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1 Introduction 

Given two Riemannian manifolds (B, gB) and (F, gF), then the space M := 
B x F endowed with the warped metric g8 + o92gF is said to be a warped 
product and it is also denoted as B x ~o F. 

Historically such spaces have been used in order to prove that some classes of 
Riemannian manifolds are not empty and to produce large families of examples. 

In [2], Bishop and O'Neill constructed this way a class of Riemannian mani- 
folds of negative curvature. 

In the seventies, Tanno gave locally symmetric warped products whose factors 
have constant curvature: K(B) = 0 and K(F) <_ 0; however such manifolds 
do not have constant curvature. He worked with the further hypotheses that 
R(X, Y) o R = 0 is satisfied and the scalar curvature is constant, [10]. Later, 
Takagi, [9], generalized this result substituting the two hypothesis with "M is 
homogeneous or Ricci-symmetric". 

In [8], Sekigawa enlarged the class introduced by Bishop and O'Neill. More- 
over he gave an example of a warped product which is curvature homogeneous 
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but non-homogeneous. Finally, Tricerri generalized this result, giving an infinite 
class (depending on a non-countable set of parameters) of Riemannian manifolds 
which are curvature homogeneous, non-locally homogeneous, non-isometric to 
each other, [11]. 

Since the class of warped products is so rich of interesting examples, there 
is a natural geometrical interest in the study of the Riemannian properties of a 
generic warped product. 

Our paper classifies certain warped products by the condition of constant sec- 
tional curvature or the Einstein condition. 

In particular the basis B of a warped product of constant sectional curvature 
admits a function (namely the warping function) co which satisfies 

H ~~ = -,'4co g .  (1) 

Such an equation has been studied by Obata [3] in the case x = 1. Our Theorem 
3 provides another proof of his Main Theorem, generalized to any •. The 
proof brings us to the classification of the warped products of constant sectional 
curvature. 

Furthermore, the motivation of the study of Einstein warped products with 
Einstein basis is given in [1], Section 9J. In fact Besse describes the Einstein 
warped products with basis either one or two dimensional. A natural generaliza- 
tion is given by the cases studied here. The results are those expected. Moreover 
it is well known that the equation Vx grad co = -,~ooX (equivalent to Eq. 1) 
plays an important role. Thus, by Theorem 3.4, solutions allow us to reduce 
the manifold to a warped product with one-dimensional basis. This parameter 
is given just by the level surfaces of the function o) itself. All of these warping 
functions can be integrated in terms of elementary functions [4, 6]. 

Equation (1) is intimately related to the nature of a warped product; this is 
clearly shown by Theorem 3.4. Notice that pairs ((B, g~), (F, gF)) not satisfying 
Eq. (1) provide interesting examples of warped products. In the case that both the 
factors are of constant curvature the warped products constructed by Tanno and 
Takagi are of this type. Moreover if (B, ge) and (F, gF) are Einstein manifolds 
and co is constant, (M, g) has constant scalar curvature and hence is Ricci- 
symmetric but, in the generic case, not Einstein. In particular, the Ricci tensor 
has just two distinct eigenvalues ) e  and XF/co 2. 

For example, an interesting class of non-Einstein manifolds which are Ricci- 
symmetric is given by the following mixed case. Let (B, ge) have constant 
curvature ~ and (F, gF) be an Einstein manifold: PF = XFgF �9 Then consider 
a function co satisfying the Eq. (1) with first integral I]~]l 2 + 2,'CO) 2 = ~ and 
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L F 
# 7-~" Since (B, gB) is Einstein with ) 8  = z ( b  - 1), the warped product 

(M, g) is not an Einstein manifold, while a direct computation shows that Dp 
vanishes. 

2 Notations and preliminaries 

In this section we recall some definitions and notations. 

Given a Riemannian manifold (M, g), its Levi-Civita connection is denoted 

by V. We use R for the Riemannian curvature tensor and associated (4, 0) tensor, 

p for the Ricci tensor and K for the sectional curvature. 

For a smooth function co, S2 will denote its gradient, H ~~ its Hessian and Aco 

will be the Laplacian namelyplus the trace of  the Hessian (it is sometimes defined 

with a minus)�9 

Let  now (B, gs)  and (F,  gF) be two Riemannian manifolds of  dimension 

b > 1 and f respectively. Consider the smooth manifold M :=  B x F with 

the canonical projections denoted by Jr : M --+ B and o- : M --+ F.  Given an 

arbitrary smooth map co : B ~ R + we correspondingly define a Riemannian 

metric g = g~o on M (called warped metric) 

gco :=  Jr*g8 + (co o JT)2a* gF. 

