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1. Introduction 

We investigate a special type of  rigidity for hypersurfaces of the 6-sphere. Our 
inspiration to tackle this problem came from a series of  three papers [10],[9] 
and [5] where holomorphic congruence of  hypersurfaces of  complex projective 
spaces is studied. 

Let g �9 M > M be an isometric immersion of  a Riemannian manifold 
M 2"-1 into a nearly Kahler m a n i f o l d ( M  n, J )  and let ~ be a normal vector field 
on the hypersurface M = g(M) of M. Then we can define on M a I t o p f v e c t o r  
field s and tensors q~ and A of type (1, 1), as follows 

g,~Jq : J~ (1) 

g,~(X) = J ( g , X ) -  < Jg, X,g > ~ (2) 

g.A(X) = - V x ~ .  (3) 

When M is a submanifold of  M and g is taken as the inclusion map then we 
denote these induced structures on the hypersurface M by ~, U, qS, A. In this 
case they are more simply expressed by 

u = J~,  (4) 

4)(x)  = J x +  < x ,  u > r (5) 
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We will make extensive use later on of some basic properties, listed below, of 
these induced structures. They are immediate consequences of the definitions 
above and the properties of the almost complex structure J .  We should also point 
out that they are also valid for the induced structures (s ~). 

q~2X = - X  -I- ( X ,  U ) U ,  ( 6 )  

(r q~Y) = (X, Y) - (X, U)(Y, U), (7) 

q~ is skew symmetric, (8) 

Ker({b) = span{U}, (9) 

~b : U j- --+ U • is a linear isometry, (10) 

(VxqS)Y = (AX, Y ) U -  (r, U)AX. (11) 

We say that M is a Hopf  hypersurface of M if the integral curves of U are 
geodesics of M, that is 

VuU = 0. (12) 

Berndt, Bolton and Woodward [1] have given a complete characterization of 
the Hopf hypersurfaces of the 6-sphere as tubular hypersurfaces around almost 
complex curves, these curves being fully classified in [3]. For the case of complex 
projective spaces the works of Cecil and Ryan [4] and Martins [7] give the 
caracterization of these hypersurfaces as tubes around complex submanifolds. 

We recall the vector cross product x obtained by identifying IR 7 with the 
imaginary part of the Cayley numbers �9 and defining u x v = ~m(uv)  where 
u, v 6 R 7 = ,~m�9 If M is an oriented hypersurface of N 7 with orientation 
determined by a choice of a unit normal vector field N, then M admits an or- 
thogonal almost complex structure J defined by J X  = N(p) x X, p c M and 
X e TpM. In the particular case where M is the unit sphere S 6 with its standard 
orientation, we identify the unit normal N(p) at p c S 6 with the vector p e N 7 
so t h a t J X = p x X ,  f o r p e S  6 and X e  TpS 6. Moreover, the t e n s o r J i s  
a nearly K~hler structure on S 6. 

The subgroup of the group S O (7) of isometries which preserve J is the ex- 
ceptional Lie group G2. Indeed, the group G2 is the group of isometries of R 7 

which preserve the vector cross-product. A G2-basis {el . . . . .  e7} for I~ 7 is an 
orthonormal basis satisfying the following multiplication properties: 

e I x e 2 ~- e3 ,  e1 x e 4 ~ e5 ,  e 2 x e 4 ~ e6 ,  e 3 x e4 ~ e7 .  

It is easy to verify that a linear transformation of R v lies in G2 if and only if it 
maps a G2-basis to another G2-basis. 
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We use the transitive action of the excepcional Lie group G2 on the 6-sphere to 
obtain a special type of rigidity for hypersurfaces of this sphere. Namely, given 
an isometric immersion f �9 M ~ S 6 of a non totally umbilic hypersurface M 
of the 6-sphere whose second fundamental form has rank greater or equal to 3, 
we prove that this immersion is extendable to an element of G2 if and only if its 
derivative maps the Hopf vector field of M to the Hopf vector field of f (M). 

When we consider the case M = S 6 and g as the restriction of a linear map 
(lying on SO(7)) to a hypersurface M of S 6, we can write the definition of J in 
terms of the vector cross product of IR 7 and so those structures can be rewritten 
as  

^ 

gUq = gq x g~, (13) 

g~(X)  = gq x g X  + (X, ~J}g~. (14) 

In this case the rate of change of the Hopf vector field will play an important role 
when dealing with the induced structures (q~, ~) because it gives a direct relation 
between these structures and the corresponding second fundamental forms A 
and A. Namely 

V x U  = - ( g A X  4- X • ~ + (X, U)q, (15) 

gVx~J -- g ~ A X  + gX  x g~ + (X, ~J)gq. (16) 

These equations can be easily obtained by using the Riemannian connections 
and V of N 7 and S 6 respectively. For example we obtain (15) as follows. 

