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Abstract. We consider the smooth compactification constructed in [12] for a space 
of varieties like twisted cubics. We show this compactification embeds naturally in a 
product of flag varieties. 
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Introduction 

Twisted cubics have long been a source of interesting examples and test cases in 
algebraic geometry. The Hilbert scheme Hilb 3m+1 (I? 3) was studied by Piene and 
Schlessinger in [9], where we learn among other things that it consists of two 
smooth components intersecting transversally. The component parameterizing 
twisted cubics was investigated further by Ellingsrud, Piene and StrCmme in [1], 
[2], [3]; see also [13]. For degree d > 4, the scheme Hilbem+l(I? 3) has more 
than two components, which are hard to describe; see Martin-Deschamps and 
Piene [8]. 

The interest in compactified parameter spaces for rational curves originated in 
enumerative questions considered by Schubert [11] and others; see Kleiman [6] 
for a survey. Recently many of these questions have been answered using stable 
maps; for example, see Fulton and Pandharipande [4] and Graber, Kock and 
Pandharipande [5]. Although techniques are still in short supply for varieties 
of higher dimension, particular cases are treated in [12]. For instance, that 
paper contains a determination of the number 648,151,945 of rational ruled 
cubic surfaces in I~ 4 meeting 18 general lines, and a determination of the number 
7,265,560,058,820 of Veronese surfaces in 175 meeting 24 general lines. (It also 
contains a determination of the number 15 of triangles in I? 2 meeting 6 general 
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lines, and a determination of Schubert's number 80,160 of twisted cubics in i73 
meeting 12 general lines.) 

Section 1 reviews the construction in [12]. This construction produces a 
smooth compactification for varieties defined by nets of quadrics of determi- 
nantal type, such as twisted cubics, by an explicit sequence of three blowups 
starting from a nice variety. Lacking in [12], however, is a description of natural 
embeddings for the final two blowups. Although each center was well under- 
stood per se, it does not appear as the indeterminacy locus of a natural rational 
map. Besides being unaesthetic, this lack rendered the search for the closed 
orbits more technical than need be. These orbits are used to reduce the proof of 
the family's flatness to a simple computation. 

The purpose of this note is to show that, in fact, this compactification embeds 
naturally into a product of flag varieties. This embedding lies in the long tradi- 
tion of completing figures b y  adding geometrically meaningful aspects (see, for 
example, Kleiman and Thorup [7]). In the case of twisted cubics, we start with 
the Grassmannian parameterizing the pencils of quadrics with a common line. 
To a general pencil A, we attach a suitable net B of quadrics, designed to single 
out the twisted cubic residual to the line. Next we build a linear system C of 
eight independent cubics, and then we enlarge it to a 10-dimensional space D. 
Finally, we show the compactification is the closure of the locus of (A, B, C, D). 

In Section 1, we introduce notation and review [12]. In Section 2, we state the 
main results, which identify the second blowup as the closure of the graph of the 
rational map (A, B) ~ C, and the third as that of the map (A, B, C) ~-+ D. In 
Section 3, we outline the proofs. 

1 Quick review 

For simplicity, we treat the case of twisted cubics with a fixed line L0 as a chord. 
The general case is similar. 

Denote by F the vector space of linear forms on the homogeneous coor- 
dinates xl . . . . .  x4. Our starting point is • = G(2, 7), the Grassmannian of 
2-dimensional subspaces of the vector space of quadrics vanishing on L0. Each 
point in X is a pencil A = (ql, q2) of quadrics containing L0 in the base locus. 
For a general A, we get a residual twisted cubic fA meeting L0 twice. This fA is 
the scheme of zeros of a net of quadrics B = A + (q3). Given linear forms x, y 
that define L0, say ql = a x  -I- b y  and q2 = c x  + d y  with a, b, c, d ~ F; then 
a d  - b c  can be chosen as q3 

There is a rational map ~ - . .  ~ G(3, 10) with A ~-+ B = A + (q3)- It fails to 
be a morphism precisely along the subscheme Y of • parameterizing the pencils 
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of the form (h �9 hi, h �9 h 2 )  withh  D L0 a plane. 
Blowing up ]K along 3/yields a smooth subvariety K' C Z x G(3, 10). A 

general point in the fiber over (h �9 hi, h �9 h2) represents the configuration of the 
line (hi, h2) union a conic in the plane h. 

Each point of K' corresponds to a flag A C B such that B is a determinantal 
net and A is a pencil of quadrics. We have a vector bundle map defined fiberwise 
by multiplication B | F --+ S3F. It is shown in [12] that the Fitting subscheme 
Y' of Z'  where the rank drops to 9 consists of two smooth components, Y'I and 
'g~. The first is isomorphic to the incidence variety, 

Y'I ~ {(P, h) 6 ~3 X ~3 L P 6 h f~ Lo C ]p3}, (1) 

shown in Figure 1. 

