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Algebroid plane curves whose Milnor
and Tjurina numbers differ by one or two

Valmecir Bayer and Abramo Hefez!

Abstract. In this paper we describe all irreducible plane algebroid curves, defined
over an algebraically closed field of characteristic zero, modulo analytic equivalence,
having the property that the difference between their Milnor and Tjurina numbers is 1
or 2. Our work extends a previous result of O. Zariski who described such curves when
this difference is zero.
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1. Introduction

In this section we begin with some definitions so that we can introduce our
results. Let K be an algebraically closed field of characteristic zero, and let C
be an algebroid plane curve defined by an irreducible power series f such that
f and its partial derivatives fx and fy are in the maximal ideal of K[{X, Y]].
The local ring of C is

K[[X, Y]]
O = O = ———— K ’, s
! G [[x, ¥1]
and the Milnor and Tjurina numbers of C are, respectively,
. KX, Y]] ) K[[X, Y]]
C)y=di _— d C)=d —_—
WO =dimx = ey o O =dm

We define the nonnegative integer

r(C) = u(C) = v(C).

Received 21 February 2001.
Lpartially supported by PRONEX and CNPq.



64 BAYER AND HEFEZ

Two algebroid curves defined by f and g will be called analytically equivalent
if there exists a K-algebra isomorphism @y >~ O,.
To motivate our results, recall the following theorem due to Zariski [7]: Let

C be an irreducible algebroid plane curve. Then v (C) = 0, or u(C) = 7(C), if
and only if C is analytically equivalent to the curve Y" — X™, for two coprime
integers n and m greater than 1.

In particular, Zariski’s theorem suggests that the smaller » (C) the more special
the curve. The aim of this paper is to characterize, up to analytic equivalence,
the curves C for which r(C) = 1 or r(C) = 2. Our characterization is given
in Theorems 7, 12 and 17, below. Our method involves a refined analysis of the
module of differentials of the local ring of the curves.

In Section 2 we give some definitions and recall some results. We also estab-
lish, in Proposition 1, a lower bound on r (C) in terms of some integers associated
to C. Finally, we sketch a proof of a result, Proposition 2, due to Azevedo [2],
but unpublished; it is an essential ingredient in the proof of the converse in The-
orem 17. In Section 3 we prove, in Corollary 6, that, if (C) < 2,then g < 2
where g is the genus of C as defined in Section 2. Thus we have a severe con-
straint on the semigroup of C when its Milnor and Tjurina numbers differ by 1
or 2.

In Section 4 we describe all irreducible algebroid plane curves C with r(C) =
1. We show in Theorem 7 that »(C) = 1 only when g = 1, and that, up to
analytic equivalence, there is just one class of such C with given semigroup. In
Section 5 we treat the case r(C) = 2 and g = 2. The analysis is quite simple,
and in Theorem 12 we show that this case occurs only for C with very special
semigroups, and again that, for each semigroup, there is only one analytic class
of C. In Section 6 we treat the more involved case r (C) = 2 and g = 1. Finally,
in Theorem 17, we describe all analytic classes of these C.

2. Semigroups, parametrizations and differentials

Let O be the local ring of an irreducible algebroid plane curve C. Let O be
the integral closure of O, and consider its discrete normalized valuation v. The
value semigroup (or shortly the semigroup) of C is the semigroup of the natural
numbers, N, given by

S =v(0).

Lete =2 (g), where /(M) means the length of a module M, be the conductor
of C. Since C is assumed to be irreducible, it is well known that c is equal to the
Milnor number w(C) (see [6, Thm. 1]). Itis also characterized by the following

Bol. Soc. Bras. Mat., Vol. 32, No. 1, 2001



PLANE CURVES WITH HIGH TJURINA INVARIANT 65

arithmetical property (see [8, Prop. 1.2]):
c—1¢§ and c+nesl, Vn=>0.

The semigroup S is determined by its complement in N. The set N\ § is a
subset of [0, ¢ — 1], hence finite and its elements are called the gaps of S.