V x U  = Vx(J~)  - (AX, U)~, 

= Vx(q  x ~) - (Vx(q x ~), q)q - (AX, U)~, 

= X x ~ + q  x V x ~ - ( X x ~ , q ) q - ( A X ,  g)~,  

= - ~ A X + X x ~ + ( X , U } q .  

Proposition 1. Let M be a hypersurface o r S  6 and g c S0(7). Consider the 

tensors (U, U, fb, ~) defined on M as above. Then g E G2 if and only if (a = ~. 

Proof: If g c G2 the conditions will arise naturally from the definitions, indeed 
for every q 6 M and X c Tq M we have 

gUq = gq x g~ -- g(q x = gUq, 

[gq~(X) = gq x gX  + (X, U)g~ = g(q • X)  + (X, g>g~ = gO(X).  
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On the other hand A = +t because g is an isometry of 8 6. This together with the 
assumptions gives 

g(q x X)  = gq x g X  for every X 6 TqM (17) 

g(~ x X)  = g~ x g X  for every X ~ TqM. (18) 

Indeed, the first equation comes from equations (5) and (14), and the second one 
comes from equations (15) and (16). Now, since U x X = (q x ~) x X = 

x J X  = ~ x CX, we obtain 

g ( U x X )  = g(~ x C X ) - - - - g ~ x g C X  [from (18)] 

= g~ x g ( q x X ) = g ~  x ( g q x g X )  [from (17)] 

= gU x gX.  (19) 

If q e M and X = Xq e Tq M is a unit tangent vector orthogonal to Uq then 
elementary calculations using the basic properties of the cross-Pr0duct of ]1~ 7 

show that the ordered set 

{ q , ~ , U , X , q  x X , ~  x X ,  U x X }  

is a G2-basis for/R 7. Observe that equations (17).(18) and (19) say that 

{gq, g~, gU, gX,  g(q x X),  g(r x X),  g(U x X)} 

is also a G2-basis and hence g ~ G2. [] 

Lemma 1. Let g e SO(7) and let M be a hypersurface of  S 6 endowed with 

the induced structures (r ~, A = A) as described above, then CA - ~A = 

Z r  A~b. 

Proof: If M is totally umbilic then the lemma holds trivially. Thus assume that 
M is not totally umbilic. Let a and b be distinct eigenvalues of A and let X and 
Y be corresponding principal vector fields of M, then from (15) and (16) we have 

{ - a ( r  Y> + (X x ~, Y) = (VxU, Y) = - a ( ~ X ,  Y) + (gX • g~, gY) 

-b(#)Y, X) + (Y x ~, X> = (VyU, X) = - b ( ~ Y ,  X) + (gY x g~, gX) .  

As q~ is skew symmetric, we get 

{ a((q x, Y> - Y>) 
b ( < r  r'> - r '>) 
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And thus we have (a - b)((~bX, Y> - <~X, Y)) = 0. Which implies ((q5 - 
~)X, Y) = 0. Therefore, since A is symmetric, we conclude that (~b - q~) leaves 

all the eigenspaces invariant and consequently the equality qSA - ~A = A4~ - A~ 
holds on every eigenspace, and hence everywhere. [] 

When M is a Hopf hypersurface of S 6 then M is an open subset of the tube 
qSr(• 1S) around an almost complex curve of S 6 which is given in turn as the 
focal set of the focal map (I) r of M (see [1] for details). In this case, we can give 
an explicit description of the integral curves of the Hopf vector field U of M. 
Indeed, given a point q of M, say the end point of the geodesic 

q = ~ y ( p , r l ) ( r )  = cos(r)p  + sin(r)o. (20) 

Consider the curve a (t) of M, passing through q, given by 

a (t) = Y(p,3(t))(r) = cos(r)p + sin(r)6(t), (21) 

where 3(t) = cos(7)r/+ sin(t)p x 0 with 7 - t 
sin(r)" 

In the following equations we use dot and prime to denote derivatives with 
respect to the variables s and t respectively. Now, by elementary calculations 
we obtain 

a' = p • ~ = U(a) .  (22) 

Thus a is the integral curve of U through q and this proves that the The flow 
CFt of the Hopf vector field of a Hopf hypersurface M C ~r(-L 1S) is given by 

CFt (g(p,o)(r)) = g(p,~(t))(r) = cos(r)p + sin(r)6(t). (23) 

In particular, we note in passing that the integral curve of the Hopf vector field 
starting at the point Y(p,~)(r) is geometrically originated from the rotation of the 
complex 2-plane at p spanned by the vectors {~/, J~/}. 

We name as generic Hopf hypersurfaces of S 6 those ones which are neither 
the geodesic hyperspheres nor subsets of a tube around totally geodesic almost 
complex curves. 

