [26] is also considered in [32], 
with similar properties to that studied in [1]. We will not give a description 
of DiPerna's class but instead we will consider the main representative of this 
class: 

{ p~ + (pu)x = o, 
(5.16) 

Ut -~ ( l u 2  @ ~2 p y - 1 ]  = O, tc > O, 1 < Y < 3, 
V 1 ]x 

which is motivated by the isentropic gas dynamics equations for a polytropic 
gas. Let U = (p, u), F(U) = �89 2 + y~-~_21p• p > 0, and 

x tc ~ 1 
z ( U ) = u  - f i J ,  w f U ) = u + ~ p  , f l =  ~ ( y - 1 ) .  (5.17) 

Denote v = p-~ and consider the initial conditions (5.5)-(5.8) and 

zo = supz(Uo(x)) < w0 = inf w(Uo(x)). (5.18) 
xER xcN 

Concerning the system (5.16) we also have the following result proved in [32]. 

Theorem 5.3. There exists a global entropy solution of  (5.16), (5.5)-(5.8), 
(5.18), which belongs to L ~ n B Vbc (R x R+ ) and is periodic with period g,. This 
solution U(x, t) also satisfies z(U(x,  t)) < zo, w(U(x,  t)) > wo. Moreover, it 
accomplishes the decay property (5.12). 

In Theorems 5.1-5.3, the global boundedness of the periodic solutions is ob- 
tained by means of a periodic version of Nishida's modification of the Glimm 
scheme. The decay property (5.12) is then a consequence of a combination of 
Theorem 4.1 and a compactness theorem in [24]. 

In connection with the above theorems, we recall that a theorem in [38] es- 
tablishes the existence and decay of periodic solutions for a class of strictly 
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hyperbolic genuinely nonlinear 2 • 2 systems, including (5.2), with p ' ( v )  < 

O, p ' f (v )  > 0, for v > 0. The solutions in [38] are obtained by the Glimm 
method for initial data in L ~ but with very small oscillation. A careful analysis 
of the asymptotics and the mechanism generating the asymptotic patterns for 
solutions having the decay property proved in [38] is provided in [22]. Although 
the classes of systems we consider are slightly less general and the initial data 
are in B Vloc, in many cases our results allow initial data with large oscillation. 
Finally, we would like to remark that a result analogous to Theorems 5.1 and 5.3 
is obtained similarly for the relativistic Euler equations studied by Smoller and 
Temple in [57], based on a periodic version of the analysis made therein. 

The above results prompt us with a possible strategy for solving the longstand- 
ing problem of the global existence of periodic solutions of the 3 • 3 compressible 
Euler equations: 

ut + Px = 0, (5.19) 

Tt - Ux = 0, (5.20) 
u 2 

(e + - ~ ) t  + (pU)x = 0, (5.21) 

St > 0,. (5.22) 

Here, u, r, p, e, S represent the velocity, specific volume, pressure, internal 
energy and entropy, respectively. Another important variable is the temperature 
0. As usual, we may assume that p, e, 0 are given functions of (r, S), so p = 
p(r ,  S), e = e(r, S), 0 = 0(r, S), where these functions should be compatible 
with the second law of thermodynamics, 

de  -~ 0 d S  - p dr .  (5.23) 

For concreteness, we restrict our discussion to ideal polytropic gases where 
p = R O t  -1, 0 = cve, for positive constants cv, R, and so we have, for some 

/ ( > 0 ,  

R 
p(r,  S) = x exp ( S / c v ) r  -• e(r, S) = CvXexp ( S / c ~ ) r  -• V = 1 + - -  > 1. 