We denote by Od@ the module of differentials of O, that is, the @-module
generated by dx and dy, modulo the relation fxdx + fydy = 0. It is well
known (see [7]) that

O0do

r(C) = dimg ( 7 ) = #(v(0dO) \ v(dO)),
where v is the obvious extension of the valuation v of @ to Od®. Therefore, the
integer r (C) can be interpreted as the maximum number of linearly independent
nonexact differentials, modulo exact differentials.

Observe for future use that any element in v(OdO) \ v(dO) plus 1 is a gap of
S.

Since @ ~ K [[£1], we may represent C parametrically as follows:

x=1", y=t"+au "+,

where we may assume n < m, m is not a multiple of n, and the exponents n, m
and the j such that a; # 0 have no common nontrivial divisors. The valuation
v computes the orders of power series with respect to the parameter ¢.
Zariski’s curve X™ — Y" corresponds to the monomial curve
x=t", y=1".
There are two sequences (e;) and (f;) of integers, associated to an algebroid
plane curve C, defined in terms of a parametrization as follows:

eo = pPo=n,
B; = min{j; j £0mode;_; and a; # 0},
e = gcd{e,-q, ﬂ,}

It follows that §; = m. Since the relevant exponents in a parametrization of C
are coprime, there exists an integer g, called the genus of C, suchthate, | # 1
and e, = 1. The integers By, Bi, ... , B¢ are called the characteristic exponents
of C.

For example, the curve Y — X™ in Zariski’s theorem is of genus 1.
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66 BAYER AND HEFEZ

Let us define integers n; as follows: ng = landfori =1,..., g,
ei_1 = n;€;.

It follows from this definition thatn = n; - - - n,.

Zariski has shown in [8, Theorem 3.9] that the semigroup S of the curve C,
represented parametrically as above, is minimally generated by the set of integers
{vo, v1, ... , vg}, defined inductively by

v =n Vi + P —Biafori=1,...,¢

where v is the multiplicity # of C. For this reason the integer g is also called
the genus of the semigroup S.

It follows easily from the above formulas that v; = m (the same m in the above
parametrization), and this is the smallest element in S not divisible by n. It also
follows that

e; =gcd{e;q, vt fori=1,...,¢.

Since the B;’s may be determined by the v;’s through the above formulas,
it follows that the characteristic integers do not depend upon the particular
parametrization we have chosen for C.

It is well known (see [1, Lemma [.2.4]) that any integer # may be written in a
unique way as

t=t1U1+"'+IgUg—t0U0, (1)

where fy, ... , t, are integers such that 0 <, <n; —1fori =1,...,g. So,
with this representation, we have that ¢ € S if and only if £, < 0.
From the above relations among the integers v; and §; we get that

v, >nqvofori=1,...,¢. (2)
Since ¢ — 1 is the biggest gap in S, it follows easily from (1) that
c=(ng—Dvg+---+(n— Dvy —vp+ 1. 3)
If 7 (C) #£ 0, it is shown in [7] that the analytic invariant,
A =min (v(OdO)\ v(dOD)) —n +1,
1s such that

MAtnégSandv <A < B =v,—vi(n; —1). 4
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PLANE CURVES WITH HIGH TJURINA INVARIANT 67

Furthermore, C is analytically equivalent to a curve with a parametrization of
the form

x=1" y=1"+r 4.
From now on, we will refer to A as Zariski’s invariant.

We will assume from now on that 7 (C) # 0, and our curve C has a parametriza-
tion as above. For these curves, a nonexact differential with minimal value
A +n — 1is given by

o = mydx — nxdy. &)

Below we will always write

k:k1v1+---+)»gvg—kovo, (6)

where 0 < A; <n; —1,fori =1,..., g. Wehave that Ay > 2, since A &€ S and
At+né&S.

Proposition 1.  Suppose that r (C) # 0. With the above notation we have
r(C) = (ko — 1)(my — A1) -+« (ng — Ag).

Proof. Letz; € Osuchthatv(z;)) = v, i =1,...,g. With w as in (5), define
Wy = X227 .. .zgga),
where o = (v, . .. , &g) € N1 We then have
v(wg) = apn + vy + - -+ v, Fr+ A — 1
that 1s,
I +v(we) = (@ + 1 —2Ao)n + (ar + Ay + - -+ + (o + Ag)vg.