Proposition 2. Let g be an isometry of  S 6 (g E S 0 ( 7 ) )  and let M be a generic 
Hopf  hype~urface of S 6, then the following conditions are equivalent 

( i)  M = g(M)  is a Hopfhypersurface, 

(ii) g(p  x X)  = gp • gX  for every p E S and X c TpS 6, 

(iii) g maps the Hopf  vector field U of  M to the Hopf  vector field U of  
M (U = (1), that is g(q x ~) = gq • g~. 
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Proof: ( i i i )  ,~ (i) The isometry f = g IM: M --+ A~ maps the geodesics 
which are integral curves of U to geodesics which are integral curves of U and 
hence by definition At is a Hopf hypersurface. 
(ii) .~ ~. ( i i i )AsanisometryofS6 ,  gmapsthegeodesicV(p,~)(r)tothegeodesic 
~(gp,g~) (r) thus from (22) we obtain respectively 

g ( ; r  I 

Ug~ = 

sin(7)g0 + cos(t)g(p x 0). (24) 

g~r x ~(gp,g6)(r) = gcr x g~/(p,~)(r) = gp x g3 

cos(t-)(gp x go) - sin(t)[gp x g(p x ~)]. (25) 

Thus if we use that g 6 S O (7) and the vectors {g0, gP x g (p x 0)} are orthogonal 
to the vectors {g(p x O), gP x go}, then the equivalence (ii) ,', .~ (iii) follows 
from equations (24) and (25). Note that under the assumption of either condition 
(i) or (iii), condition (ii) is trivially satisfied for every X c TpS, because in 
both cases the isometry g will map the almost complex curve S into the almost 
complex curve g(S). 
(i) "~, (ii) Since g is an isometry, it takes the focal set S of M into the focal 
set S of M, moreover the hypersurfaces M and/~  lie on tubes around the almost 
complex curves given by these focal sets. 

In order to prove that g and J commute along S we first note that the images of 
the second fundamental forms h and h of S and S span 2-dimensional J-invariant 
subspaces 111 and V1 of the normal spaces _kpS and &upS. 

As S and S are almost complex curves we also have that these normal spaces 
are J-invariant. Thus they can be decomposed as direct sum of J-invariant 
subspaces _k pS = V1 | V~ and I gpS = V1 �9 g2. 

However, since g is an isometry of S 6, mapping S to S, we have g(TpS) = 
TgpS, g ( •  pS) = •  gpS, g(V1) = V1, and g(V2) = V2. Thus using that g c 
SO (7) plus the orthogonal properties of J we see that these maps commute on 
the subspace TpS and on each subspace Vj and hence they commute on TpS 6 for 
every p c S. [] 

It is worthwhile observing that the condition (i i) in the proposition above gives 
a way to improve this result by proving that actually an element g 6 SO(7) 
satisfying those conditions lies in fact in G2. Although the following examples 
show that this would not be true for every Hopf hypersurface of S 6, we will prove 
after the examples that it is true for any generic Hopf hypersurfaces. 

Example 1. Let M be a geodesic hypersphere of  S 6 centred at the point e4. 
Consider the element F of  SO (7) defined by F(ej) = ej for  j 7~ 3, 7, F(e3) = 
eT, F(e7) = -e3, then F is the unique extension of  the isometry f = F [M: 
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M --+ M and obviously F is not an element of G2. Moreover, F maps the Hopf  

vector field to itself 

Example 2. Let M be a Hopfhypersurface contained in a tube around the almost 
complex curve S = V 3 A S 6 where V 3 = span{e3, e4, e7}. Consider the map 

F c SO(7) given by F(ej)  = ej for j = 3, 4, 7, F(el)  = e2, F(e2) = el, 
F(e5) = e6, F(e6) = e5, then F ~ G2 and F is the unique extension of the 
isometry f = F [M: M --+ M. Furthermore, F does not map the Hopf  vector 

f e l d  U of  M to the Hopf  vector field o f F ( M ) ,  that is U (= (7. 
In order to see the later part of each example above we just remark that as F 

is a linear map then from (22) we have that at each point q = y(p,~) c M and 
F(q)  the Hopf vectors are given respectively by 

Uq = p x ~ and F((Tq) = Fp • F~. (26) 

Therefore, Uq = (Tq if and only if 

F ( p  x tl) = Fp x F~, 

from which the properties stated in the examples follow. 

Proposition 3. Let M be a generic Hopf  hypersurface of the 6-sphere. Let 
g c S0(7) ,  then ~I = g(M)  is a Hopfhypersurface if and only i fg ~ G2. 

Proof: (e==) If g e G2 then g maps the Hopf vector field U of M to the Hopf 
vector field ~" of M so that from Proposition 2, M is a Hopf hypersurface. 
(--->) If a4 is a Hopfhypersurface, then from Proposition 2 we know that U = (7, 
that is 

g(q x ~) = gq x g~ for every q E M (27) 

As we have just noted in the proof of Proposition 1, in order to prove that g c G2 
it suffices to find a unit vector X = Xq c Tq M orthogonal to Uq and satisfying 
the following equations 

g(q x X)  -- g(q) x g (X)  (28) 

g(~ x X) = g(~) x g (X)  (29) 

g(U x X)  = g(U) x g(X)  (30) 

Let us consider M as an open subset of the tube qbr(_l_lS) of radius r c (0, ~) 
around an almost complex curve S. Let p 6 S and t/ C• S. Let V denote 
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the geodesic g(p,,,)(s) = cos(s)p + sin(s)tl of S 6. The unit vector ~ :=  ~)(r) is 

normal to the hypersurface M at the point q :=  y( r ) .  
Given X ~ TpS 6 A {IR~} • we can define a Jacobi field Wx along y complying 

with the conditions 

Wx(0) = X r 

l;Vx(O) = X •  AoX T 

(orthogonal projection o f  ZpS 6 onto TpS) 

(orthogonal projection of ZpS 6 onto _.Lp S), 

where Ao denotes the shape operator of S with respect to tl. 
Let us denote by By(s) the parallel transport of a vector v ~ TpS 6 along y.  