Figure 1: The incidence variety Y~I- 

The second component is isomorphic to the incidence variety, 

g~ ~ {(p, X, h) c ~3 N G(2, 4) x I? 3 I P 6 X C h D Lo }, 

shown in Figure 2. 

L0 

Figure 2: The incidence variety Y~. 

Let ;K" be the blowup of Y~I C K', and Y~ the strict transform of Y~, 

Y ~ { ( p , o , X , h )  t i p  3 x L 0 x q 3 ( 2 , 4 )  x lp31p,  o 6 X  C h D  L0}.  

Blowing up Y~ C K" produces the smooth compactification K"  of [12]. 

(2) 
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2 Main results 

The novelty reported on here is simply this: the blowup centers YI 1 and Y~ appear 
as indeterminacy loci of natural rational maps. 

First, the variety Y'1 appears singled out as an appropriate Fitting subscheme 
for the saturation of the image of the multiplication map from A | F (rather 
than B @ F!) into S3F. The generic rank of A | F --+ S3F is 8, and drops to 
7 precisely along Y/1. Note that its image F �9 A C S3F actually lands into the 
16-dimensional subspace Lo �9 S2F of cubic forms vanishing along the line L0. 
We are abusing notation and identifying the line with the 2-dimensional space 
of linear forms that define it. We may state the following result. 

Theorem 1. Let X'  . �9 �9 --+ G(8, 16) be the rational map that assigns to a gen- 

eral flag (A,  B)  the vector space o f  cubic forms F �9 A C Lo �9 S2F. Then the 

blowup X If o f X  I along YI 1 embeds in Zi  • G(8, 16) as the closure o f  the graph 

o f  this rational map. 

Thus, the blowup X ~I of X' along V~l embeds as 

X ' /C  I~ I • G(8, 16) C G(2, 7) • G(3, 10) • G(8, 16). (3) 

If It turns out that the strict transform '~r 2 C ~ , I  t of']lz2 is now the Fitting sub scheme 
of the pullback of the map defined by B | F --+ $3 F, up to a saturation trick. 
Precisely, let :B denote the pullback to ~"  of the tautological rank-3 subbundle 
of $2 FIG(3 , 10). Let 7) C $3 F be the subsheaf obtained by saturation of the image 
of the multiplication map :B | F --+ S3FIx,,. The generic rank of 79 is 10 and 
the Fitting subscheme of Z" where the rank of $3F/79 jumps is equal to Y~. In 
other words, we may state the following result. 

Theorem 2. Let • " . . .  -+ G(10, 20) be the rational map that assigns to a 

general point  (A, B, C) the vector space o f  cubic forms F . B C S3F. Then the 

blowup X "l o f Y ~  I C X I' embeds in X II • G(10, 20) as the closure o f  the graph 

o f  this rational map. 

Thus, the blowup of Z/' along Y~ embeds in the product of the two flag varieties, 
as stated in the introduction. 

When [12] was accepted, its authors were unaware of this result. It was 
discovered during a related investigation [10] of the family of quintic curves 
of genus 2 in i73. The result simplifies the work in [12], especially the crucial 
determination of the closed orbits. Indeed, instead of having to deal with a 
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tricky induced action on the normal bundle of Y'I C N' (and with a similar one 
on that of Y~ C X"), we need only work out the natural induced actions on those 
Grassmann varieties, and this work is much simpler. 

Under the action of the stabilizer of the the line L0 = (x~, x2), the relevant 
closed orbits turn out to have the following representatives: 

o = (X 2, XIX2) in N = G(2, 7); 
o~l = (o, (x 2, XlX2, x~)) in Z'  C 3[ x G(3, 10), which is a terminal orbit in the 

sense that it lies off the next blowup centers; 
ol2 = (o, (x 2, x lx2,  XlX3)) in X' C Z x G(3, 10); 
O~ = (Or2, (X 2, XlX2) �9 F + (XlX2) )  in 2(" C Z' x G(8, 16); 

Ill  II 02 = (02, (x~, xxx2, xlx3) �9 F + (x3)) in X"' C X" x G(10, 20). 