Notice that co : B --+ R + is just for convenience: what is necessary is that co 

never vanishes on B (and hence it has constant sign -say positive- on B which 

we assume connected). The pair (M, g) is also denoted as M = B x~o F and it is 

said to be a warped product. We shall often denote the scalar product g~o(X, Y) 
as < X, Y >,  while g8 and gF will be explicitly written. 

Thefibers Jr - 1 (p)  = {p} x F and the leaves a - 1 (q) = B x {q } are Riemannian 

submanifolds of  M. Moreover, the projections have the following properties, [7]: 

a) the map yr F(Bx{q}) is an isometry onto B; 

b) the map a [(/p)• e) is a homothety onto F with factor - -  

c) the fibers and the leaves are orthogonal. 

1 
~2(p),  

The Riemannian manifold (M, g~o) is complete if  and only if  both (B, gB) and 

(F,  gF) are complete and o) never vanishes [2]. 

For the reader 's commodity  we report the expressions of  its Levi-Civita con- 

nection V; of  the Riemannian tensor R, of  the sectional curvature K and of  the 

Ricci tensor p (to be found in [2]). 
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48 MARCO BERTOLA AND DANIELE GOUTHIER 

We shall abuse slightly the notation and confuse the connection V B of  B and 

the lift re * V of  the connection V. Hereafter X, Y, Z will be sections of  F (re * T B) 

and U, V, W of  F(o-*TF) ,  while f2 will denote the gradient of  o9. The Levi- 

Civita connection is given by 

vxr=vfr; v ~ v = v v x -  x(og~)v; vvw=v$w (v,w~a 
o9 o) 

Via a direct computation, we have the Riemannian curvature tensor R, 

R x y Z  = R~;rZ; R v x Y  -- H~~ Y)  V; 
(1) 

W )  VX (~'~); F R x v W  -- (V,  R v w U  = R v w U  - - -  
o9 

R x y V  = R v w X  = 0 

IIfZll 2 
0) 2 

{(v, u ) w  - (w,  u ) v } ,  

and the Ricci tensor 

p ( x ,  Y) = p s ( x ,  Y) - f t-I~ r )  
(1) 

p ( x ,  v )  = o 

p ( V ,  W )  : DF ( v ,  W ) -  < V,  W > o9#, 

(2) 

.-- I1~112 where w # "-- A__~_~o + ( f  - 1)--La-. Finally, we give the sectional curvature 

H~~ X) KEg -- I1~112 
K x y  = g B y ;  Kxv -- coliX[i2 ; K u v  = 02 (3) 

3 Warped products with constant curvature 

We now classify the warped products with constant sectional curvature; we will 

also address the issue as to whether such an M can be taken complete preserving 

the structure of  warped product. 

Consider the warped product M = B x ~o F with the further hypothesis K = x ,  

~ c R .  

Proposition 3.1. I f  M = B • F has constant  sect ional  curvature equal  to 

then both B and  F have  constant  sect ional  curvature, K B = x and  K F = ~ f o r  

some  ~ E •. Without  loss o f  general i ty  we  can assume  that F is complete.  
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ProoL The formulae (3) show that 

K B = x  

H~'(X, Y) = --~oo gB(X, Y) 

KFv = XO) 2 -{ - I l f a l l  2. 

(4) 

(5) 

The first equation tells that B has constant sectional curvature, while the last 
implies that K F is some constant ~ C R: in fact, the second member is a first 
integral of (4). 

Finally, since for any warped product M the projection of a geodesic ~, in M 
onto the second factor F is a pre-geodesic in F [7], then if F itself is not complete 
we can isometrically embed it into its completion preserving the structure of 
warped product. [] 

We see that the only possible obstruction to take M complete preserving the 
warped structure is that the differential equations for co (4) may imply that co van- 
ishes somewhere; in this occurrence the metric on M would be degenerate at such 
points and hence we should remove them from B thus destroying completeness. 

Equation (4) is equivalent to 

Vxf2 = -xcoX.  

In particular Vafa = -a4co~, thus we have the 

Proposition 3.2. The integral curves of  ~2 are pre-geodesics in B, i.e. curves 
which admit a reparametrization as a geodesic. 