Then the Jacobi field Wx can be written as 

Wx(s) = cos(s)Bxr (s) + sin(s)Bx,__A,,Xr (s). (31) 

Thus, we can distinguish two particular cases. The first being when X is an 
eigenvector of  A~, say A , X  = 3.X. This implies 

Wx(S) -- (coss - ~ sins)Bx(s) .  

The second case is when X lies in (•  S) (3 (RO)• for which we have 

Wx(s) = (sin s)Bx(s).  

Noting that Wx is a M.-Jacobi field and writting the principal curvature )~ as 
)~ = tan(0), we have'that Bx(r) is a principal vector of A~ with eigenvalues 
tan(r 4- 0) and - cot(r) corresponding to the first and second cases respectively. 

Therefore the orthonormal eigenvectors {Bi} (i = 3 . . . . .  7) of the shape op- 
erator A of M at a point q = ypm(r) E M are just the parallel transport Bi (t) 
along g of orthonormal vectors {X1 = p, X2 = T], X 3 m_ p 3,( t], X4, X 5 -~- 
p x X4, X6, X7 = p x X6} satisfying the following conditions 

�9 {X1 .. . . .  X7} is a G2-basis for R7; 

�9 {X6, X7 = p x X6} is a basis for TpS; 

�9 {X2 = r/, X3 = p x 0, X4, X5 = p x X4} iS a basis for _LipS. 

We will show now that X = B6 = B 6 ( r )  satisfies the equations (28) (29) and 
(30) and therefore g is an element of  G2.  Consider the vector field 

L(s) = g(Tn x Bt) -- gy~ x gB6, 
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then L is a Jacobi field along F~. Indeed, ~)~ = - g ,  and so/~ = - L .  Moreover 
L also satisfies 

L(O) = g(p  x X6) - gp x gX6, 

L(r)  = g(q x B6) - gq x gB6, 

L(0) = g ( t / x  X6) - g~ x gX6. 

It follows from Proposition (2-ii) that for every curve o. in S and every vector 
field Z 6 Y(S 6) along o., we have 

g(o. x Z )  = go- x g Z .  (32) 

Considering Z as parallel vector field along o- and differentiating this last equa- 
tion, we see that for each vector X E Tp S and Z 6 Tp S 6, 

g (X  x Z) = g X  x gZ.  (33) 

Thus it follows from (32) and (33) that L(0) = 0 and L(0) = 0 respectively. 
Therefore, the Jacobi field L vanishes identically. In particular L(r)  = 0 which 
proves that B6 satisfies the equation 28. 

We can similarly prove that B6 satisfies the equations (29) and (30) by using 
respectively the following Jacobi vector fields 

L(s)  = g(~)~ • B6) - g~)n • gB6, 

L(s)  = g(B6 • (g~ x ~'~)) - gB6 x g(g~ x f/o)" [] 

Corollary 1. Given a non-totally umbilic Hopf  hypersurface M of S 6, that is 
M is not a geodesic hypersphere, and g ~ SO(7) then U = ~J if and only if 

g c G 2 .  

Proof: If M is a generic Hopf hypersurface this is just a consequence of Propo- 
sition 2 and Proposition 3. Therefore, we just need to prove the Corollary for the 
case when M is an open subset of a tube around a totally geodesic almost com- 
plex curve S. We can assume without loss of generality that S is the intersection 
of S 6 with the subspace of IR v spanned by the cannonical vectors {el, e2, e3}. 

Now, we know from (22) that U = U if and only if for every p c S 6 N 

span{el,  e2, e3} and t/ ~ span{e4, es, e6, e7} we have g(p  x tl) = gp x gtl, 
which implies that g maps the cannonical G2-basis of IR 7 to another G2-basis 
and hence g ~ G2.  [] 

Theorem 1. Let M be a non totally umbilic hypersurface of S 6 and g c S 0 (7), 
then g maps the Hopf  vector field of M to the Hopf  vector field of  g(M),  that is 
U = (J, if and only i fg  is an element of G2. 
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Proof: The converse of the theorem is trivial. 
If M is a Hopf hypersurface then the Theorem has already been proved by 

Corollary (1), thus we may assume that U and AU are linearly independent 
vector fields. 