If we choose o = (ap, ... ,0rp) suchthatag+1—2p < 0, and 0 < o; + X; <
ni—1li=1,...,g,thenl+v(w,) € S, so w, will be a nonexact differential.
For this, it is enough totake 0 < op < Ag —2and 0 < o; < n; — A; — 1 for
i=1,...,g.

Since distinct @ = (ap, oy, ... , &), satisfying the above conditions give
distinct values for the differentials w,, it follows that there are at least

()"O - 1)(nl —)‘1) e (ng - )‘-g)

nonexact differentials, linearly independent over K modulo exact differentials.
The result is then established. 0

The next result will be useful below, and since we don’t have any accessible
reference for it, we include a sketch of its proof.
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68 BAYER AND HEFEZ

Proposition 2. [Azevedo [2]] We have the following equality of K-vector
spaces:
0dO = Ow +doO,

where w is as in (5).

Proof. It is not difficult to verify that given two series A, B € K[[X, Y]], and
two positive integers r and s, there exist G, C € K[[X, Y]] such that

Gx=A+4+rXC, Gy=B-sYC

(to determine G and C just integrate the first equation with respect to X and then
substitute the series G so found in the second equation).

Letn € OdO. Thenn = A(x, y)dx + B{(x, y)dy, where A(X,Y), B(X,Y)
arein K[[X,Y]]. fweputr =nands =m, andif G(X,Y) and C(X, Y) are
as above, then we have

dG(x,y) = Gx(x,y)dx + Gy(x, y)dy
= A(x, y)dx + B(x, y)dy + (nxdy — mydy)C(x, y)
=n—wC(x,y).
Hence,

n=Cx,yo+dGx,y) € Ow+dO. [

Proposition 2 immediately gives the next result (see also [8, Ch. V, Lemme
4.2]).

Corollary 3. Ifn € OdO\ dO and v(n) > v(w), then v(n) > v(w) + n, with
strict inequality if vixw) € v(dO).

We now state some criteria for eliminating parameters due to Ebey [3] and to
Zariski [8] (see [8, Ch. III, Prop. 1.2; Ch. IV, Lemme 2.6 and Prop. 3.1]).

If a;t®, with s > A and a; # 0, is a term of y in the parametrization of C, and
if one of the following conditions holds,

(EC1) s € §,or
(EC2) s +n =1Im,forsome!l € N, or

(EC3) s — A is in the semigroup generated by » and m,

then C is analytically equivalent to a curve with a parametrization of the same
form, but with g, = 0 and a; unchanged for i < s.
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PLANE CURVES WITH HIGH TJURINA INVARIANT 69

3. Constraints on the semigroup for low r(C)

In this section we show that if 7 (C) is small, then C must have a small genus g.
Suppose that 7 (C) # 0 and let A be Zariski’s invariant of C written as in (6).
Define the integer j as follows

Jj = max{i; A; # 0}
Since Ag > 2 and A > 0, we certainly have j > 1 and A; > 1. It follows that
A= Apvp A+ -+ A v + v — Aguy, N
and from Proposition 1 that

r(C) = (o— Dnjpr--ny. (&

n
Proposition 4.  With notation as above, we have r(C) > —.

nj
Proof. Case j — 1. From (8) we have

n
rC)=ny---ng= -
1

Case j = 2. a) Suppose A; > 1. From (4) and (7) we have

v — (n — Dvy = A > vy + v — Aovo.