Remark  3.3. The equation (4) is highly overdetermined. 
The compatibility of the tensor equation rigidities the structure of B: indeed, 

in explicit coordinate notation H ~  = V**V~co = V~Vuco (by vanishing of the 
torsion), hence the equations are VuV~co = - ~ c o g ~  (we have suppressed the 
index B from the metric for the sake of simplicity). Taking one further covariant 
derivative Vv and subtracting the same equation with the exchange p <-+/, we 
obtain 

k 2~ 
[Vu, Vp]V~o) := Rup~Vxo) = -xVuoogp~ + xVpcog~p = ~ - ( g ~ ( ~ ) ) u p ~ .  

Thus we see that compatibility of the equations boil down to 

~ x r f ~  := (Rxy - xR~ = 0, 
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where we have put R ~ = �89 the Riemann curvature tensor of a manifold 
with constant sectional curvature 1 (we have used the Nomizu-Kulkarni symbol 
Q[1]).  

This remark shows that a sufficient condition for the existence of such a func- 
tion co is that B is of constant curvature, as it is our case now: it turns out 
that this is also a necessary condition in some circumstances, depending on the 
completeness of B and the relative signs of ~ and ~. 

In the following theorem we are going to study under which conditions the 
system H ~~ = -~cog admits a nontrivial solution on a given manifold (N, g) 
not a priori of constant curvature: we will focus on the constraints that the 
compatibility imposes on the geometry of the manifold N while we will lift the 
requirements of positivity of co itself. Clearly we will re-impose the requirement 
co > 0 when (N, g) will play the role of base of a warped product (at which point 
we will use the notation (B, gs). In particular it will be shown that (N, g) (or 
some suitable open maximal subset) must be itself a warped product for some 
warping function o~. 

Theorem 3.4. Let (N, g) be any complete Riemannian manifold of  dimension 
greater than one (to avoid trivialities) such that there exists a function co satisfying 
H ~ = - ~co g with first integral xco 2 + II f2112 = 1~ for suitable (real) constants 
~, ~." denoting A := {x c N ; II f2x II = 0} the critical locus of  co, then 

i) (N \ A, g) is isometric to a warped product I x~ Eo where I c_c_ IR, 
E~ := co-1 (0) for a regular value q, and or(t) is a suitable function to be 
specified in the proof 

ii) if A ~ 0 then (N, g) is of  constant curvature K (N) = ~c; 

iii) I f  x < 0 < ~ then the above holds globally (and I = IR). 

iv) The surface E0 := co-1 (0) is always regular (if not empty) and totally 
geodesic. 

Proof. Let q be a regular value for co. The level surfaces E~ := o9 -1 (fi) are 
regular hypersurfaces for fi in a suitable neighborhood of q. Moreover, all the 
E~ are diffeomorphic to E~ via the flux generated by the gradient. 

Let i : Eq ~ N be the natural injection and, for an interval I C IR containing 
0, define the map ~ : I • Eq ~ N : (t, x) ~ ~( t ,  x) as follows: the point 
7t (t, x) is the unique point of Ex(0 lying on the integral curve of f2 (a geodesic) 
through the point i(x) 6 E~ at a distance t from Eq (t is the oriented distance). 
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This definition implies clearly that gr, at a = 17~ and that ~k({t} x X q )  arethe level 
sets of o9. 

The function X :=  co o gr is a function only of t c U and satisfies 

( X ' )  = ~ - -  ;,r'X 2 

X (0) q > 0 

According to the signs of a4 and ~9 and after a suitable shift of  the affine parameter 
t we have 

x(t) = 

cos  

V/~-/Ia4[ sinh ( [~-~ t )  

c o s h  

exp ( v / ~ t )  

g > 0 ,  ~ > 0  (1) 

z < 0 ,  t ) > 0  (2) 

; z < 0 ,  ~ < 0  (3) 

g < 0 ,  b = 0  (4) 

x = 0 ,  ~ > 0  (5) 

where now ct = X (to) for some to e I .  Notice that ~ is an isomorphism of 
manifolds outside the stationary points of o9 and that now o) takes on negative 
values in some cases (but -as we said- here o) is not a warping function, just a 
solution of  H ~~ = - ~ogg). 

