
Nova S~rie 

BOLETIM 
DA SOCIEDADE BRASILEIRA DE MATEMATICA 

Bol. Soc. Bras. Mat., Vol.32, No. 1, 63-81 
�9 2001, Sociedade Brasileira de Matemdtica 

Algebroid plane curves whose Milnor 
and Tjurina numbers differ by one or two 

Valmecir Bayer and Abramo Hefez I 
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1. Introduction 

In this section we begin with some definitions so that we can introduce our 
results. Let K be an algebraically closed field of characteristic zero, and let C 
be an algebroid plane curve defined by an irreducible power series f such that 

f and its partial derivatives f x  and f r  are in the maximal ideal of  K [[X, Y]]. 
The local ring of C is 

K[[X, Y]] 
0 = Of  -- ( f )  -- K[[x, y]], 

and the Milnor and Tjurina numbers of C are, respectively, 

g [ [ x ,  Y]] K[[X, Y]] 
# ( C )  = dimK and r (C)  = dimK 

( f x ,  fY) ( f ,  f x ,  f r ) "  

We define the nonnegative integer 

r(C) = ~(C)  - r (C) .  
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64 BAYER AND HEFEZ 

Two algebroid curves defined by f and g will be called analytically equivalent 
if there exists a K-algebra isomorphism Of ~- Og. 

To motivate our results, recall the following theorem due to Zariski [7]: Let 

C be an irreducible algebroidplane curve. Then r(C) = O, or/z(C) = r(C), if 
and only if C is analytically equivalent to the curve yn _ X m, for two coprime 
integers n and m greater than 1. 

In particular, Zariski's theorem suggests that the smaller r (C) the more special 
the curve. The aim of this paper is to characterize, up to analytic equivalence, 
the curves C for which r(C) = 1 or r(C) = 2. Our characterization is given 

in Theorems 7, 12 and 17, below. Our method involves a refined analysis of the 
module of differentials of the local ring of the curves. 

In Section 2 we give some definitions and recall some results. We also estab- 
lish, in Proposition 1, a lower bound on r (C) in terms of some integers associated 
to C. Finally, we sketch a proof of a result, Proposition 2, due to Azevedo [2], 
but unpublished; it is an essential ingredient in the proof of the converse in The- 

orem 17. In Section 3 we prove, in Corollary 6, that, if r(C) < 2, then g < 2 
where g is the genus of C as defined in Section 2. Thus we have a severe con- 
straint on the semigroup of C when its Milnor and Tjurina numbers differ by 1 

or 2. 
In Section 4 we describe all irreducible algebroid plane curves C with r (C) = 

1. We show in Theorem 7 that r(C) = 1 only when g = 1, and that, up to 

analytic equivalence, there is just one class of such C with given semigroup. In 
Section 5 we treat the case r(C) = 2 and g = 2. The analysis is quite simple, 
and in Theorem 12 we show that this case occurs only for C with very special 
semigroups, and again that, for each semigroup, there is only one analytic class 
of C. In Section 6 we treat the more involved case r(C) = 2 and g = 1. Finally, 
in Theorem 17, we describe all analytic classes of these C. 

2. Semigroups, parametrizations and differentials 

Let 0 be the local ring of an irreducible algebroid plane curve C. Let 0 be 
the integral closure of O, and consider its discrete normalized valuation v. The 
value semigroup (or shortly the semigroup) of C is the semigroup of the natural 
numbers, N, given by 

S = v(O). 

Let c = 2l (~-), where l (M) means the length of a module M, be the conductor 
of C. Since C is assumed to be irreducible, it is well known that c is equal to the 
Milnor number/z(C) (see [6, Thm. 1]). It is also characterized by the following 
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PLANE CURVES WITH HIGH TJURINA INVARIANT 65 

arithmetical property (see [8, Prop. 1.2]): 

c - 1 r  and c + n 6 S ,  g n > 0 .  

The semigroup S is determined by its complement  in N. The set N \ S is a 

subset of  [0, c - 1], hence finite and its elements are called the gaps of  S. 

We denote by OdO the module of differentials of  O, that is, the O-module 

generated by dx and dy, modulo the relation f x d x  + f r d y  = 0. It is well 

known (see [7]) that 

(odo  = \ 
r(C) = dimK \ dO J 

where v is the obvious extension of  the valuation v of  0 to 0 d 0 .  Therefore, the 

integer r (C) can be interpreted as the maximum number of  linearly independent 

nonexact differentials, modulo exact differentials. 

Observe for future use that any element in v(OdO) \ v(dO) plus 1 is a gap of  

S. 

Since 0 _~ K[[t]] ,  we may represent C parametrically as follows: 

X ~ t n ,  y ~ t m -+- a m + l  t m + l  ~-  �9 �9 �9 , 

where we may assume n < m, m is not a multiple of  n, and the exponents n, m 

and the j such that aj ~ 0 have no common nontrivial divisors. The valuation 

v computes the orders of  power series with respect to the parameter t. 

Zariski 's curve X m - yn corresponds to the monomial  curve 

X = t n ,  y ~ t m .  