R cv 

Equations (5.19)-(5.21) may then be rewritten in the form 

ut + (xE r-• = 0, 

rt - Ux = O, 

+ (xE r-•  = 0, E r -y+I + 7 t 

(5.24) 
(5.25) 

(5.26) 

Bol. Soc. Bras. Mat., VoL 32; No. 1, 2001 



PERIODIC AND ALMOST PERIODIC SOLUTIONS OF CONSERVATION LAWS 23 

if we define E = exp (S/c,,). System (5.19)-(5.21) has three characteristic 
families corresponding to the eigenvalues Z~ = - - V ~ ,  ~2 --= 0, ;-3 = ~ .  
The first and third family are genuinely nonlinear while the second is linearly 
degenerate according to [44]. This suggests a decoupling of the first and third 
families from the second one. Since S is a Riemann invariant for the first and third 
families, this means that we should consider u, r separately from S. The system 
put in the form (5.24)-(5.26) is very suggestive concerning this decoupling. So let 
be given periodic initial data, with bounds in the total variation per period and L ~ 
norm to be suitably chosen. The first step would be to construct approximations 
u h, r h, for u, r, using a periodic formulation of the Glimm scheme, as it is done 
for the proof of Theorem 5.2. Simultaneously, we construct an approximation 
~]h, for ]~, from the same scheme, but defining •h at a sucessive time step as the 
average of E h over the top side of the preceding mesh rectangle. The second step 
is to try to prove that the space total variation per period of (u ~ , r h) is uniformly 
bounded in time. The third step is to observe that the increase in the L ~176 norm of 
E h can only be due to the crossing of shock waves of the first and third families. 
Since, the jump of I2 h across (small) shocks is of the order of the cube of the 
strength of the shock, we would obtain an uniform L ~ bound for Nh from the 
uniform boundedness of the total variation of (u h , rh). In this way we would be 
able to prove the strong convergence of (u h, "C h) and the weak star convergence 
of E h to a solution (u, r, E) of (5.24)-(5.26), from which (5.19)-(5.21) can be 
recovered. This solution would further satisfy 

Et > 0, (5.27) 

which is not equivalent to (5.22) but still serves as an entropy inequality. This 
strategy is currently under investigation. 

6 Decay of almost periodic solutions 

We are interested in the asymptotic behavior of solutions u(x, t) of (3.1)-(3.2) 
which are generalized almost periodic functions, in the sense of Stepanoff- 
Wiener, which we abridge by saying that u(x, t) is S-a.p., in the x variable, 
locally uniformly in t _> 0. For definitions and basic properties about general- 
ized almost periodic functions see section 2. 

As in [9], we denote by ur(x,  t), T > 0, the scaling sequence associated with 
u(x, t) defined by 

ur (x, t) = u(Tx,  Tt). (6.1) 
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Set 

t~ = lim uo(x)  dx .  (6.2) 
L~oo (2--~) 7 Ioo L 

The following result of  [31] maybe obtained as a corollary of Theorem 2.1, 
observing that (3.6) implies 

_ O~z),kz(u,  ~t), (6.3) 

in the sense of  distributions, from which we easily verify (2.5) with 7t(x, t) 
replaced by u (x, t), where c~ (u, tT) is the Dafermos'  quadratic entropy associated 
with a strictly convex entropy r/(u) by 

~ ( u ,  ~ )  = ~ ( u )  - ~ ( ~ )  - v ~ ( ~ ) ( u  - ~), 

with associated entropy-fluxes i lk(u,  Ft) and entropy-viscosities ykl(u,  ft) given 
by 

i lk(u,  Ft) = qk(u)  -- qk(Ft) -- V0(~) ( fk (u )  -- f~(t~)), 

gkl(u,  Ft) = bkl(U) -- bkl((~) -- Vl?(t~)(ak/(u) -- akl(u)). 

T h e o r e m  6.1. Let  u (x ,  t) be a solut ion o f  (3.1)-(3.2) which is S -a .p .  in x, 

locally uni formly in t >_ O. Let  l~(t) denote an inclusion interval o f  u (x ,  t) wi th  

respect to ~ > O. Assume  the fo l lowing:  

(i) I~ ( t ) / t  --+ 0 as t --+ ~ ;  

(ii) uT (X, t) is pre -compac t  in r l (~a+la ~loc ~+  j a s T - - +  ~ .  