We now prove that the metric ~ :=  7z*g gives I x Eq the structure of warped 

product. Let Pl and P2 denote the projections onto the two factors of I x Eq and 
note that for all X, Y in the tangent bundle of Eq in I • Eq (i.e. in F(p~TEQ)) 

~a(Ot, at) = 1; ,g(Ot, X) = O; ~(X, Y) = g(Te, X, O,Y) 
f2 1 

7t.0t - - -  - f2 
IIS211 v ~ - -  2"~O92 

o9o  7 ~ ( t , x )  = x ( t ) ,  

Let now X, Y E F(p~TE~)  suchthat [Or, X] = [Ot, Y] = 0 andthus [f2, ~ , X ]  = 

[f2, ~p,Y] = 0: if  we now compute s we get 

Ot@,(X, Y)) = (Lo,~,)(X, Y) = i - ~ g ( ~ . X ,  7t.Y) = 

1 
-- {g(Va~',X, $ ,Y)  + gOp, X, Vamp, Y)} = 

I1~11 
1 2H~ Y) 

-- {g(V~,xQ, ~ ,Y)  + g(~,X, V**v~2)} -- 
I1~11 I1~11 
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-2:<o) _2a4X (t) ~(X, Y) = 
- IIS21~ g0p*X' ~*Y) = X'(t) 

-2~rXX'  d 
-- ~ -- xX2  ~ (X '  Y)  = -dT lOg ( x : ( t ) e )~ (x ,  Y).  

Hence 

= d r  2 q- ( ~  t g = dt  2 q- ~ _ ~q2 i* g 

This proves the first part with warping function 

o (t) - 
(X'(t)) _ /[)_-- 3X2(t)  

- V " 

In the five cases above we have that oe(t) _ ~ _ ~ q 2 f ( t ) l  . and the corresponding 

maximal intervals are given by 

s in  (V/ -~t )  

~f~ cosh (I~v/~t) 

f ( t )  = V / ~  sinh ( ] ~ / ~ t )  
exp (f~/~-~t) 

> 0, (6 > 0), I = (0, Jr/v'-Y) (a) 

< 0, (~ > 0), I = IR (b) 

< 0, ([~ < 0), I = (0, oc) (c) 
a4 < 0, (~ = 0), I = IR (d) 

;4 = 0, (~ > 0), I = N. (e) 

We remark that the critical set A corresponds to the zero locus of  oe (since o~ 
is proportional to Ilfal] ), or more precisely that A r 0 iff o~ is not everywhere 
positive, i.e. in cases (a) and (c). 

To prove assertion ii) we now compute the sectional curvature of  N on a 
plane spanned by U, V vectors in F(TE,~). The calculation follows from the 
expression of  the sectional curvature of  a warped product 

y(N)  K u v  - -  (OY') 2 
* ~ U V  - -  G2 (6) 

The cases when the critical locus A is not empty are (a) and (c) and A is consti- 
tuted by isolated points; 

if ~ > 0 (and thus ~ > 0, case (a)) A is constituted by isolated points since the 
Hessian is nondegenerate (i.e. there are isolated maxima or minima). It is easy 
to realize that there exist exactly one maximum and one minimum x-L (where the 

values are COcr = ~ / - ~ ) ,  and that 7t is an isometry on N/{x+,  x_}; critical 
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if 04 < 0 > ~ (case (c)) then A is just an isolated point of minimum x0 for co 

(cocr = , ~ f / ] x l ) ,  and the isometry is defined onto N/{xo}. 

Before proceeding let us point out that, since all critical points of co are nondegen- 
erate and the Hessian is of definite signature (being proportional to the metric), 
the level sets Nq = 0) -1 (q) are all topological spheres (from Morse theory). 

We shrink this topological sphere (el -+ 0 i.e. co -+ coc,-), by parallel translating 
the two vertical vectors U, V up to the critical point xcr along the flow generated 
by the gradient S2 (remember that ~2 and so the gradient of o~ generate pre- 
geodesics). Notice that for each such flow line y the projection on the fiber 
Nq is constant, and the 2-plane spanned by U, V does not change (each vector 
is just rescaled). At the end of this shrinking process we obtain two vectors 
in the tangent space Txc~ N. Since we must obtain a well defined value of the 

sectional curvature of N then we must have Kuv = (e((0))2 independently of 
the "direction" of the geodesic, namely of the point on I2q, and of the two-plane. 
This proves that I~ is a sphere. 

Then, from Eq. (6) and from the explicit form of e~, it follows that also K (N) = 04 
and hence (N, g) is globally (by continuity) of constant sectional curvature, 
which proves part ii). 

If the critical locus A is empty (which corresponds to the remaining cases (b), 
(d), (e)) we have no constraint on the curvature of the leaf l~ ,  which can be any 
Riemannian manifold. 
Indeed if od < 0 < t0, from [[S2ll 2 = I? - 040) 2 we see that co has no stationary 
points and hence ~ is defined globally. Now X is an hyperbolic sine or an 
exponential if b = 0 or a linear function if 04 = 0, and correspondingly oe is an 
hyperbolic cosine, exponential, or constant. Therefore the maximal interval I 
is exactly IR and the manifold N is complete and globally isometric to a warped 
product, which proves assertion iii). 