If we write m_m with ged(m, ny) = 1, then the above inequality yields
n n

AoV = BV = mVp.
Hence Ay > m > ny, and therefore Ao — 1 > ny. From this and (8) we get

n
r(Cy>nn3---ng = _
: 2

b) Suppose A; = 0. From Proposition 1, we have
r(C) = ni(ny —Anz---ng > niny---ng = S
12
Case j > 3. From (4) and (7) we have

vy — (m1 — Dv1 = A = v; — Aguo.
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70 BAYER AND HEFEZ

Hence, in view of (2),

Ao = vj — v+ —Dvy>nj v 1 -ty
=M1 —Dvj g+ @1—v)+v1>nj 2 A0 + 1

>nj_2--'n1vo+v0.
Hence Ag — 1 > n;_; -+ - n;. From Proposition 1, we get
r(C)y>njo--mn;_1(n; —Ajn;---nyg
T
znl-unj_znjv]nj_,_]'--ng———;. O
j

Corollary 5. Ifr(C) # 0, then r(C) > 2571,

Proof. The assertion follows immediately from Proposition 4 because n; > 2
foralli =1,...,gandn =n;---ng. O

Corollary 6. Ifr(C) <3,theng <2,

Proof. If r(C) = 0, then g = 1 by Zariski’s result stated in the introduction.
If 1 < 7(C) < 3, then Corollary 5 implies 26~! < 3; whence, g < 2. O

4. Singularities with r(C) = 1

If r(C) = 1, then Zariski’s invariant X is well defined, and Proposition 1 gives

1=7r(C) = (Ao — D(n1 — A1). ®

Theorem 7. Let C be an algebroid irreducible plane curve with semigroup of
values S, and Zariski’s invariant A. We have that r(C) = 1 if and only S is
generated by two coprime integers n and m withn < m, and . = (n—1)m —2n.
In this case, C is analytically equivalent to the curve given parametrically by

x = tn’ y = m + t(n~1)m—2n.
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PLANE CURVES WITH HIGH TJURINA INVARIANT 71

Proof. Assume that #(C) = 1. From Corollary 53, it follows that g = 1. If we
denote by n and m, with n < m, the generators of S, we get from (9) that A = 2
and Ay =n—1. So
A=m—1Dm—2n.
Conversely, if S is generated by #n and m, and if A = (n — 1)m — 2n, then
Adn=m—-—1m—n=c—1,

where c is the conductor of the semigroup S, which shows that A+ is the biggest
gap of S. This implies that the differential w in (5) has the highest possible value.
Since  has the least value among the nonexact differentials, it follows that there
is no room for other linearly independent nonexact differentials modulo exact
- differentials. This proves that r(C) = 1.

In view of (EC1) and (EC2), we have just proved that r(C) = 1 if and only if
C has a parametrization of the form

¥ = tn, y = tm + bt(nal)m—2n,

where b € K isnonzero. Changing variablesviat = {f,x' = {"xandy =™y
with ¢ =272 — b we see we can take b = 1 in the above parametrization. [J

Our result shows that there is a severe constraint on the semigroup of an alge-
broid plane curve with r (C) = 1: it must have genus one. Furthermore, for every
such semigroup there is one and only one class, modulo analytic equivalence, of
algebroid plane curves with r(C) = 1.

Corollary 8. Let C be an algebroid irreducible plane curve. Then r(C) = 1
if and only if C is analytically equivalent to a curve determined by Y" — X™ +
X™2Y""2, where n and m are coprime integers greater or equal than two.

Proof. It is easy to show that the semigroup of the curve defined by the above
polynomial is generated by n and m. In view of the unicity statement contained
in Theorem 7, we have only to verify that this curve has A = (n — 1)m — 2n.
This follows from [5, Theorem 1.5, where we put s = A — m]. O

5. Singularities with 7(C) =2 and g =2

We shall assume in this section that 7(C) = 2 and g = 2. The case g = 1 will
be analyzed separately in the next section.
From Proposition 1, we have

0 < (o—Dr -2y —2) =r(C) =2. (10)
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72 BAYER AND HEFEZ
Lemma9. Ifg=2andr(C) =2, then (Ag — 1)(ny — h)(ny — Ay) = 2.

Proof. Supppose that (Ag — 1)(n; — A;)(n2 — A2) = 1. Then one should have
Ao =2,A =n; — land Ay = ny — 1. So from (4) we get that

(no— Do+ i — Dvy —2v90 =4 S vz — o1 — 1),
which yields the contradiction:
(n2 — Dvy +2(ny — vy < 2w,
sincen; —1>0,n, —1 >0, vy, v2 > vp. O

Note that in the present case we have from Proposition 4 that

mte _ "y 1)

n;j nj

We have the following result
Lemma 10, Ifg =2andr(C) =2, then j = 2.