Then u r --+ (t as T --+ cx~ in 1 d+l L~oc(N + ) a n d o n e  has 

lfo  lim -- Mx([u(x ,  t) - ~t[)dt = 0. (6.4) 
r~oo T 

Moreover, in the inviscid case where akZ(U) =--- O, f o r  all k, l, i f  (3.1) is endowed  

with a strictly convex entropy then one has u(~ t, t) -+ (t in L~oc(Ra), as t -+ ec. 
In particular, one has 

M x ( l u ( x ,  t) - ill) --+ 0 as t --+ ~ .  (6.5) 

The latter holds also in the viscous case, ak l (u) 7~ O, f o r  some k, l, prov ided  that 

(3.1) is endowed  with a strictly convex entropy satisfying (3.5) and VxU(X, t) is 

uniformly bounded  in Nd • [to, oc) f o r  some to > O. 
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Remark 6.1. The first part of the statement of Theorem 6.1 holds also for 
almost periodic solutions (in a suitable sense) of the more general class of viscous 

systems of the form 

Otu + ~ Oxkfk(u) = ~ Oxk (Bkl(U)Ox~U), (6.6) 
k k,l 

as it is clear from the proof. The second part also holds in this cotext, provided 
that we define the notion of a strictly convex entropy ~ for (6.6) to mean now 
that ~/is strictly convex, there exist functions qk such that 

and 

Vq k(u) = VO (u)V f k (u), 

V2rI(u)(BkI(U)Vk, Vl) >_ O, for all @1 . . . . .  Vd) 6 (Rn) d. 
k,1 

7 Almost periodic solutions of scalar conservation laws in several space 
variables 

We consider the initial value problem for a scalar conservation law in several 
space variables 

d 

Otu + ~ Oxkfk(u) = 0, (7.1) 
k--1 

u(x, O) = Uo(X), (7.2) 

where the fk(u) are smooth functions and u0 is a bounded S-a.p. function 
defined in R d. We apply Theorem 6.1 to obtain the decay of the entropy solution 
of (7.1)-(7.2) provided that u0 satisfies a suitable condition on the growth of 
its inclusion intervals le (0) as e ---> 0. Existence and L~o c stability of entropy 
solutions of (7.1)-(7.2), with u0 6 L~(Rd),  was proved by Kruzkov [42]. 

The following theorem of [31] is obtained as a consequence of Theorem 6.1, 
the stability result in [42], and the compactness result in [45]. 

Theorem 7.1. Let f (u) = ( f l ( u )  . . . . .  fd(u)) satisfy the nonlineariO, condi- 
tion 

meas{u E• " v + x . f ' ( u ) = O } = O ,  V(r,K) E~d+l,s.t. r 2 + l x [  2 =  1. 

(7.3) 
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Assume uo c L ~ ( R  d) is S-a.p .  and there exists a sequence o f  S-a.p.  functions 

Uo,~, v E N, belonging to L ~ ( R  d) such that Mx(]Uo(X) - u0,~(x)[) --+ 0, as 
v ~ cx~, andso  that, for  each v c N, the inclusion intervals ofuo,~ with respect 

to E, l~ (O), satisfy el/al~ (O) --+ O, as e --+ O. Let u(x ,  t) be the unique entropy 

solution o f  (7.1)-(7.2). Then u(~t,  t) ---> ~ as t --+ oc in L~oc(R't), and, in 
particular, Mx( lu (x ,  t) - t~l) -+ 0 as t -+ ~ .  

Remark 7.1. Clearly, the hypothesis of Theorem 7.1 concerning the initial 
data Uo(X) is satisfied by any generalized limit periodic function belonging to 
L ~ ( ~ a ) ,  that is, any S-a.p.  function in L ~ ( R  d) which is limit of L ~ purely 

periodic functions in the sense of the norm 117rllw = Mx(17~l), for ~ 6 S - a . p . .  

8 Almost periodic solutions of inviscid systems in chromatography 

In this section we analyze the application of Theorem 6.1 to some special inviscid 
systems of conservation laws for which the compactness of the solution operator 
and the L 1 stability with respect to initial data have been proved in recent works. 
Namely, we are going to consider the initial value problem 

Otu + Oxf(u)  = 0, (8.1) 

u(x,  O) = Uo(X), (8.2) 

where (8.1) is the n • n chromatography system. The analysis here is very similar 
to the case of scalar conservation laws analized in section 7. For this system one 
has 

k i u i  
3~(u) = 1 + ul + ' "  + u~' i = 1 . . . .  , n, (8.3) 

where ki  are  given numbers with 

O < k l  < k 2 < . . ' < k n .  