There are two sequences (ei) and (fii) of  integers, associated to an algebroid 

plane curve C, defined in terms of  a parametrization as follows: 

eo = fl0 = n, 

fii = min{j;  j ~ 0 mod el-1 and aj (= 0}, 

ei = gcd{ei 1, fli}. 

It follows that fil = m. Since the relevant exponents in a parametrization of  C 

are coprime, there exists an integer g, called the genus of  C, such that eg_ 1 ~ 1 

and eg = 1. The integers rio, ill, . . .  , fig are called the characteristic exponents 
of  C. 

For example, the curve yn _ X m in Zariski's theorem is of  genus 1. 
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66 BAYER AND HEFEZ 

Let us define integers ni as follows: no = 1 and for i = 1 . . . . .  g, 

e i _  1 ~ h i e  i .  

It follows from this definition that n = n l �9 �9 �9 rig. 

Zariski has shown in [8, Theorem 3.9] that the semigroup S of  the curve C, 

represented parametrically as above, is minimally generated by the set of  integers 
{v0, v l ,  . . .  , Vg}, defined inductively by 

Vi -~ n i - l  V i - i  q -  f i i  - -  f l i - 1  fo r /  = 1 . . . . .  g 

where v0 is the multiplicity n of C. For this reason the integer g is also called 
the genus of the semigroup S. 

It follows easily from the above formulas that Vl = m (the same m in the above 
parametrization), and this is the smallest element in S not divisible by n. It also 
follows that 

ei = gcd{ei_l, vi} for i = 1 . . . . .  g. 

Since the fli 'S may be determined by the v;'s through the above formulas, 
it follows that the characteristic integers do not depend upon the particular 
parametrization we have chosen for C. 

It is well known (see [1, Lemma 1.2.4]) that any integer t may be written in a 
unique way as 

t = t lVl  + . . .  + l gVg  - -  t oVo ,  ( 1 )  

where to . . . . .  tg are integers such that 0 < ti <_ ni - -  1 for i = 1 . . . . .  g. So, 
with this representation, we have that t ~ S if  and only if to _< 0. 

From the above relations among the integers vi and ~j w e  get that 

vi > n i - l V i - ~  for i = 1 . . . . .  g. (2) 

Since c - 1 is the biggest gap in S, it follows easily from (1) that 

C = ( r t g  -- 1)Vg -ff . - .  q- (rtl -- I)Vl -- VO q- l.  

If  r (C) # O, it is shown in [7] that the analytic invariant, 

(3) 

is such that 

), = rain ( v ( O d O )  \ v ( d O ) )  - n + 1, 

X, X + n r S and Vl < )~ ~ f12 = /32 - -  v l (n~  - 1). (4) 
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Fur the rmore ,  C is analy t ica l ly  equivalent  to a curve  wi th  a pa ramet r i za t ion  o f  

the f o r m  
x = t n, y = t m -I- t ~ + . . . .  

F r o m  n o w  on, w e  will  re fer  to ~ as Z a r i s k i ' s  invar iant .  

We will  a s sume  f r o m  now on that  r (C)  r 0, and our  curve  C has  a pa ramet r i za -  

t ion as above.  For  these  curves ,  a nonexac t  different ial  wi th  m i n i m a l  va lue  

)~ + n - 1 is g iven  by  

co = m y d x  - n x d y .  (5) 

B e l o w  we  will  a lways  wri te  

)~ = ~.11)1 "~- �9 �9 �9 -]- )~gVg - -  )~OPO, (6) 

where  0 < ~ i  <-~ n i  - -  1 ,  for  i = 1 . . . .  , g.  We have  that  )~o _> 2, s ince )~ r S and 

) ~ + n r  

P r o p o s i t i o n  1. S u p p o s e  tha t  r (C)  ~ O. With the a b o v e  n o t a t i o n  w e  h a v e  

r ( C )  > ()~0 - 1)(nl  - )~1) �9 �9 �9 (rig - -  ~ ,g) .  

P r o o f .  Le t  zi c 0 such that  V(Zi)  = Vi, i = 1 . . . . .  g.  With  co as in (5), define 

O9~ X ~ 0 Z ~  1 ~g ~-  �9 . . Z g  0),  

where  ol = (d0 . . . . .  ~g) c N g+l. We  then  have  

P ( O ) d )  ~-  13/07/ ~ -  O~lV 1 "-~ ' ' "  "~- I?lgVg "q- gl -~- t~ - -  l ;  

that  is, 

1 + v(co~) = (or0 + 1 - )~0)n + (C~l + )~1)vl + ' "  + (~g + )~g)Vg. 

I f  we  choose  ~ ---= (or0 . . . .  , C~g) such that  or0 + 1 - )~0 < 0, and 0 < c~i + )~i < 

n i  - -  1, i = 1 . . . . .  g,  then  1 + v(cod) r S, so cod will  be  a nonexac t  differential .  

For  this, it is enough  to take 0 < do < )~o - 2 and 0 < c~i < ni - -  )~i - -  1 for  

i = 1  . . . . .  g.  

S ince  dist inct  ~ = (or0, ~1 . . . . .  o@, sa t is fying the above  condi t ions  give 

dist inct  va lues  for  the different ials  cod, it fo l lows  that  there are at least  

( ) ~ o  - 1 ) ( n l  - ) ~ 1 )  �9 �9 �9 (ng - ,kg) 

nonexac t  differentials ,  l inear ly  independen t  over  K m o d u l o  exact  differentials .  