Now, let us assume that U = U. Looking at Proposition (1), we see that it 
is only necessary to prove that ~ = ~. Moreover, if U = U then (15) and (16) 
yield 

g d d A X - g ~ A X  = g(X x ~ ) - g X  • g~. (34) 

In particular, for X = U we have 

CAU = (pAU. (35) 

Using this and the fact that cz = q~2 when U = U, then we get 

qb(qbAU) = 4b2(AU) = ~2(AU) = (p(dpAU). (36) 

Hence r = ~ on the space V = span{U, AU, dpAU}. Note that this space has 
always dimension three because (8) and (9) imply that dpAU ~ 0 and cbAU is 
orthogonal to U and A U. Thus we have TqM = Vq @ Wq, where Wq is the 
2-dimensional orthogonal complement V • 

By using those properties, (6) and (8), of q$ and q$, we can also see that W is 
invariant under these maps and it follows particularly from (7) that q$, ~ : W 
W are isometries. 

Now, since by their definitions ~ and ~ realize ~-rotations and dim(W) = 2 

then q$ = r or r = - r  on W. 
Therefore we just need now to prove that q$ = - ~  on W leads us to a con- 

tradiction. Henceforth let us assume ~b = - ~  on W. First we observe that 
W is invariant under the tensor A. Indeed, given any vector X c W, we have 
r  ~ W and so (AqhX, U) = (ddX, AU) = 0. Using Lemma 1 together with 
(8) and (35) we get (A(aX, AU) = 0, and from Lemma 1 together with (35) 
and (7) we obtain (AdpX, (bAU) = 0. Thus AdpX c W for every X c W and 
consequently A(W) C W. 

The invariance of  W under A together with Lemma 1 imply that A and q$ com- 
mute on W and hence for each X E W we have (AqbX, (bX) = (r CX) = 
(AX, X), and so 

(AX, d~X) = -(qSAX, X) = -(AqSX, X} = - ( A X ,  ~bX), 
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which implies (AX, ~bX) = 0. However, {X, ~bX} is an orthonormal basis for 

W, so A X  = kX for every X E W. Considering this in (34) we have 2kgqbX = 

g(X x ~) - gX  • g~, and since gqoX = - g ~ X  = - g q  • gX, we deduce 
that k = 0. Therefore the second fundamental form A vanishes on W and 
consequently (15) and (16) are reduced to 

VxU = X x ~ 

gVxU = gX x g~. 

(37) 

(38) 

Substituting X by ~bX in these equations and using (5), (13) and (14), we have 

g(X • U) = gU • gX, (39) 

and hence we obtain respectively from (37), (39) and (38): 

g(q • VxU)  = g(U x X) = gX x gU = gVxU • gq. (40) 

Therefore, we have proved that 

 (vxu) = -&vxu). 

However, Vx U E V since in accordance with (37) this vector is orthogonal to 
W. This contradicts the fact that ~b and ~ coincide on V. [] 

Corollary 2. Let M be a non totally umbilic hypersurface of the 6-sphere whose 

second fundamental form has rank greater or equal to 3. Let f : M --+ S 6 be an 

isometric immersion of M. Then f maps the Hopf vector field of M to the Hopf 

vector field of f (M) if and only if there exists an element g E G2 such that f is 

the restriction of g to the hypersurface M. 

Proof: Indeed, from the classical rigidity for hypersurfaces of real space forms 
mentioned in the introduction of this chapter we have that the map f can be 
extended to an isometry of S 6 and hence the corollary follows from the previous 
theorem. [] 

A vector field X in a Riemannian manifold (M, < >, V) is a Killing field when 
its flow is locally an isometry, or equivalently if X satisfies the so called Killing 
equation: 

(VrX, Z) = - ( V z X ,  Y). (41) 

Lemma 2. If  M is a Riemannian manifold which admits a Killing field X of 
constant length, then the integral curves of X are geodesics. 
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Proof: From the Killing equation (41) we have for every Y e Y(M) that 
(VxX, Y) = - ( V y X ,  X) = 0. Thus, V x X  = O. [] 

Theorem 2. The geodesic hyperspheres are the only connected hypersurfaces 
of  S 6 whose Hopf vector fields are Killing fields. 

Proof: (----~.) 
Let us first consider a great hypersphere. There is no loss of generality if we 
choose M = V n S 6 where V = e4  • because this hypersphere can be mapped 
to any other one via an element g 6 G2 and this transformation will certainly 
map the Killing Hopf vector field of M to the Killing Hopf vector field of g (M). 
In this case, the unit normal vector field ~ = e4  t o  M is constant and the Hopf 
vector field at a point q 6 M is just Uq = e4 x q. Thus 

(VxU, Y) = (Vx(e4 x q), Y) = (e4 • X, Y). (42) 

Therefore, using equation (41) and the fact that the product (X x Y, Z) is skew- 
symmetric we conclude that U is a Killing field. 

Now, let M be the small hypersphere of S 6 centred at the point p = e4. This 
hypersurface is just a degenerate tube of radius r around the degenerate curve 
S = {p}. However, we note that all of our calculations to determine the flow 
C G  of the Hopf vector field remain valid in this situation. 