Proof. Suppose that j = 1. From the definition of j we must have A, = O,
and from (11) we have that n, < 2, and since #n, > 2, it follows that n, = 2.

Since e; = nye; and e; = 1, it follows that e; = 2 and therefore our semigroup
S is of the form S = (2p, 2q, vy), with p < ¢, p and ¢ coprime, #n; = p and
vy > nyv; = 2pg. It follows, for some positive and odd integer d, that

S=(2p,2q,2pq +d).

The algebroid irreducible plane curves with such a semigroup S have been
studied by Luengo and Pfister in [4], where they prove that any such curve has
T(C) = c— (p — 1)(g — 1). Since in our case 7(C) = ¢ — 2, it follows that
p =2 and g = 3, and therefore S = (4,6, 12 + d).

Since n, = 2 and A, = 0, from inequality (10) it follows that Ay = 2 and
A1 =n; — 1 = 1. Hence we obtain the contradiction,

O<A=lv —Au=1x6—-2x4<0. O

From now on, in this section, we will assume j = 2, and therefore from (11)
we must have n; = 2.
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Proposition 11. Let g = 2 and r(C) = 2, then § = (4, 6, va), with v, odd,
vy > 13, and A = B = v, — 6.

Proof. From Lemma 9 and from the observation after Lemma 10, we know
that (Ao — 1)(n1 — A1)(ny — Ay) = 2, and n; = 2. So it remains to analyze the
few cases below.

CaseA) Ag=3,Ay=n;—1=1and Ay, =n, — 1. From (4) we have
(ny — Dy + v — 3y < vy — vy

From this inequality and from (2), for i = 2, we get that (2n, — 2)v; < 3wp.
This implies ny = 2 (= e1), s0 vp = n = niny = 4, and vy is even. In this
case the above inequality also gives 2v; < 12, hence v = 6.
Since vy > njvy, it follows that v, > 13. On the other hand,

A=+ Av; — AU = vy + v —3vg = v — 6 = Bs.

CaseB) 1 p=2,Ay =n; —2=0and A, = ny, — 1. From (4) we have
(ny — Dy —2up < vy — vy,

Therefore,
(ny — 2)va + vy < 2v.

Hence n, = 2, and v; < 2v9 = 2n = 8. Therefore v; = 6. On the other hand,
if A < B, then e; = 2 divides A. Since A = v, — 2vy, it follows that 2|v;, a
contradiction. Hence A = ;. Consequently,

A=vy—2v9=1v, — vy,

and therefore 6 = v; = 2vy = 8, a contradiction. So this case doesn’t occur.

Case C) Ao =2,A; =ny — 1 =1and A, = ny, — 2. This case also doesn’t
occur, because from (4) and (7) we get that

(n2 —2va+ v — 209 <A < v — g

Therefore,
(ny = 3)vy + 2v; < 2uy.

Hence n, = 2. So we have v; < A = v; — 2y, a contradiction. U
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Theorem 12. Let C be an irreducible plane algebroid curve C of genus g.
Then g = 2 and r(C) = 2 if and only if C is analytically equivalent to a curve
determined by the parametrization,

%

X 5':——'t4, y=t6+z‘ﬂ,
where 8 > 6 and B is odd.
Proof. This assertion follows from Proposition 11, and the classification of

curves with semigroup S = (4,6, v»). The classification is found in [8, pp.
49-57]. O

Corollary 13. Let C be an irreducible plane algebroid curve C of genus g.
Then ¢ = 2 and r(C) = 2 if and only if C is analytically equivalent to a curve
determined by (X% 4+ ¥3)? + XY #+3/2 for some odd integer B > 6.

Proof. This assertion follows from Theorem 12 and [4], where it is shown that
7(C) = 2 for the curve (X2 + ¥3)? + Xy #+3/2, -

6. Singularities with »(C) =2and g = 1

In this section we study the curves C such that r(C) = 2 and g = 1, thereby
concluding the description of all irreducible algebroid plane curves with
r(C) =2.