The  resul t  is then  establ ished.  

The  next  resul t  wil l  be  useful  below, and since we  d o n ' t  have  any access ib le  

re fe rence  for  it, w e  inc lude  a sketch o f  its proof .  
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Proposition 2. [Azevedo [2]] We have the following equality o f  K-vector 
spaces: 

OdO = Ow + dO, 

where (~ is as in (5). 

Proof. It is not difficult to verify that given two series A, B E K[[X, Y]], and 
two positive integers r and s, there exist G, C c K [[X, Y]] such that 

Gx = A + rXC,  Gr = B - s Y C  

(to determine G and C just integrate the first equation with respect to X and then 

substitute the series G so found in the second equation). 
Let ~/ 6 0 d O .  Then ~ = A(x,  y )dx  + B(x,  y)dy,  where A(X,  Y), B(X,  Y) 

are in K[[X, Y]]. If  we put r = n and s = m, and if  G(X,  Y) and C(X,  Y) are 

as above, then we have 

dG(x ,  y) = Gx(x ,  y )dx  + Gr(x ,  y)dy  

= A(x,  y )dx  + B(x,  y)dy  + (nxdy - mydy)C(x ,  y) 

= ~ - coC(x, y). 

Hence, 

rl = C(x,  y )w + dG(x ,  y) c 0o) + dO. D 

Proposition 2 immediately gives the next result (see also [8, Ch. V, Lemme 

4.21). 

Corollary 3. I f  o c OdO \ dO and v(O) > v(o)), then v(rl) > v(co) + n, with 
strict inequality if v(xw) ~ v(dO). 

We now state some criteria for eliminating parameters due to Ebey [3] and to 

Zariski [8] (see [8, Ch. IlI, Prop. 1.2; Ch. IV, Lemme 2.6 and Prop. 3.1]). 

I fast  S, with s > )~ and as ~ 0, is a term of y in the parametrization of  C, and 
if one of the following conditions holds ,  

(EC1) s ~ S, or 

(EC2) s + n = lm, for some l c N, or 

(EC3) s - )~ is in the semigroup generated by n and m, 

then C is analytically equivalent to a curve with a parametrization of the same 
form, but with as = 0 and ai unchanged for i < s. 
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3. Constraints on the semigroup for low r (C) 

In this section we show that if  r (C) is small, then C must have a small genus g. 

Suppose that r(C) ~ 0 and let )~ be Zariski's invariant of  C written as in (6). 

Define the integer j as follows 

j = max{i; )v i r 0}. 

Since )~o >_ 2 and ;~ > 0, we certainly have j > 1 and )~j > 1. It follows that 

~. >_ ~.lYl ~- . . .  --]- ~ . j _ l l ) j _  1 @ Uj - -  )~OVO, (7) 

and from Proposition 1 that 

r(C) >_ (~,o- 1)nj+l . . .ng.  (8) 

Proposition 4. With notation as above, we have r (C) > - - .  
nj 

Proof. Case j = 1. From (8) we have 

n 
r(C) > n 2 " "  n g  = - -  

n l  

Case j = 2. a) Suppose )~l >_ 1. From (4) and (7) we have 

v 2 - - ( n l  - - 1 ) V l  > ~ >  v2-~-Ol  - - ~ 0 v 0  . 

m m l  
If  we write -- 

n n 1 
with gcd(m 1, n 1) = 1, then the above inequality yields 

~.0U0 ~ /~lVl = m l V O .  

Hence )~0 > ml > hi ,  and therefore ),0 - 1 > nl .  From this and (8) we get 

/2 
r(C) >_ n l n 3 . . . n g  = - -  

n 2  

b) Suppose )~1 = 0. From Proposition 1, we have 

n 
r(C) > nl(n2 - - ) ~ 2 ) n 3 " "  . n g  > nln3." . r ig  = - -  

tl2 

Case j > 3. From (4) and (7) we have 

v2 - (nl - 1)vl > )~ > vj - )~oV0. 
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Hence, in view of (2), 

AOU 0 > Vj  - -  V 2 Ar (n 1 --  1)Vl > n j - - l U j - - i  - -  V2 -~ U1 

: ( n j _ l  - -  1)Vj-1 + ( V j _ l  - -  1)2) "-~ Vl > n j - 2 . . . n l V l  -q- Vl  

> n j _ 2 . - . n l v  0 + VO. 

Hence Z0 - 1 > n j - 2  �9 . .  nl.  From Proposition 1, we get 

r (C)  > n j - 2 , . ,  n l n j _ l ( n j  - A j ) n j + l  . .  n g  

n 
>_ n ~  �9 �9 �9 n j - z n j _ l n j + l  �9 �9 � 9  - -  

n j  

[] 

Corol lary 5. I f  r (C)  # O, then r (C)  > 2 g-1. 

Proof.  The assertion follows immediately from Proposition 4 because ni _> 2 

for all i = 1 . . . . .  g and n ---- n l �9 �9 � 9  [] 

Corol lary 6. I f r ( C )  < 3, then g < 2. 