These systems belong to the so called Temple class which is characterized by the 
following two properties: (1) There exists a complete set of Riemann invariants 
defined everywhere in the domain of f ,  2/ ___ IR n, that is, a set of functions 
{Wl(U) . . . .  , con(u)} satisfying Vcoi(u) = l i ( u ) ,  where the l i ( u )  are  n linearly 
independent left eigenvectors of V f ( u ) ,  i = 1 . . . . .  n; (2) the level sets {u c 
U : c o i ( u ) =  constant}are hyperplanes (c f  [53]). Recently, Bressan and 
Goatin [6] constructed a continuous semigroup of solutions on a domain of L ~ 
functions, for systems (8.1) in the Temple class, which are strictly hyperbolic 
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and genuinely nonlinear, where the trajectories depend Lipschitz continuously 
on the initial data in the L 1 metric. In [6], the initial data are supposed to take 
values in a domain E _c "U of the form 

E : {u E "1.1 �9 coi(u ) G [ai ,  bi] ,  i = 1 . . . . .  n } ,  

in which the following strong hyperbolicity condition holds: 

(SH) Given any n vectors u l, . . . ,  u n E E, the eigenvalues )~l(u) . . . . .  ~n(u) of 
V f ( u )  at these points are such that )~l(U 1) < )~2(U 2) < " ' "  < ) , n ( u n ) .  

Moreover, the right eigenvectors rl (ul), rz (u  2), . . . ,  r~ (u ~) are linearly 
independent. 

As remarked in [6] the above assumption is automatically satisfied if the system 
is strictly hyperbolic and E is contained in a small neighborhood of a given 
point. Concerning compactness of the solution operator of (8.1),(8.2), (8.3), 
we recall that this has been proved by James, Peng and Perthame [41], where 
the compactness is achieved through compensated compactness [59, 48, 24] and 
a kinetic formulation for the chromatography system. So, combining the L 1 
stability theorem in [6], the compactness theorem in [41], and Theorem 6.1 we 
get the following result of [31]. 

Theorem 8.1. Consider the problem (8.1), (8.2), (8.3). Assume (8.1), (8.3) is 

strictly hyperbolic and genuinely nonlinear and that Uo ~ L~(IR a) is S-a.p. . 

Suppose that there exists a sequence of  S-a.p.  functions Uo,~, v ~ N, belonging 

to L~(IR d) such that Mx(luo(x) - u0.~(x)[) --+ 0, as v --+ cx~, and so that, 

for  each v ~ N, the inclusion intervals of  uo,~ with respect to e, l~ (O), satisfy 

eli(O) --+ O, as e --+ O. Suppose also that uo and all uo,~ take their values in 

a region E where (SH) is satisfied. Let u(x,  t) be the unique entropy solution 

of (7.1)-(7.2). Then u(~t, t) --+ (t as t --+ oc in Lloc(Ra), and, in particular, 
Mx(lU(X, t) - u[) --+ O as t --+ c~c. 

9 Almost periodic solutions of inviscid systems in isentropic gas dynamics 

Here we consider the application of Theorem 6.1 to the relativistic isentropic 
Euler equation, which is a 2 x 2 system of the form (8.1)with 

1 "Jr (ff21)2)/C4 1 ~- (ff2U2)/C4,~,) 

(Ul, U2) = (p  1 --  U2/C 2 ' D v  i - -  I)2/C 2 (9.1) 
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and 

f ( u l ,  u2) = (pv  i q- (~2v2)/c4 v2 q_ ~2 
1 - v2/c 2 ' p ( - -  v2/c 2)'  (9.2) 

where ~, c are positive constants representing the sound and light speed, respec- 
tively, p is the density and v is the velocity of the gas. We observe that in the 

limit c --+ oe (9.1)-(9.2) reduce to the classical Euler isentropic gas dynamics 
model for a polytropic gas with y = 1, that is, 

(ul, Uz) = (p, pv) ,  f (ul, u2) = (pv,  p (v  2 + if2)). (9.3) 

In [19], Colombo and Risebro prove the existence of an L1-Lipschitz contin- 
uous semigroup S, defined on functions of bounded variation, with total vari- 
ation not necessarily small, whose trajectories are weak entropy solutions of  