Suppose that #(C) = 2 and g = 1. From Proposition 1 we get

2=r(C) = (Ao — D(n — Ay).
Hence there are three cases to consider.
CaseA’) Ao =2 and A; = n — 1. In this case,
A= (n— Dv; —2uvy,

and from (3),
c=mn—Dvy —vy+ 1.

Hencec—A =vy+1=n+1,s0c = A+ n— 1. In this case, there is no room
for a nonexact differential other than w; therefore, this case doesn’t occur.
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PLANE CURVES WITH HIGH TJURINA INVARIANT 75

Case B) Ag =3 and A; = n — 1. In this case,
A=@m—Dv —3vy=@mn—1)m—3n,
and from (3),
c=m—Dvyy—vw+1l=Ow—-—1)m—n+1.

The only gaps of S atleast v(w) + 1 are (n — 1)m — 2n and (n — 1)m — n, and
they correspond to the differentials w and xw. Therefore, we have just proved
that all the curves C with Zariski’s invariant A = (n — 1)m — 3n are such that
r(C) = 2. Furthermore, each such curve is analytically equivalent to some
member of the family

x = tn, y = m + tk + atk+2n—m + btk—kn + Ctk+2n’

witha = 0, if m > 2n. Now, using the criteria for eliminating parameters stated
in Section 2, we get that C is analytically equivalent to the curve given by

x=1t", y=1"+1"
Case C') 4o —1 = 1andn — A = 2. In this case,
A=m—-2v —2v9=mn—2)m —2n, (12)
and
c=m—Dvy—v+l=m-1m—n+1.
Together, Equation (12) and the inequality A > m imply that n > 4 and that
m > 2n/(n — 3). So the curve is given by a parametrization of the type
x=t", y=t"+t"+at*+-..,
where 1 and the higher exponents of ¢ are gaps of § above A, and are of the type
(n—2)m —n,or(n—m — jn, 1 <j<[2]+1.
By (EC2) the term of order (n — 2)m — n, in the above parametrization, may
be eliminated, yielding the curve
x=1" y=1" 4TI gt a4 (13)

where w; = (n — )m — jin for j; € {1,...,[%]+ 1}. Now, we may assume
that j; > 3, because if j; < 2, by (EC3), the curve (13) is reduced to the case
J1 = 3, or to the case a; = 0 for all i, which will be studied later as a limit case.
Conversely, the curves determined by the parametrizations (13) haver (C) > 2,
because w and yw are nonexact differentials with distinct values.
The following two lemmas will tell us which curves given in (13) must be
excluded since they have r(C) > 3.
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Lemma 14, Let n and m be coprime integers such that n > 5 and m >
2n/(n — 3). Let C be a curve given by (13) with j1 > 4 and a; # 0. Then
r(C) = 3.

Proof. We will show that in this case the differentials @, yew and
o =mxw —n(m — Ay dy,

are nonexact linearly independent over K, modulo exact differentials. To do so,
itis sufficient to show that the value of «’ plus 1 is a gap distinct from (n —2)m —n
and (n — 1)m — n.
A direct computation gives
o = {aymn(m — p)r* 7 — n(m — WA+ m(n — 3)]m0 I
—n(m — Vay[py + (n — 3t
—n(m — A)(n = 3)[A + m(n — 4) /2] D21
—n(m —2)(n =31 + A +mn — 4)]a O
+ mn(m — p2)ayt® 2N — n(m — W)z + m(n — 3layt" @I+
—n(m = )@ = 3)[u1 + m(n — 4)/2]ajr" P
—n(m —A)(n—3)[p2 + A +mn — eVl Ay,

where the above terms are not necessarily in strictly increasing order.
Sincen > 5and m > 2n/(n — 3), we have

V@) +1=p +2n=(—Dm— i —2n,
a gap distinct from (n — 2)m — n and (n — 1)m — n, proving the result. O

Lemma 15. Let m > 8 be an integer coprime with n = 4. Let C be a curve
given by (13), with a; # 0. Then r(C) > 3 if either

O =3 or @Qi)j>5 or (ii)j1 =4 and a; # 3m —8)/2m.