Proof.  If  r (C)  = O, then g = 1 by Zariski's result stated in the introduction. 
If 1 _< r (C)  _< 3, then Corollary 5 implies 2 g-1 < 3; whence, g < 2. [] 

4. Singularit ies  with r ( C )  = 1 

If  r (C) = 1, then Zariski's invariant A is well defined, and Proposition 1 gives 

1 = r ( C )  > (A0 - 1)(nl - A1). (9) 

Theorem 7. Let C be an algebroid irreducible plane curve with semigroup o f  

values S, and Zariski's invariant Z. We have that r (C) = 1 i f  and only S is 

generated by two coprime integers n and m with n < m, and Z : (n - 1)m - 2n. 
In this case, C is analytically equivalent to the curve given parametrically by 

X = t n, y ~ t m q-  t ( n - 1 ) m - 2 n .  
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Proof .  Assume that r (C) = 1. From Corollary 5, it follows that g = 1. I f  we 

denote by n and m, with n < m, the generators of  S, we get f rom (9) that )~0 = 2 

and 3 . 1 - - - n - l .  So 

3~ = (n - 1)m - 2 n .  

Conversely, if  S is generated by  n and m, and if )~ = (n - 1)m - 2n, then 

) ~ + n  = (n - 1)m - n  = c -  1, 

where  c is the conductor of  the semigroup S, which shows that)~ + n is the biggest  

gap of  S. This implies that the differential co in (5) has the highest possible value. 

Since co has the least value among the nonexact  differentials, it follows that there 

is no room for other linearly independent nonexact  differentials modulo  exact 

differentials. This proves that r (C) = 1. 

In view of  (EC1)  and (EC2),  we have just proved that r (C)  = 1 if and only if 

C has a parametr izat ion of  the fo rm 

X ~ t n, y ~ t m -t- b t  (n -1 )m-2n ,  

where b c K is nonzero. Changing var iab lesv ia  r = ~t, x t = g"x and y t = ~my 
with ~ (~-2)m-2n = b, we see we can take b = 1 in the above parametrization. [] 

Our result shows that there is a severe constraint on the semigroup of  an alge- 

broid plane curve with r (C) = 1: it must  have genus one. Furthermore,  for every 

such semigroup there is one and only one class, modulo  analytic equivalence, of  

algebroid plane curves with r (C) = 1. 

C o r o l l a r y  8. Let C be an algebroid irreducible plane curve. Then r (C) = 1 

i f  and only if  C is analytically equivalent to a curve determined by yn _ X m + 
x m - 2 y  n-2, where n and m are coprime integers greater or equal than two. 

Proof .  It is easy to show that the semigroup of the curve defined by the above 

polynomial  is generated by n and m. In view of  the unicity statement contained 

in Theorem 7, we have only to verify that this curve has )~ = (n - 1)m - 2n. 

This follows f rom [5, Theorem 1.5, where we put s = 3. - m]. [] 

5. S ingular i t ies  w i th  r(C) = 2 and  g = 2 

We shall assume in this section that r (C) = 2 and g = 2. The case g = 1 will 

be  analyzed separately in the next section. 

From Proposit ion 1, we have 

0 < (3.0 - 1)(nl - )~1)(n2 - 3.2) _< r (C)  = 2. (10) 
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L e m m a  9. I f g  = 2 a n d r ( C )  = 2, then ()~0 - 1)(hi  - )~1)(n2 - )~2) = 2. 

P roo f .  Supppose  that ()~0 - 1)(nl  - )~1)(n2 - ;-2) = 1. Then  one should have 

)~0 = 2, )~l = nl  - 1 and ;.2 = n2 - 1. So f rom (4) we  get  that  

( n 2  - -  1 ) v 2  + ( h i  - -  1 ) V l  - -  2Vo = ;~ < V2 - -  V l ( n l  - -  1), 

which  yields the contradict ion:  

(n2 - 1)v2 + 2(n~ - 1)vl < 2v0, 

since n~ - 1 > 0, n 2  - -  1 > 0, vl, v2 > I)0. []  

Note  that in the present  case we  have f rom Proposi t ion  4 that 

We have the fo l lowing result  

n l n 2  n 
- -  _<2 .  (11 )  

n j  n j  

L e m m a  10. I f  g = 2 and r (C)  = 2, then j = 2. 

Proof .  Suppose  that j -= 1. F r o m  the definition o f j  we  must  have )~2 = 0, 

and f rom (11) we  have that n2 < 2, and since n2 ___ 2, it fol lows that n2 ---- 2. 

Since el = n2e2 and e2 = 1, it fol lows that el = 2 and therefore  our  semigroup  

S is o f  the fo rm S = (2p,  2q,  v2), with p < q,  p and q copr ime,  nl  = p and 

v2 > n 1Vl = 2pq .  It  fol lows,  for  some  posit ive and odd  integer d ,  that 

S = (2p, 2q, 2pq  + d). 

The algebroid  irreducible plane curves with such a semigroup  S have been  

studied by  Luengo  and Pfister in [4], where  they prove that any such curve has 

r ( C )  = c - (p  - 1)(q - 1). Since in our  case r ( C )  = c - 2, it fol lows that 

p = 2 and q = 3, and therefore S = (4, 6, 12 + d).  