(8.1),(9.1),(9.2). Given S-a.p .  initial data in BVtoc(R), we may apply the ex- 
istence and stability result in [19] to obtain the global existence of  an entropy 
weak solution, which is S-a.p .  in x for each fixed t. The growth of  the inclu- 
sion intervals le (t), as t --+ ~ ,  is again determined by the growth of the initial 
inclusion intervals le (0) as e ~ 0, but now not in an explicit way. Nevertheless, 

we may deduce the existence of a family of functions Hz : (0, ec) --+ (0, cx~), 
)~ > 0, satisfying H~(s) --+ ~ as s --+ 0+,  such that, i f  l~(O)/H~(e) --+ 0 as 
e --+ 0, for any fixed )~ > 0, then l~( t) / t  --+ 0 as t --+ ~ ,  for each fixed e > 0. 
The functions Hz are related with the growth of T V ( u o J ( - s ,  s))  as s ~ ec. So, 

now the restriction on the initial data appears as a correlation between the growth 
rate of the inclusion intervals as e --+ 0 and the growth rate of the total variation 
over the intervals ( - s ,  s) as s --+ c~. 

So, combining the L 1 stability theorem in [ 19], the compactness theorem in 
[24], and Theorem 6.1 we arrive at the following result. 

Theorem 9.1. Consider the problem (8.1), (8.2),(9.1), (9.2). Assume uo c 
B Vloc(IR) is S-a.p.  . Then there exists a global weak entropy solution o f  this 
problem, which is S-a.p .  in x f o r  each t > O. Also, there is a family  offunctions 
Hz : (0, cx~) --+ (0, oc), )~ > O, satisfying Hz (s) --+ ~ as s --+ 0+, such that, i f  
l~(O) / H~ (e ) --+ O as e ~ O, for  any f ixed )~ > O, then l~(t ) / t --+ O as t --+ oc, 
for  each f ixed e > O. In particular, i f lE(O)/Hz(e)  ~ 0 as e --+ O, fo r  anyf ixed  
)~ > O, then Mx(lU(X, t) - t i l )  --+ 0 as t --+ ec. 
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10 Almost periodic solutions of viscous systems of conservation laws in 
several space variables 

Here we consider viscous systems of conservation laws of the form 

d 

Otu + ~ Ox~fk(u) = Au, t > 0, x = (Xl . . . . .  Xd) ~ IR d, (10.1) 
k=l  

where u(x ,  t) assumes values in a domain 21 _c 1R n, f k  : 21 ___> Rn are smooth 
functions, k = 1, . . . ,  d and A denotes the Laplacian operator in 1R d. Let be 
given initial data 

u(x,  O) = Uo(X), (10.2) 

where uo ~ L ~ ( R  d) is S - a . p . ,  and takes its values in a closed region ~ c 21 
which is positively invariant under the flow generated by (10.1). Such regions 
were characterized in [18] and their existence is known for many particular sys- 
tems (see examples in the next section). In the simplest case of scalar equations 
(d = 1) invariant compact intervals are obtained from the well known maximum 
principle. 

For flux functions f k ,  k = 1 . . . . .  d, which are smooth mad Lipschitz contin- 
uous over the positively invariant closed region f2, the existence and uniqueness 
of global smooth solutions of (10.1)-(10.2) is well known and can be constructed 
through the procedures in [39]. Concerning these solutions we have the following 
result of [31]. 

Theorem 103. Let ~ be a positively invariant closed region for  (10.1), f k ,  
k = 1 . . . .  , d, be smooth over 21 D ~2 and Lipschitz continuous over ~2, and 
uo c L~(]~ d) be S-a.p .  assuming its values in -~. Let u(x ,  t) be the classical 
solution o f  (10.1)-(10.2) which is defined and smooth in N d • (0, ~<~). Then 
u(x ,  t) is S-a.p.  in x, locally uniformly in t c [0, ~ ) ,  and its inclusion intervals 

with respect to e > O, Is(t), satisfy l~( t) / t  --+ O, as t --+ ~ ,  provided the 
inclusion intervals o f  uo, l~(O), satisfy (log e)-ll~(0) -+ 0 as e --+ O. Moreover, 

if f2 is bounded then, f o r  any to > O, Vxu is uniformly bounded for  t > to. 