In order to prove that U is a Killing field, we start by assuming this to be true 
and out of that assumption we deduce the natural candidate for the local isometry 
CFt which describes the flow of U. 

As the rank of the second fundamental form of M is 5, we have by the rigidity 
of the hypersurfaces of spheres that CFt can be extended yielding a 1-parameter 
subgroup of SO(7) which we still denote by CFt. From linearity of CFt and 
(23) we obtain 

cos(r)CGe4 -F s i n ( r ) C F d / =  cos(r)e4 + sin(r)3(t). (43) 

Each CFt must map the focal set of M to itself and since the focal set of M is 
just {e4}, we have C F t e  4 = e 4 .  Thus (43) can be simplified to 

CFt~ = cos(7)~/+ sin(t)(e4 x ~) for every q c e+. (44) 

It is immediate to verify that the map CFt defined as above is indeed an element 
of SO(7). Moreover, it is worth mentioning that CFt lies in G2 only for the 
values t = 0 and t = rc sin(r). 
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In the following, we determine the action of CFt on an integral curve o- of U 

in order to check that CFt corresponds, indeed, to the flow of U. 

CFtcr (0) = cos(r)e4 -t- sin(r)CFt 0 = cos(r)e4 + sin(r)8 (t) = o- (t). 

Let M be a connected hypersurface of S 6 with unit normal field ~ and assume 
that its Hopf vector field U is a Killing field. It follows from Lemma 2 that M 
is a Hopf hypersurface, say that M is a subset of a tube qS,. (_1_ I S) where S is 
an almost complex curve of S 6. We assume that the Hopf principal curvature 

= - cot(r) is not zero, that is, r 7~ ~. ~ Then we know from [3] that the second 

fundamental form of M has rank at least 3 everywhere because the oe-eigenspace 
of M has dimension at least 3. 

From the well known rigidity of hypersurfaces of a real space form [8] we have 
that under the assumption that the second fundamental form having rank at least 
3 everywhere, any isometry between hypersurfaces of a sphere is extendable 
to an ambient isometry. Therefore, the flow CFt of the vector field U can be 
realised as the restriction to the hypersurface of an isometry of S 6, which we still 
name as CF,. 

Now, we prove that the almost complex curve is a connected component of the 
fixed point set of each isometry CF,. Geometrically, this is almost evident for 
since CFt is the flow of the Hopf vector field, we can expect that the action of 
the isometry CFt on M, and similarly on each tubular hypersurface around S, is 
just to turn it around the curve S. We call attention to the rather subtle fact that 
the proof we give in the sequel does rely only upon the formula obtained in (23) 
for the flow of the Hopf vector field and this formula in turn depends only on 
the fact that the focal map of a Hopf hypersurface is constant along the integral 
curves of the Hopf vector field. 

S is connected because it is the image of the connected tubular hypersurface 
M under the focal map, which is a continuous map. 

Since CFt is an isometry of S 6 and maps open subsets of M to open subsets 
of M then CFt also maps open subsets of the focal set S to open subsets of S. 

On the other hand, by construction, the map CFt maps an integral curve ~ of 
the Hopf vector field of M to itself. Thus it follows from (23) that C.Ft must fix 
the point p r S which corresponds to the integral curve o-. Therefore, CFt fixes 
every point of S. 

Moreover, it follows from the fact that S is the set fixed by CFt, the linearity of 
CFt and (23) that for s c (0, 2) we also have CK~(g(p,,~)(s)) = g(p.~)(s), that is 
the isometries CFt perform a non-trivial rotation of each tube of constant radius 
s around the curve S. 
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Using that C G  is linear and fixes S, from (23) we obtain 

C F d / =  cos(7)O - sin(t)(p x ~) for every (p, ~7) ~L 1S- (45) 

We want to prove that the almost complex curve S is totally geodesic and we 
already know that S is a connected component of the fixed point set of  the 
isometry C F  = CFt. In order to do that we consider a conjugation C F  = 
g - l C F g  by an element g 6 SO(7) such that ~ be an element of the standard 
maximal toms of~SO(7). Then g maps the fixed point set of C F  exactly to__the 
fixed point set of C F  and hence S = g (S) is also a connected component of CF .  

Therefore, we can describe C F  by C F X  = A X  where A is the matrix 

~ ( 0 R1 0 with R j  = cosOj(t) s in0 j ( t ) "~  
A = o o R2 -s inOj( t )  cosOj( t )]  

0 0 0 

Since C"F fixes any point p = (P0 . . . . .  P6) 6 S then our matricial representation 
for C F  yields for each j 6 {0, 1, 2} a homogeneous system as follows 

(cos(0j) - 1)P2j q- sin(Oj)P2j+l = 0 
- sin(Oj)P2j + (cos(0j) - 1)P2j+l 0 

This homogeneous system must hold for every real value t and every point p 6 S, 
thus its discriminant Aj = 2(1 - cos 0j) vanishes if and only if the function 
cos Oj (t) is identically equal to 1 so that for at least one value j 6 {0, 1, 2}, 
say j = 0, we must have A0 ~ 0 otherwise C F  would be the Identity map. 
Therefore, the two first coordinates of any point of S vanish. 