Since n2 = 2 and )~2 = 0, f rom inequal i ty (10) it fol lows that ;~0 = 2 and 

)~1 = n l - 1 = 1. Hence  we  obtain the contradict ion,  

0 < ) ~ = ) ~ l v l - ) ~ 0 v 0 = l  x 6 - 2 x 4 < 0 .  []  

F r o m  now on, in this section, we  will assume j = 2, and therefore f rom (11) 

we  must  have n l = 2. 
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P r o p o s i t i o n  11. Let  g = 2 and r (C)  = 2, then S = (4, 6, v2), with I) 2 odd, 

v2>_ 13, a n d X = j 6 2 = v 2 - 6 .  

P r o o f .  F r o m  L e m m a  9 and f rom the observat ion after L e m m a  10, we  know 

that (X0 - 1)(nl  - ;~1)(n2 - )~2) = 2, and nl  = 2. So it remains  to analyze  the 

few cases below. 

C a s e A )  Xo = 3, Xt = nl  - 1 = 1 andX2 = n 2  - 1. F r o m  (4) we  have 

( n 2  - -  1 ) v 2  q-  Vl - -  31)0 _ I)2 - 1)1. 

F r o m  this inequal i ty  and f r o m  (2), for  i = 2, we  get  that  (2n2 - 2)vl  < 3v0. 

This implies n 2  = 2 ( =  el) ,  so v0 = n = nln2 = 4, and 1)1 is even. In  this 

case the above  inequal i ty  also gives 2vl  _< 12, hence  vl = 6. 

Since v2 > navl,  it fol lows that v2 > 13. On  the other  hand, 

X = ~ 2 u 2 - I - X I U 1  - ~ o V o = 1 ) 2 q - V l  - 3 V o = V 2 - 6 = f 1 2 .  

C a s e  B) X0 = 2, X1 = nl  - 2 = 0 and )~2 = n 2  - 1. F r o m  (4) we  have 

( n 2  - -  1 ) v 2  - -  2Vo _ V2 - -  1)1. 

Therefore ,  

( n 2  - -  2 ) v 2  + Vl ~ 2vo. 

Hence  n2 = 2, and vl < 2v0 = 2n = 8. Therefore  Vl = 6. On  the other  hand,  

if  ), < 132, then el = 2 divides X. Since X = v2 - 2v0, it fol lows that 21v2, a 

contradict ion.  Hence  )~ =/~2.  Consequent ly ,  

~. ~ V2 - -  2v0 = I) 2 - V l ,  

and therefore 6 = ol = 2v0 = 8, a contradict ion.  So this case doesn ' t  occur. 

C a s e  C)  )~0 = 2, X1 = nl  - 1 = 1 and X2 = n2 - -  2. This case also doesn ' t  

occur,  because  f r o m  (4) and (7) we  get  that 

Therefore ,  

( n 2 - - 2 ) v 2 + v l - - 2 v 0  < X <  Vz- -Vl .  

H e n c e  n 2  = 2. So we  have Vl 

(n2 - 3)v2 q- 2vl < 2v0. 

< 3. = vl - 2v0, a contradict ion.  [] 
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Theorem 12. Let C be an irreducible plane algebroid curve C of  genus g. 

Then g = 2 and r(C)  = 2 i f  and only i f  C is analytically equivalent to a curve 

determined by the parametrization, 

'~ t 6 x ~ t 4, y = + t ~, 

where ~ > 6 and 13 is odd. 

Proof.  This  asser t ion fo l lows f r o m  Propos i t ion  11, and the classif icat ion o f  

curves  wi th  s emig roup  S = {4, 6, v2). The  classif icat ion is found  in [8, pp. 

49 -57] .  []  

Corol lary 13. Le t  C be an i r reducible  p lane  a lgebro id  curve  C o f  genus  g. 

Then  g = 2 and r (C)  = 2 i f  and on ly  i f  C is analy t ica l ly  equivalent  to a curve  
de te rmined  by  (X 2 + y3)2 + Xy(~+3)/2, for  s o m e  odd integer  fl > 6. 

Proof.  This asser t ion fo l lows f r o m  T h e o r e m  12 and [4], where  it is shown  that  
r(C)  = 2 for  the curve  (X 2 + y3)2 q_ Xy(~+3)/2. [] 

6. Singularit ies  with r(C) = 2 and g = 1 

In this sect ion we  s tudy the curves  C such that  r(C)  = 2 and g = 1, thereby  

conc lud ing  the descr ip t ion  o f  all i r reducible  a lgebro id  p lane  curves  wi th  

r(C)  = 2. 

Suppose  that  r(C)  = 2 and g = 1. F r o m  Propos i t ion  1 w e  get  

2 = r(C)  > ()~o - 1)(n - )~1)- 

H e n c e  there are three cases  to consider.  

Case A/) )~0 = 2 and )~1 = n - 1. In  this case,  

)v = (n - 1)va - 2v0, 

and f r o m  (3), 

c = ( n -  1)vl - v0 + 1. 