Proof. Here the differential »’ considered in the proof of Lemma 14 becomes

o ={4aim(4ji — 2m)e>" T 4 4 — 8)(3m — )"0
+16(m — 8)(m — jp)ayt*™ /71 4 8(m — 8)(m — )™ 10 4. Ndt.
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(i) Let j; = 3. Then,

o ={4(m — 8)(3m — 8)™ 7 + 8aym(6 — m)r’"
+ 16(m — 8)(m — 3)at* "> + 8(m — 8)(m — )"0 4 ... }ar.
In this case, since m > 8, wehave v(w') = 3m—9. Sov(w)+1 = (n—1)m—2n,

which is a gap different from v(w) + 1 = (n — 2)m — n and from v(yw) + 1 =
(n — 1)m — n. Therefore r(C) > 3.

(ii) Let j; > 5. Then v(w) = 3m+7—4j; thatis, v(@)+1 = (n—D)m—(j; —
2)n is a gap different from v(w) + 1 and from v(yw) + 1. Therefore r (C) > 3.

(iii) Suppose j; = 4. In this case,
o' ={4(m — 8)[(3m — 8) — 2a;m]t>"~° + 16(m — 8)(m — 4)a """
+8(m — 8)(m — Ht" 10 ... Ydr.
If moreover, a; # (3m — 8)/2m, then v(w') = 3m — 9 (recall that m > 8).

Therefore, v(@') + 1 = (n — 1)m — 2n is a gap different v(w) + 1 and from
v(yw) + 1. Hence, once again, r(C) > 3. O

So if the curve in (13) is such that # (C) = 2, then we must have either
(@ n>5and ; = (n — 1)m — 3n, or
b)) n=4,pu =®m—1Um—4n,and a; = B3m — 8)/2m.

In Case (a), by (EC3), the other terms 1% fori > 2 may be eliminated, yielding
a curve with a parametrization,

x=1" y=1q" 4072 gy (14)

where a € K.
In Case (b), by (EC3), the terms #* for i > 3 may be eliminated, yielding a
curve with a parametrization,

3m — 8
x:ﬁ,yzﬂq4M4+l%_ﬁm+mM, (15)
m

where o =3m — 12 anda € K.
Conversely, we have the following result.
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Proposition 16. Let n and m be coprime integers such that n > 4 and such
that m > 2n/(n — 3). Let C be a curve given either by

(i) Parametrization (14), withn > 5 and p = (n — 1)m — 3n, or by
(ii) Parametrization (15), with uy = 3m — 16 and @, = 3m — 12.

Then r(C) = 2.

Proof. Ineither case, it is sufficient to prove the result for a 7 0; indeed, since
r{C) is semicontinuous, it will follow that 7 (C) < 2ifa = 0. Now, r(C) # 0, 1
because of Theorem 7 and Zariski’s result stated in the introduction.

We have to show that there isn’t any differential in @d @ whose value plus one
is different from v(yw) + 1, and is a gap of S between (n — 2)m —n and c — 1.
These gaps are of the form /; = (n — 1)m — in, where 1 <i <1+ [m/n].

Suppose @’ € OdO is such that v(e') + 1 = I;. By Proposition 2 we may
write

o = gw +dh, (16)

for some g, n € O. Now, in view of the representation of the curve C given
in (14) or (15), the Cartesian equation of C is in Weierstrass form. So by the
Weierstrass Division Theorem, we may write any element of @ in the form,

Ag(x) + A1 (X)y + -+ Apr ()Y,

where, because of the uniqueness of the representation of an integer in the form
(1), two distinct monomials in this expression have distinct values.

If x*y? is not in the set {y, x, x2, ... , x?} where ¢ = [m/n], then all terms
of the form x*y?w will have values above c. Also because we are looking for
differentials «’ such that v(w') # v(yw), and the higher terms in yw have values
above c, it follows that modulo d©® we may assume g is a lincar combination,
with coefficients in K, of x, x2, ... , x9.