Finally, Eo = co-1 (0) is not empty only in the cases (a), (b), (e) and is clearly 
regular because 11 f2 I} 2 = D" 

To prove that it is a totally geodesic hypersufface, take a geodesic g of N such 
that ?/(0) is in E0 and ~)(0) is orthogonal to S2(V(0)), namely ~)(0) 6 Ty(0)E0. 
Consider now the map/x(t) := co(g(t)). Its first and second derivatives are 

d d 2 
~-~/~ = (if2, ~'); ~ / z  = ( D ~ ,  ~') = -04/~. 

The initial data for this Cauchy problem are/~(0) = 0 and ~/~(0) = 0, hence/~ 
vanishes identically, i.e. g stays always in ~20. Thus N0 is totally geodesic and 
therefore has the same curvature as N. [] 
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First of all we have to integrate equation (4): from .74"co 2 "~- II ~2 II 2 = ~ = K F and 
H '~ -- -xcog  it follows that when co is constant then both ~ and g vanish, that 
is M, B and F are flat and vice versa. Therefore we will consider only the case 
co nonconstant in the following. Summarizing the contents of our investigation 
we can state the following corollary 

Corollary 3,5. Suppose that (N, g) has constant curvature ~, is geodesically 

complete and co satisfies H ~~ = -~cog,  then 

i) i f  x = 0 < ~ then co(x) = a �9 x + c (an affine function), where �9 here 
denotes the euclidean scalar product and I[a II 2 = ~ ,  

ii) i f  x > 0 then ~ > Oandco(x) = V/~-~ cos (~/-xd(x, xo) ) , forsomexo e B; 

iii) i f  x < 0 = ~ then co(x) = cooe I'/T~d(x'z~ where E0 is a suitable hyper- 

surface of  zero intrinsic curvature; 

iv) i f  x < 0 < ~ theno)(x) = ~f-~ sinh ( l~r~d(x, E0))where E0 isasuitable 
totally geodesic hypersurface; 

v) i f  ~c < 0 > ~ then co(x) = V/~ cosh ( l~/T-~d(x, xo)), xo c B. 

Proof. This is a specification of Thm. (3.4) with the aid of the formula (3) for 
the sectional curvature of a warped product. [] 

After studying the geometry implied by the system (4) in Theorem 3.4 we now 
turn back to the case of warped products: thus we are going to specify the setting 
of  Theorem 3.4 to the base (B, g~) of a warped product. The only difference is 
that now we must impose co ~ 0. 

We can apply Corollary 3.5 (with (B, gs) playing the role of (N, g) in the 
statement) to the classification of warped product where M has sectional curva- 
ture ;4 (and hence B as well): we will have to restrict co to the maximal connected 
set where it never vanishes. 

Corollary 3.6 The possible simply-connected M = B xo) F with constant 

sectional curvature ~c are in Table 1: they are complete manifoM iff both factors 
in the table are. In the cases where M is not complete, no completion is possible 
preserving the structure o f  warped product. 
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3~ 

~ = 0  

yc>0  

yc<0  

~c<0 

yr  

M co 

M 0 = R b xco N f  W(X) = cost ~=0 
[9>0 Mf  : (R•215  R b- l )  • f (1/~/~) 

~ > 0  M f  = (sb (1/~J'~))• Xo, S f  (1/~f~) 

~ > 0  M f  = (H b (1~/I~/T~)) ~: • S< (1/~/~) 

~ < 0  M 4 : H b ( 1 /  ] ~ [ ) x w H f  ( 1 / ~ l )  

~? = 0 M 5 = R X (o R b+ f -1 

w(x) =<  a, x > +x 0 and Ilal[ 2 = 

o~(~) = ,/~/xcos (J~d(~, xo)) 

oJ(x) = ~ sinh (~/~d(x, EO)) 

= xo)) 

ff)(t) = cooe l'/~t 

Table 1: The possible warped products with curvature :4 and fibers with curva- 
ture [). The superscripts 4- means the maximal connected regions of the manifold 
where co has signum 4- (e.g. (S b (1 / ~/-~)) • are hemispheres or radius 1 / ~ ), 
and H b (1/[~/T-~) means the simply-connected hyperbolic space with sectional 
curvature - I xl. 