Hence  c - 3~ = v0 + 1 = n + 1, so c = )~ + n - 1. In  this case,  there is no r o o m  

for  a nonexac t  differential  o ther  than w; therefore,  this case  doesn ' t  occur. 
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Case  B )  )~0 = 3 and ~ 1  = n - -  1. In this case, 

)~ = (n - 1)vl - 3v0 = (n - 1)m - 3n, 

and f rom (3), 

c = ( n - 1 ) V l - V 0 + l = ( n - 1 ) m - n + l .  

The only gaps of  S at least v(co)  + 1 are ( n  - 1)m - 2n and (n - 1)m - n, and 

they correspond to the differentials co and xco. Therefore,  we have just  proved 

that all the curves C with Zariski 's  invariant )~ = (n - 1)m - 3n are such that 

r ( C )  = 2. Furthermore,  each such curve is analytically equivalent to some 

member  of  the family 

x = t ~, y = t m + t ~ + a t  ) ~ + 2 n - m  + b t  z+n + c t  z+2n, 

with a = 0, if  m > 2n. Now, using the criteria for eliminating parameters  stated 

in Section 2, we get that C is analytically equivalent to the curve given by 

X = t n,  y = t m + t )~. 

Case C') 

and 

)~0 -- 1 = 1 and n - )~1 = 2. In this case, 

) ~ = ( n - 2 ) v l - 2 v 0 = ( n - 2 ) m - 2 n ,  (12) 

c : (n - 1)vl - v0 + 1 = (n - 1)m - n + 1. 

Together, Equation (12) and the inequality )~ > m imply  that n > 4 and that 

m > 2 n / ( n  - 3). So the curve is given by a parametrizat ion of  the type 

x = t ~, y = t m + t ~ + a t  ~ + �9 �9 �9 , 

where /x  and the higher exponents of  t are gaps of  S above ),, and are of  the type 

( n - 2 ) m - n ,  o r ( n - 1 ) m - j n ,  1 < j  < [ m ] + l .  

By (EC2) the term of  order (n - 2)m - n, in the above parametrization, may  

be eliminated, yielding the curve 

x = t n y • t m -+- t ( n - 2 ) m - z n  q- a l t  ~ + a2 t  ~2 + �9 �9 �9 , (13) 

where /z i  = (n - 1)m - j i n  for j i  c {1 . . . . .  [~]  + 1}. Now, we may  assume 

that j l  > 3, because if j l  < 2, by  (EC3),  the curve (13) is reduced to the case 

j l  >__ 3, or to the case ai = 0 for all i, which will be studied later as a limit case. 

Conversely, the curves determined by the parametrizations (13) have r (C) _> 2, 

because co and yco are nonexact  differentials with distinct values. 

The following two lemmas  will tell us which curves given in (13) must  be 

excluded since they have r ( C )  >_ 3. 
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Lemma 14. 
2 n / ( n  - 3). 

r ( C )  > 3. 

L e t  n a n d  m be c o p r i m e  in tegers  such  tha t  n > 5 a n d  m > 

L e t  C be  a cu r ve  g i ven  by  (13)  w i t h  j l  > 4 a n d  al  # O. Then  

Proof. We will  show that  in this case  the different ials  co, yco and 

o f  = mxo~ -- n ( m  -- ) O y n - 3 d y ,  

are nonexac t  l inear ly  independen t  over  K ,  m o d u l o  exact  differentials .  To do so, 

it is sufficient to show that  the value o f  w'  plus 1 is a gap dist inct  f r o m  (n - 2 )m - n 

and (n - 1)m - n. 

A direct  compu ta t i on  gives 

co' = { a l m n ( m  - t~ l ) t  2~+~1-1 - n ( m  - )0[)~ + m ( n  - 3)]t  m(~ 3)+~-1 

- n ( m  - )~)al [/.1 + (n - -  3 ) ] t  m ( n - 3 ) + u l - 1  

- n ( m  - )O(n - 3)[)~ + m ( n  - 4 ) / 2 ] t  m(n-4)+2z-1 

- n ( m  - )~)(n - 3)[/Zl + )~ + m ( n  - 4 ) ] a l t  m(~-n)+z+u~-I 

+ m n ( m  - / . 2 ) a 2  t z n + u 2 - 1  - n ( m  - ~.)[/.2 + rn(n - 3 ) ] a z t  m(n 3)+~2-1 

- n ( m  - )O(n -- 3)[/.1 + m ( n  - 4 ) / 2 ] a Z t  m(n-4)+2m-1 

- n ( m  - )O(n - 3)[/*2 + )~ + m ( n  - 4)] t  m(~-4)+z+u2-1 + . . -  }d t ,  

where  the above  te rms  are not  necessar i ly  in strictly increas ing  order. 

Since n > 5 and m > 2 n / ( n  - 3), we  have  

v(co') + 1 = / . 1  + 2n = (n - 1)m - ( j l  - 2)n,  

a gap  dist inct  f r o m  (n - 2 )m - n and (n - 1)m - n, p rov ing  the result.  []  

L e m l n a  15. L e t  m > 8 be  an  in teger  c o p r i m e  w i th  n = 4. L e t  C be  a curve  

g i ven  by  (13), wi th  al  # O. T h e n  r ( C )  > 3 i f  e i ther  

(i) j l  = 3, or  (ii) j l  --> 5, or  (iii) j l  = 4 a n d  a l  # (3m - 8 ) / 2 m .  