Suppose now that (i) holds. Then by (16) we have

W = (it + b +d (Y cupry?), (17)

for some by, ...by, and co p In K.
Let k be the least integer such that b, # 0, and consider the expression

xka) — }’l(l’l _ )\‘)t(n—Z)m+(k—1)n~I —I-an(m _ M)t(nfl)m-i—(k—Z)n*I‘
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Suppose that k = 1. Since (n — 2)m + (k — 1)n € S, the only possible
value of &’ plus one is the only gap left, that is, (n — 1)m — n. But in this case,
V(') = v(yw).

Suppose that k > 2. Since, (n — 2ym +(k — D)n < (n — )m + (k — 2)n,
and both sides are in S, we see that the value of »’' may only come from a higher
order term of an expression dx®y?, for which@ =k — 1 and 8 = n — 2. Since,

ghlyn=2 — = mrte=n (N[ DA =D gy =Smetnt Gy gL

it follows that all higher terms of dx*~!y"~2 have value greater than c.
Suppose now that (ii) holds. Let k be an integer such that 1 < k < ¢. In this
situation we have

4
ka — {4(8 _ m)t2m+4(k_l)_1 + _(3m . 8)(8 _ m)t3m—|-4(k—3)—1
m
+8a(6 — m)r>" D4y,
If k > 3, then plainly x*® is an exact differential. So we may write (17) as
o = (bix + byx®)w + d(z ca,ﬂx"‘yﬂ).
Therefore,
/ 2m—1 4 3m—9
w ={4b1(8 —m)2 ! 4 b 2 Bm — 8)(8 — m)™ )
m
4 3m—5 o B
+ (861a(6 — m) + by —(3m — 8)(8 — m)r }dt + d(z Cap X%y )

Looking at the above expression, we see there must exist a term in the sum-
mation Y ¢, px*y? such that the value of dx®y? will cancel the term of order
2m — lin &'. So for this term, 8 = 2 and o = 0.

Since

dy? = {2mz2m—1 +2G3m — 8)r°

+ (3'" — 8(4m -8+ (2m — 8)>t4m17 + - }dt,
m

we have

20,8 =m) o

v ((blx + byxHow —
m

) > v((b1x + byx})w).
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So

o ={ (8b1a(6 —m) + bzi—(l’am ~8)(8 — m))ﬁm—s

2b1(8 — m)
m

(=2m =9+ @m =)t Nar

for some h € O.

If m > 12,then3m — 5 < 4m — 17. Hence v(o') = 3m — 5 = v(yw) since
a # 0. So the proof is complete in this case.

Ifm =9o0rm = 11, thendm—17 < 3m—5. Hence v(w')+1 = 4(m—4) € S,
and the proof is complete in this case too. g

We have proved the following theorem.

Theorem 17. Let C be an irreducible algebroid plane curve. If g = 1 and
r(C) = 2, then there exist two coprime positive integers n and m withn < m
such that C is analytically equivalent to a curve with a parametrization either
of the form,

¥ = tn, y = " + t(n—l)m—Sn,

or of the form,

4 3m — 8t3m—16

x=t" y= e +l.2m—8 + _}_at3m—12,

2m
where m > 8 and a € K, or else of the form,

x = tn, y = tm 4 t(n—2)m—2rz xS at(nfl)m*Bn’

wheren > 5 and m > 2n/(n — 3) and where a is any element in K.
Conversely, any curve so parametrized has r (C) =2 and g = 1.

Corollary 18. Let C be an irreducible algebroid plane curve. If ¢ = 1 and
r(C) = 2, then there exist coprime integers m and n greater than 2 such that
either C is analytically equivalent to the curve,

X" —Yy" 4+ anZYm—S’
or C is analytically equivalent to some member of the following family of curves:

2+4[m/n]
Xn _ Ym + Xﬂ—3ym—2 + Z akxn~2YM7k
k=2

where, in this case, n > 4andm > 2n/(n — 3) and a; € K.
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Proof. This assertion follows from the theorem above and from [5, 1.5]. [J
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