3 The proofs 

The proofs consist of a few simple local calculations as in [12]. Here is an 
outline. The two quadrics 

ql = x ~ +  alXlX3-l-a2xlx4-1-a3x~+a4x2x3-k-a5x2x4, 
q2 = X l X 2 + a 6 x l x 3 n t - a 7 x l x 4 + a 8 x ~ + a 9 x 2 x 3 + a l o x 2 x 4  

give a local trivialization of the rank-2 tautological bundle in a neighborhood of 
(x 2, xlx2) in G(2, 7). Writing qi = ~1x l  + fi2x2 for suitable j~j E F, we may 
take q3 = de t ( f i j ) .  The rational map 

v" (ql, q2) ~ (ql, q2, q3) 

can be locally represented by a 3 x 10 matrix with entries given by the coefficients 
of qi with respect to the monomials x 2, XlX2 . . . . .  x~. 

Performing row and column operations, we can bring the matrix into the tri- 
angular form (02"), with a 2 x 2 identity block. We can check that the indetermi- 
nacies of v occur precisely along the subscheme Y locally defined by the entries 
in the row vector e~. The local equations may be read amidst the entries of o~, 

a9 = a8a6, a l o  = a8a7, a3 = - - a  2, a4 = a la8 ,  a5 = a2as .  

Let Z' be the blowup of Y C N. It is expressed in local coordinates by the 
assignments, 

alo=blEl-t-a8a7, a 3 = b 2 g l - a ~ ,  
a4-=b3el+ala8, a5=b4el+a2a8. 

(4) 
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Here the new local variables are al, a2, a6, a7, as, a9, bl . . . . .  b4 ;  furthermore, 
el = a 9  - -  a8a6 is local generator of the exceptional ideal. This choice is made 
so that the origin is a representative of the closed orbit of o I 6 Z', which is acted 
on by the stabilizer of L0. 

Set for short R = C[al . . . . .  b4 ] .  Plugging the relations (4) into the above 
3 • 10 matrix, we find the third row becomes divisible by 81. Dividing, we a find 
a matrix of rank 3 everywhere in the present neighborhood. The R-submodule 
B of R 1~ ~- R | S zF  spanned by the three new rows is the saturation of the 
submodule B ~ spanned by the original rows. (By definition, the saturation B is 
the set of all q in the free module R | S z F  such that r �9 q lands in B ~ for some 

! / 
nonzero r 6 R.) Then B corresponds to a local trivialization q'l, q2, q3 for the 
rank-3 bundle inherited by Z'  C X • G(3, 10). Note that B also comes equipped 
with the split submodule A = (q'l, q2), corresponding to the pencil. 

In [ 12], we proceeded to compute a matrix representation for the multiplication 
map B | F ~ R 20 ~ R @ S3F. Here, we look instead first at A @ F --+ R 16 ~'~ 

R | (Lo" S2F).  Now the generic rank is 8. A matrix representation can be found 
(17 ,] It turns out that the row vector fl is a multiple of el. in the triangular form to 81" 

Dividing, we find a local presentation for the saturation of the image. The new 
bottom row spans the ideal of the smooth subvariety Y'I (see (1)) of codimension 
7, with equations, 

a l  = a 9 ,  a 2  = bla9, a 6  = 0 ,  a 7  = 0 ,  a 8  = -1 /2b3 ,  b2 = 0, b 4  = bib3. 

Blowing up Y~ C Z' yields the embedding (3). In appropriate local coordi- 
nates, the map X" --+ N' can be written thus: 

a 7  = c l a 6 ,  b2 = c 2 a 6 ,  a 8  = c 3 a 6  - -  1/2b3, 
b4 = c4a6 q- bib3, al = c5a6 -q- a9, a2 = c6a6 + bla9. 

Now e2 = a6 gives the exceptional divisor. 
As before, we substitute the above relations into our 8 x 16 matrix, and divide 

the bottom row by e2. Next, we enlarge the matrix to size 12 x 20 by first 
putting four zero columns corresponding to cubic monomials involving only 
x3, x4, then four new rows corresponding to the coefficients of the products 
q3 " xi for i = 1 . . . . .  4. The resulting matrix represents the multiplication map 
B | F --+ R 2~ Its minimal rank is 9. 

Performing elementary row and column operations and discarding zero rows, 
we can bring the matrix into triangular form (I9,'~ Here the row vector V gen- \0  )~1" 
erates the ideal of the smooth subvariety Y~ (see (2)) of codimension 6, locally 
given by 

c2 = c3 = c4 = 0, b3 = 2c5/3, C 6 = (2Cl + bl)C5/3, a9 = -c5a6/3 .  
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The pictures above, as well as a hint of  the global descriptions of  Y'1, Y~, are 
found by substituting the corresponding local equations into the three generators 
for the net of  quadrics and into the system of eight cubics. 

There is a short script for m a p l e  with all the computational details in [14]. 

Acknowledgement. I 'd like to express my gratitude to S. L. Kleiman for sug- 
gestions for improving the readability of  a previous version. 
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