4 Einstein warped products 

An Einstein warped product is a warped product M = B x~o F whose metric 
g is Einstein: p = )~g. In order to avoid trivialities we will assume that the 
dimension of B is greater than one. 

By (2) the equation p = )~g now reads 

p ' ( x ,  Y) =  gB(X, Y) + f H (X, r )  
co (7) 

p F  ( v ,  W )  : ()~ -Jr- co#)coZ gF(V, W). 

Proposition 4.1. I f  (M, g) is an Einstein manifold with p = )~g then (F, gF) 
is Einstein and the following equation is satisfied 

(~ ~- 09#) ~ = ~'F, 

where )~ F is a suitable constant. 

Proofi This follows from the above formulae and the fact that the Ricci tensor 
PF and gF depend only on the point in F while the expression in brackets on the 
point in B. [] 

The Hessian H c~ of co and the Ricci tensor PB have the same eigenspaces, 
while their eigenvalues are related by 

- - c o  c o-(H '~ r )~i c o(pB). 
f 
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For fixed gB and gF, it is possible that there are no co's which are solutions of  

the above system. In fact, (7) gives a constraint on the Riemannian curvature of  

B. A computation similar to that of  Remark 3.3 shows that the compatibility of  

the tensor equation (7) is equivalent to 

)~ 1 B 
Rxvze  =~.fgB(~g,B(X, Y, Z, ~)  + 7{gB(X,  ga)pB(Y, Z) - 

- gB(Y, ~)pB(X,  Z) + -COVxPB(Y, Z) + COVypB(X, Z)}. 

This situation is too general for the purpose of  a first classification so we will 

consider the case where B is Einstein as well. Then we have some relations 

between the Einstein constants of  M, B and F:  for instance, if we want that M 

has Einstein's nonvanishing )~ then B is not flat, otherwise we have the equation 
H o0 _- )~ -7cogB which has only the null solution (apart from the trivial case when 

the dimension of  B is one). Furthermore, it is possible to give nontrivial Einstein 

warped products, whose curvature is not constant. 

E x a m p l e  1. Let  B be a manifold with constant curvature ~c, choosen in Table 

1, and let co be the corresponding function satisfying the equation (4). 

Take F Einstein with )~F = ~ ( f  - 1). Then M = B X~o F is an Einstein manifold 

with )~ = ~(n  - 1). In fact, a direct computation shows that 

p(X,  Y) = pB(X, Y) -- f---H'(X, Y) = ~(b + f - 1)gB(X, Y) = 
(29 

---- ~ (n  - 1)g(X, Y); 

D ( V ,  W )  = p F ( v ,  W )  - g ( V ,  W ) c o  # = ( ~ ( f  - 1)o9  - 2  - co#)g (V ,  W )  -= 

= ( ~ ( f  _ 1)co- 2 Aco ( f  - 1 ) ~ ) g ( V ,  W) = 
co co~ 

= (t~(f -- 1)09 -2 + a4b - D( f  - 1) ~ - x ( f  - 1))g(V, W) = 

= x ( n  - 1)g(V, W). 

The case in this example is quite paradigmatic of  the situation in view of  Theorem 

3.4 which classified the manifolds with nontrivial solutions of  H ~~ = - ~ c o  g. 
More generally we have 

Propos i t ion  4.2. I f  M = B xo~ F is Einstein with both factors Einstein then 
either 

i) co is constant and then )~B -= )~ and co = Z/~F or 
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b - l~ ,  ii) 0) is nonconstant and )~B = ~ �9 In this case B = I x~ Eq with I C R 

and Nq = co -1 (q) (q regular value for  0)) is Einstein with constant 

(b - 2) x 
]~ - -  . > ~ q 2  " 

P r o o f .  We only have to prove the relation between the Einstein's constants; the 

rest of  the proof  is an application of  Theorem 3.4. 

Letting :d -- ()~ - ~ ) / f ,  it follows f rom equations (7) that the function 0) 

must  satisfy 

A0) = - x b 0 )  
H ~176 = - ~ 0 ) g B  

X0) 2 -]- 1]~'2112 ~--- const  

()v "-~ 09#)0) 2 = 0) A0)  ~- ( f  - 1) l l fa l ]  2 + )v0) 2 = )v F = const.  

(8) 

Substituting the expression for the laplacian f rom the first into the second equa- 

tion we get the two scalar equations 

X - b x 0 )  2 q- Ilf2ll 2 _ XF 
f - - 1  f - - 1  

X0)2 q- ll~"2112 = :  i = const .  