P r o o f .  He re  the differential  co' cons idered  in the p r o o f  o f  L e m m a  14 b e c o m e s  

J = { 4 a l m ( 4 j l  - 2 m ) t  3m+7-4ji  + 4(m - 8 ) (3m - 8)t  3m-9 

+ 16(m - 8 ) (m - j l ) a l  t4 (m- jm)- I  -~- 8 ( m  - 8 ) ( m  - 4 ) t  4m 16 + . . .  }a t .  
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(i) Let  j l  = 3. Then,  

co' = { 4 ( m  - 8) (3m - 8)t  3m-9 + 8 a i m ( 6  - m ) t  3m-5 

+ 16(m - 8)(m - 3 ) a l t  4m-13 + 8(m - 8)(m - 4) t  r + - . -  }dt .  

In  this case, since m > 8, we  have v (co') = 3m - 9. So v (co') + 1 = (n - 1) m - 2n,  

wh ich  is a gap different f rom v(co) + 1 = (n - 2)m - n and f r o m  v(yco) + 1 = 

(n - 1)m - n .  Therefore  r ( C )  > 3. 

(ii) Let  j l  > 5. Then  v (co') = 3m + 7 - 4 j l  ; that  is, v (co') + 1 = (n - 1)m - ( j l  - 

2)n is a gap different  f r o m  v(co) + 1 and f rom v(yco) + 1. Therefore  r ( C )  > 3. 

(iii) Suppose  j l  = 4. In  this case, 

co' -----{4(m - 8) [ (3m - 8) - 2alm]t  3m-9 + 16(m - 8)(m - 4)al t4m-17 

+ 8(m - 8)(m - 4 ) t  4 m - 1 6  + . . .  }dr. 

I f  moreover ,  a l r  (3m - 8 ) / 2 m ,  then v(co') = 3m - 9 (recall that  m > 8). 

Therefore ,  v ( J )  + 1 = (n - 1)m - 2n is a gap different v(co) + 1 and f r o m  

v (yco) + 1. Hence ,  once  again, r (C) > 3. []  

So if  the curve  in (13) is such that r ( C )  = 2, then we  must  have either 

(a) n > 5 a n d / x l = ( n - 1 ) m - 3 n ,  or  

(b) n = 4 , / z l  = (n - 1)m - 4n,  and al  = (3m - 8 ) / 2 m .  

In  Case  (a), by  (EC3) ,  the other  terms t u1 for  i > 2 m a y  be el iminated,  y ie lding 

a curve with a parametr izat ion,  

x = t n, y = t m + t (n-2)m-2n q- a t  ~, (14) 

where  a E K.  

In  Case  (b), by  (EC3) ,  the terms t ~i for  i > 3 m a y  be el iminated,  y ie lding a 

curve  with a parametr izat ion,  

3 m  
x = t 4, Y = t m  + t2m_ 8 + -- 8 t~ 1 + atU2 ' (15) 

2m 

where /z2  = 3m - 12 and a E K.  

Conversely,  we  have the fo l lowing  result. 
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Proposition 16. Let n and m be coprime integers such that n > 4 and such 

that m > 2n / (n  - 3). Let C be a curve given either by 

(i) Parametrization (14), with n > 5 and # = (n - 1)m - 3n, or by 

(ii) Parametrization (15), with/z l  = 3m - 16 and/z2 = 3m - 12. 

Then r(C)  = 2. 

Proof .  In either case, it is sufficient to prove the result for a 7~ 0; indeed, since 

r (C)  is semicontinuous, it will follow that r (C)  < 2 i f a  = 0. Now, r (C)  ~ O, 1 

because of  Theorem 7 and Zariski's result stated in the introduction. 

We have to show that there isn't  any differential in OdO whose value plus one 

is different f rom v(yco) + 1, and is a gap of  S between (n - 2)m - n and c - 1. 

These gaps are of  the form li = (n - 1)m - in, where 1 < i < 1 + [m/n].  

Suppose co' ~ OdO is such that v(co') + 1 = l i .  By Proposition 2 we may 

write 

co' = go) + dh,  (16) 

for some g, h c O. Now, in view of  the representation of  the curve C given 

in (14) or (15), the Cartesian equation of  C is in Weierstrass form. So by the 

Weierstrass Division Theorem, we may write any element of  O in the form, 

A "x" n-1 A O ( x ) + A I ( x ) y + ' " +  n - ~  )Y , 

where, because of  the uniqueness of  the representation of  an integer in the form 

(1), two distinct monomials in this expression have distinct values. 

If x~y ~ is not in the set {y, x,  x 2, . . .  , xq} where q = [m/n],  then all terms 

of  the form x~yfco will have values above c. Also because we are looking for 

differentials co' such that v(co') ~ v(yco), and the higher terms in yco have values 

above c, it follows that modulo dO we may assume g is a linear combination, 

with coefficients in K,  of  x, x 2 . . . . .  xq. 

Suppose now that (i) holds. Then by (16) we have 

+ (17) 

for some bl . . . .  b q ,  and c~,# in K.  