Theorem 10.1 is applicable to the viscous pertubation of all hyperbolic sys- 
tems of conservation laws for which the existence of compact positively invariant 
regions is known. If in addition the compactness of the scaling sequence u T is 
known, an application of Theorem 6.1 immediately gives the decay of the so- 
lution of the perturbed viscous system. This includes, in particular, the viscous 
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perturbations of all systems for which the decay of periodic solutions was ob- 
tained in [9]. We just mention a few examples below. 

10.1 Viscous scalar conservation laws 

If in (10.1) n = 1 then as is well known there exists a unique uniformly bounded 
solution of (10.1)-(10.2), u (x, t), the uniform boundedness being consequence 
of the usual maximum principle. Hence, if the initial data uo(x) is S-a.p. one 
obtains by Theorem 10.1 that u(x, t) is S-a.p. and l~(t)/t ---> 0 as t --+ oc, 
provided (log e)-ll~(0) -+ 0 as e -+ 0. Now, again using a compactness result 
in [45] we obtain the compactness of the scaling sequence ur(x,  t) and so we 
can apply Theorem 6.1 to conclude the decay of u (x, t) to t/, as t -+ ec, in 
particular that Mx(lu(x, t) - t/I) -+ 0 as t -+ ec. We observe the curious fact 
that the restriction over the growth of the inclusion intervals of the initial data as 
e --+ 0 is stronger in this case than in the inviscid case. 

10.2 Nonlinear elasticity with artificial viscosity 

Consider the 2 • 2 one-dimensional system of nonlinear elasticity with artificial 
viscosity given by 

OxU2 - -  OxUl '  (10.3) l OtUl __ __ 2 

with o"(v) > 0 and wC(v)  > 0 if v # 0. As is well known (see, e.g., [53]) 
this system admits a family of bounded positively invariant regions which may 
include any bounded set in R 2. Using the principle of invariant regions in [18] 
one may, in a standard way, extend the unique local solution to a unique globally 
defined uniformly bounded solution of (10.3)-(10.2). Hence, Theorem 10.1 is 
applicable and one obtains that the solution is S-a.p. and satisfies l~(t)/t --+ 0 
as t --+ ~ as long as (log e) -ll~ (0) -*  0 as e --+ 0. Now, DiPerna's compact- 
ness theorem in [24] implies that the scaling sequence u r is compact in L~o c (1~2). 
Again, we can apply Theorem 6.1 and obtain, in particular, Mx ([u (x, t ) - t i [ )  --+ 0 
as t --+ ~ .  We obtain the same result for a number of other viscous systems 
which are also endowed with bounded positively invariant regions and for which 
compensated compactness has beeing successfully applied such as the n x n sys- 
tem of chromatography with Langmuir coordinates [4l], the quadractic systems 
in [14], the conjugate type systems in [35], etc.. 
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10.3 Isentropic gas dynamics with artificial viscosity 

Let us consider the 2 x 2 one-dimensional system of isentropic gas dynamics, 
for ideal polytropic gases, with an artificial viscosity given by 

Otp + Oxm = Oxp, (10.4) 
O~m + Ox( nF + p(p) )  2 = Oxm, P(P) = xp y, - p  

with ?/ > 1. This system is also endowed with a family of positively invariant 

regions given by - C p  + p fP ( x / P ~ / P )  dp < m < Cp - p fP (~ /p ' (p) /p)  dp, 
with C > 0 (cf [25]). If the initial data satisfies po(x) > 6 > 0 and too(x) < 

C0p0 (x), for some Co > 0, the existence of a unique local solution may be proved 
in a standard way; this solution then can be extended as long as p(x,  t) > 0. As 
explained in [31], the proof that the vacuum (p = 0) is not assumed in finite time 
is then a decisive point for the global existence of a solution to (10.4)-(10.2). 
The proof of this property given in [25], which assumes square integrability of 
(P0 - /5,  m), for a certain/5, is not adequate here since we want to consider almost 
periodic initial data. Nevertheless, the proof that p remains bounded away from 
vacuum given in [13] does not make use of square integrability of the initial data 
and can be easily adapted to the case of a Cauchy problem. 
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