Subtracting them we get 

[ )v__~ b x  x ]  0) 2 - )VF ~ = COnSt. 
f - -1  f - -1  

Hence 

& 2 7  
i) either 0) is constant and then f rom (8) we have 0) = ~/-~-  and f rom the 

tensor equation )~ = )~B or 

X - b x  b - 1  
i i )  - -  >c, which is the same as saying ),8 --  ), = (b - 1)~. 

f - 1  n - 1  

In the latter case, as we saw in Theorem 3.4 at least locally B = I xr  Zq with 

e~ satisfying 

(0t1)2 hY'~ - -  2470/2; 13/(0) = 1. 
b - zq2 
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Using formulae (2) with the substitution M = B, co = 0 /and f = b - 1 we 

compute (observe that, from the above, 0/" = - g o / )  

) ~  = 012( 0/# "~ ZB)  ~--" 0/0/" "71- (b - 2 ) ( d )  2 q- x ( b  - 1)0/2 = 

= (b - 2) [g0/2 + (0/,)2] _ (b - 2)b04 7 Q2 

This ends the proof. [] 

As we saw in the proof, compatibility between the tensor equation and the 

scalar one gives constraint on the values of  Einstein constants. 

Proposition 4.3. Let M = B xo~ F be a warped product (with co not constant) 

Einstein manifold with constant ;~ with both factors Einstein with constants )~B 

and )~F, respectively. Then, letting g l  :=  Co-2gB, (B, g~) is Einstein as well 
b-1 with constant lZB = -- f -1 )~e. 

Proof: The proof  is based on the formula of  the Ricci tensor of  the metric 
g~ = e2~gB given in [1] 1 

p l  = PB -- (b - 2 ) ( H  ~ - doe od0/) - ( A 0 / +  (b - 2)IIAII2)gB, 

where A denotes the gradient of  0/. In order to prove the Proposition, we substitute 

co = e-% We have, for the gradient and the hessian, 

~2 = - w A ;  

H ~ = w ( d a  o dot - H~);  

These relations imply that 

do) = -cod0~; 

ACO = co( [ JAi l  2 - A 0 / ) .  

H ~~ Aco [Ig2[I 2, 
p l = p + ( b _ 2 )  co + (  co -- ( b - - 1 ) - - ~ - ) g B .  

From the equation H ~ = - ; 4  co gB and recalling from Proposition 4.2 that 

)~ b - 1  
) c -  )~B -- - - ) ~  = ( b -  1)~, 

n - l '  n - 1  

1This formula is not strictly the same as in [l], since the definitions of  the Laplacian have different 
sign. 
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we get 

Ao9 1)11~112 
= - + - -  - ( b -  g .  = 

O9 092 J 

= (()~B - 2x(b - 1))o92 - (b - 1)11~112) g~ = 

= ( - ~ ( b -  1)o92 _ ( b -  1)11~112) gs- 

Thus the metric g~ is Einstein and the new constant #8 is given by 

/z8 = ( - x ( b -  1)o92 - ( b -  1)llS21l 2) - b - 1 
f _  1 ~'F 

It follows immediately that 

Corollary4.4. Under the assumptions of  Proposition ( 4.3 ) ( M , g) is conformal 
to (M, gl), where gl is the product g~ + gF; both g~ and gF are Einstein and 
their constants satisfy the relation 

b - 1  
~ B  - -  - -  )~F.  

f - - 1  

Such a result suggests a remark about the warped products with constant curva- 
ture. 

Remark  4.5. Let (M, g) have constant curvature equal to x. Then the confor- 
mal metric gl _= co-2g = g~ + gv is the product of two metrics with the opposite 
constant sectional curvature: 

R1 = o9-2 gB~g,B -- g B Q  H'~ - dol o dot + ~l[All2 g~ = 

= 0 9 - 2 (  247 ( 1 ['S2IIa "~'~ 

= --1~ \ ~  ( l la l l2  ) 1 ~ 1~ 1 
+ J< g s ~ g 8  - ~ o 9 4 g s ~ B  = -~gBQg~"  

A natural question is whether these kind of Einstein manifolds can be both 
warped-products and geodesically complete. More generally we will consider 
what are the necessary conditions for the existence of a complete Einstein man- 
ifold (M, g) such that it possesses an open maximal subset M0 ~ M isometric 
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to a warped product 34o --~ B x~ F (both factors Einstein). We will see that in 
some cases the condition imposes constraints on the curvature of B, F or both. 