Let  k he the least integer such that bk 7 ~ 0, and consider the expression 

Xkco = n(n - )~)t (n-2)m+(k-1)n-1 q- an(m -- Iz)t ('~ 1)m+(k-2)n-1 .  
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Suppose  that  k = 1. Since (n - 2 )m %- (k - 1)n ~ S, the only  poss ib le  

va lue  o f  co' plus one  is the on ly  gap  !eft, that  i s ,  (n - 1)m - n. Bu t  in this case,  

v(co') = v(yco). 
Suppose  that  k _> 2. Since,  (n - 2 )m %- (k - 1)n < (n - 1)m %- (k - 2)n,  

and bo th  sides are in S, w e  see that  the va lue  o f  col m a y  only  c o m e  f r o m  a h igher  

order  t e rm  o f  an express ion  dx~y ~, for  which  ot = k - 1 and/3  = n - 2. Since,  

x k - l y  n - 2  = t (n-2)m+(k-1)n %- ( n  - -  2)[t (n-3)x+(k-1)n %- a t  (n-3)m+~+(k 1)hi %- . . .  , 

it fo l lows  that  all h igher  te rms  o f  dx k-1 yn-2 h a v e  value greater  than  c. 

Suppose  n o w  that  (ii) holds.  Le t  k be  an integer  such that  1 < k < q. In  this 

s i tuat ion we  have  

4 xkco = {4(8 - m)t 2m+4(k-l)-1%- - - ( 3 m  -- 8)(8 - m)t 3m+4(k-3)-I 
m 

+ 8a (6  - m)t3m+4(k-2)-I }dt. 

I l k  > 3, then pla in ly  xkco is an exact  differential .  So we  m a y  wri te  (17) as 

Therefore ,  

co' = (blx + bzxZ)co + d ( ~  c~,~x~y~). 

4 
co' = 4b1(8 - rn)t 2m-~ + bl--(3m - 8)(8 - m)t 3m 9) 

m 
4 

+ ( 8 b l a ( 6 -  m) + b2m(3m - 8)(8 - + 

L o o k i n g  at the above  express ion ,  we  see there mus t  exist  a t e rm in the sum-  

ma t ion  ~ c~.~x~y ~ such that  the value o f  dx~y ~ will  cancel  the t e rm o f  order  

2m - 1 in co'. So for  this t e rm, /3  = 2 and oe = 0. 

Since 

[ 
dy 2 = 12mt2m-1 + 2(3m - 8 ) t  3m-9  

) J + (4m - 8) + (2m - 8) t 4m 17 %-. . .  dt, 

w e  have  

(blx + b 2 x 2 ) c o  2bl(8m-- m)dy2) > v ( ( b l X  + b 2 x 2 ) c o ) .  
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So  

4 
co' ={  (8b la (6  - m) + b2m(3m - 8)(8 - m))t3'n-5 

2b1(8_ m )  
( 3 m  - 8 ( 4  m _ 8 ) +  (2m - 8 ) I t  4m-17 + - - - I d t  + dh 

m \ m I / 

f o r  s o m e  h 6 0 .  

I f m  > 12, then 3m - 5 < 4m - 17. H e n c e  v(co') = 3m - 5 = v(yco) since 

a r 0. So the p r o o f  is comple t e  in this case.  

I f  m = 9 or m = 11, then 4 m - 1 7  < 3 m - 5 .  H e n c e  v (co ' )+  1 = 4 ( m - 4 )  c S, 

and the p r o o f  is comple t e  in this case  too. []  

We have  p roved  the fo l lowing theorem.  

T h e o r e m  17. Let C be an irreducible aIgebroid plane curve. I f  g = 1 and 

r (C) = 2, then there exist two coprime positive integers n and m with n < m 

such that C is analytically equivalent to a curve with a parametrization either 

o f  the form, 

or of  the form, 

x = t n, y = t m + t (n-1)m-3n, 

3 m  -- 8 

2m 
X = t 4, y = t m q- t 2m-8 + - -  

where m > 8 and a c K, or else o f  the form, 

t 3m-16 ~_ a t  3m-12, 

x = t ~, y = t m q_ t(n-2)m-2n _}_ at(n 1)m-3~, 

where n > 5 and m > 2 n /  (n - 3) and where a is any element in K. 

Conversely, any curve so parametrized has r (C) = 2 and g = 1. 

C o r o l l a r y  18. Let C be an irreducible algebroid plane curve. I f  g = 1 and 

r (C) = 2, then there exist coprime integers m and n greater than 2 such that 
either C is analytically equivalent to the curve, 

X n _ ym + x n - 2 y m - 3 ,  

or C is analytically equivalent to some member o f  the fol lowing family o f  curves: 

2+[m/n] 
X n _ y m  q_ x n - 3 y m - 2  _q_ ~ a k X n - 2 y m  k 

k=2 

where, in this case, n > 4and m > 2n / (n  - 3) and ak ~ K. 

Bol. Soc. Bras. Mat., Vol. 32, No. 1, 2001 



PLANE CURVES WITH HIGH TJURINA INVARIANT 81 

Proof. This assertion follows from the theorem above and from [5, 1.5]. [] 
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