By using thesesystems, we can also conclude that Rj = ( ~ 0 ) if and only if for 
some point p ~ S we have P2j ~= 0 o.r P2j+l ~& 0. Consequently, there are only 
three possibilities for the isometl 7 C F  and the corresponding fixed point sets in 
each case are given by V1 = S 6 A span{e3 . . . .  eT}, V2 = S 6 0  span{es,  e6, e7} 
and V3 = S 6 (q span{e3, e4, e7}. 

Since in all these possibilities the set V would be connected, we should have 
= V. However, in the first case d i m V  = 4. Since the other two possibilities 

give S totally geodesic and g is an isometry then S is also totally geodesic. 
The proof of the theorem comes from the fact that a totally geodesic almost 

complex curve of S 6 is given by S = V 3 A S 6 where V 3 is spanned by vectors 

{vl, v2, v3} of a G2-basis {Va ..... Vv}. Indeed, this gives us an obvious contra- 
diction in the equation (45). since for ~7 = v4 and p c {Vl, v2} we have 

V 5 ~ /d 1 X V4 ~ V2 X V 4 ~ V 6.  

[] 
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In 1973, Takagi ( [ 10] ) gave a rigidity theorem for hypersurfaces of the complex 
projective spaces which was equivalent to that well known rigidity theorem for 
hypersurfaces of a real space form, namely, he proved: 

Theorem 3. Let M be a hypersurface of  C P  n whose second fundamental form 
A has rank at least 3 everywhere. Let f denote an isometric immersion of  M 
into C P  ~ (n > 3). Then, 

( i)  r = q~ if  and only if a = A, 

(ii) I f  A = A then there exists a holomorphic isometry F of C P n such 

that F L M= f .  
We call attention here to the fact that the second part of the theorem above, as 

observed by Takagi, can be proved by following the same method used to deal 
with rigidity of hypersurfaces in real space forms. 

Recently, Takagi et al ( [5] ) have improved this result by showing that the 
rigidity of hypersurfaces in CP" depends in general only on the invariance of 
the Hopf vector field, that is U = U. More precisely they have shown: 

Theorem 4. Let M be a hypersurface of C P ~ whose second fundamental form 
A has rank at least 3 everywhere. Let f denote an isometric immersion of  M 
into C P n (n >_ 3). I f  U = U then f is a restriction of a holomorphic isometry 
of  C P n. 

In this section, we shall give a new proof for this result, using the same method 
as in the case of hypersurfaces of S 6. It turns out that the approach we give here 
makes the proof clearer, simpler and more geometrical. 

Consider the complex projective space (CP ~, J, < > ,  V, R) endowed with 
the Fubini-Study metric of constant holomorphic sectional curvature 4. Then its 
curvature tensor R is given by 

R(X,  Y ) Z  = (Y, Z ) X  - (X, Z ) Y  - (Y, J Z ) J X  

+ (X, J Z ) J Y  + 2(X, J Y ) J Z .  (46) 

Let M be a hypersurface of CP  ~ with second fundamental form h and induced 
structures < > ,  V, R, etc. Let ~ be a unit normal vector field on M. The Gauss 
and Codazzi equations for M are respectively: 

(R(X,  Y )Z ,  W) = (R(X, Y)Z ,  W) 4- (AX, Z ) (AY ,  W) 

- - (AX,  W)(AY,  Z) (47) 

(-R(X, Y )Z ,  ~) = (((Txh)(Y, Z),  ~) - (((Tyh)(X, Z), ~), (48) 

where the covariant derivative of the tensor h is given by 

((Txh)(Y, Z)  := V x h ( Y ,  Z) - h (VxY,  Z)  - h(Y, V x Z ) .  
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In terms of the shape operator A of M, we can also write (48) as 

<R(X, Y)Z ,  ~> =<AX, VyZ> - (AY, VxZ> + <AZ, VyX> - 
(49) 

- (AZ, VxY> + X(AY, Z) - Y(AX, Z). 

Thus, using (46), we have that for every hypersurface M of CP n, the Gauss and 
Codazzi equations are simplified to 

R(X,  Y ) Z  = <Y, Z ) X  - (X, Z ) Y  + <@Y, Z )OX - (qbX, Z)qbY 

--2<qSX, Y)qbZ + <AY, Z)AX - <AX, Z)AY, (50) 

( V x A ) Y  - (VvA)X = 2<qSX, Y)U + (Y, U)qSX - (X, U)r (51) 

The rate of change of the induced vector fields U and s (if we are considering 
an isometric immersion g �9 M > CP  n) is given by 

V x U  = - O A X  (52) 

= - Ax (53) 

This follows immediately from the K/ihler condition Vx(JY) = J ( V x Y )  on 
CP  n. 