In the trivial case when co = V/-2-/)~F (and ;4 = 0) the manifold is just a direct 
product of Einstein manifolds so that completeness is equivalent to completeness 
of  both factors. We consider this case as uninteresting and therefore we are going 
to exclude it from the following discussion. 

The necessary (and sufficient) condition to have M = M0 = B xo) F geodesi- 
cally complete and globally warped product, is that both (B, gB) and (F, gF) are 
complete and co never vanishes on B. Since the warping factor co must satisfy 
the system (4) then according to the relative signs of  ;4 = ~ and ~ = ~ its 

form is dictated by the expressions in Table 1. 
Thus we see that there are only three classes of cases in which co never vanishes 

on a complete manifold (B, gB) (and thus M0 = M): 

. ~. < 0 > )"F- In this case the critical locus of  co is not empty since 
co = ~-~-/;4 cosh(~/~de (x, x0)) for some x0 c B. From Yhm. 3.4 we 
know that g~ is of constant sectional curvature while (F, gF) c a n  be any 
complete Einstein manifold with the appropriate constant. 

. )~ < 0 = )~ .  Then (again from Thm. 3.4), (B, gB) must be a complete 

warped product itself of the form R Xexp( I,/~t~ E with Z complete and 
Einstein, while (F, gF) c a n  be any complete Einstein fiber (with constant 

XF). 

3. )~ = 0 = ~.F- Then co is a constant and (M, gM) is a direct product of 
complete Einstein manifolds (of zero constants). 

In the remaining cases (B, ge)  could not possibly be complete and have a never 
vanishing solution co. In these circumstances we consider M0 = B x ~o F where 
(B, gB) is a maximal open subset of a complete simply-connected manifold 
(B, g~) restricted to which co is not zero and satisfies the system H ~~ = -;4cog. 
In this case co (defined on B) can be extended to a smooth function (denoted 
by the same symbol) on M so that the boundary OMo = co-l(0). Under these 
circumstances we have: 

4. If)~ = 0 < )~F then B is itself a direct product IR~ x N for some complete 
Einstein (in this case) manifold E (see Thm. 3.4). In this case co is 
proportional to the geodesic coordinate t E N~_. A computation similar 
to that in Thin 3.4 for the sectional curvature of F (which plays the role 
of Z0 in said Thm.) shows that F must be of constant positive sectional 
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curvature. Indeed, for any two vertical vectors U, V e TxMo, the sectional 
curvature is 

F g~,g,~. V -I lco'( t) l l  2 
g u y  : 

co(t) 2 

(where t = t(zr(x)),  zr denoting the projection on B and cr the projection 
on F). If we parallel transport the two vectors U, V along the gradient of 
co (which generates a geodesic }, starting at x) they keep spanning the same 
two-plane in T~(x) F because they are simply rescaled, while cr (x) = a (g) 
is constant. By taking the limit t ~ 0 and from the fact that this limit 
must exist finite (since (M, g) is smooth), we obtain the constancy of the 
sectional curvature of F.  

Thus, assuming simply-connectedness of F, we have 

M ~ Mo = (IR+ x l~) x~o s f ( 1 / ~ ) .  

5. If Z > 0, then co must be the cosine of the distance from a fixed point 
x0 E B, i.e. co(x) = ~v/~COS(v/~d(x,  x0)) " then B is a hemisphere 
(Thm. 3.4). As above, considering the sectional curvature of (F, gF) in a 
neighborhood of co -1 (0) ~ M, we find that F too must be of positive con- 
stant sectional curvature (K  F = I~). Therefore M0 (and by continuity M 
too) is of positive curvature (a sphere if we assume simply-connectedness). 

6. If Z < 0 < ZF then co = V/~-/[.~I s i n h ( ~ d ( x ,  E0)) for  some totally 
- -  X 

geodesic hypersurface E0 ~-+ B. Then B = I~+ x ,  E0 (Thin. 3.4) 
where Z0 must be complete and Einstein. Here u - ~ IIS211B (i.e. it ,/~-,~ 
is a hyperbolic cosine). Again, smoothness of M at the boundary of M0 
implies that F is of constant positive sectional curvature. 

Concluding we see that -as anticipated- the requirement of completeness for 
(M, g) joint with the smoothness at the points of 0 M0 ~ M (in the setting above) 
"rigidities" the manifold M completely to be of constant sectional curvature in 
case (5) or rigidities the fiber F in cases (4) and (6). 
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