Theorem 5. Let M be a hypersurface of  C P ~ whose second fundamental form 
has rank at least 3 everywhere and let g be an isometric immersion of  M into 

C P n. I f  g maps the Hopf  vector field of  M to the Hopf  vector field of  g( M), that 
^ 

is U ---- U, then g is the restriction of  a holomorphic isometry of  C P n. 

Proof: Since U -- U, it follows from (52) and (53) that: 

qbAX = ~ A X  for every X ~ Y(M). (54) 

As g preserves the curvature, that is R =/?,  we obtain from (46) and (49) that 

(X, qbZ>~bY + 2(X, qbY)cbZ - <Y, cbz)cbX - <AX, Z)AY + <AY, Z>AX = 

<X, ~ Z ) ~ Y  + 2(X, ~)Y>4)Z - (Y, ~Z)4)X - <AX, Z>AY + (AY, Z ) A X .  

Specializing this equation for Z = U we get: 

<X, AU)AY - <Y, AU)AX = <X, AU>AY -- <Y, AU)AX. 

(55) 

(56) 
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Specializing again this equation for Y = U we have for every X ~ Y(M): 

(X, A U ) A U  - (U, A U ) A X  = (X, A U ) A U  - (U, f lU) f iX .  (57) 

If  W denotes the orthogonal complement of the vector space span {A U, fl U} then 
for any Y ~ Y(M) and X c W, the equations (56) and (57) give respectively: 

(Y, A U ) A X  = (Y, f lU),4X, (58) 

(u, AU)AX = (U, d,U)AX. (59) 
Taking Y = AU and Y = f lU in (58) we have for every X c W respectively: 

IAUIZAX = (flU, a u ) f l X ,  (60) 

(flU, A U ) A X  = IAUI2AX. (61) 

Now we shall split our proof into two cases. 

Case 1: AU ~k O. 
Since rankA is at least 3, there exists a vector X c W such that A X  7k O, so 

from (60) and (61) we have A X r  0, f lU r 0 and (.3,U, AU) (= O, moreover by 

taking the quotient between those equations we get I(flU, AU) I = IAUIIAUI 
and hence 

f l u  =  au, 

where 3 = 4 -I•UI IAVl" Using this in (60), it follows that A X  = ~f lX for every 

X E W. However, from (54) and (7) we also have IAXI = IflX[ for every 
X ~ W and so 8 = +1.  Choosing if necessary, the oposite normal vector field 
on g(M),  we can assume 8 = 1. Thus, 

A X  = AX,  (62) 

a U = flU. (63) 

If  (AU, U) (= 0 then substituting (63) in (57) we obtain A = fl. 

If  (AU, U) = 0 then from (10) we can choose a vector X c U • such that 
(aX = A U and so 

X = -4 )AU = - r  

A(AU)  = A(cbX ) = A(pX = -A~)2(AU) = f l (AU).  

This together with (62) implies A = fl, which reduces (55) to 

(X, CY)r = (X, CY)~Y.  

therefore, for every X c U•  have CX = -4-r 
Because Ker(dp) = Ker((o) = span{U}, we must have r = 4-q$. But we 

know that dpAX -= C A X  and hence r = ~. 
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Case 2: A U = O .  
In this case the Codazzi equation (49) for the hypersurfaces M and g (M) are 

written respectively as: 

(R(X, Y)U, ~) = 2(r AY) (64) 

(-R(g,X, g,Y)g,U, ~) = 2(r  AY) (65) 

On the other hand, using the curvature tensor of C P  n as given in (46), we have 
for every X, Y 6 U ~. 

R(X, Y)U = 2(r Y)~ 

R(g,X,  g,Y)g,U = 2<6X, Y)~. 

thus 

(r Y) = (r AY) 

<62, Y> = <6ix, ir>. 

In other words, recalling that r = 6A, we have 

ACA = r 

A(oA = 6 

(66) 

(67) 
(68) 

Now, taking Z = Y in (55) we have 

3(X, OY}r - (AX, Y}AY + (AY, Y}AX = 

3(X, CY)6Y - (AX, Y}AY + <AY, Y}AX (69) 

Putting Y = - r  in this equation and using that 

CY = AX and AY = - A C A X  = - r  

we obtain for every X 6 U ~. 

< X, AX > AX =< X, AX >.4X. 

However, 

IAXI-= [r = 1 6 i S l  = l iXI  

and hence AX = +.3iX. From (67) we see that the restriction A : U • > UZis 
non-singular so that Ker(A) = span{U} and hence A = -t-A on U ~. Choosing 
an apropriate normal vector field, if  necessary, we can assume A : A. Therefore, 

from (67) and (68) we have r = C- 
Therefore, the proof of the theorem follows from Theorem (3). [] 
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We shall make use of Theorem (5) on holomorphic congruence for hypersur- 
faces in C P  n, to prove that the hypersurfaces of CP"  which have a Killing Hopf 
vector field are exactly the open subsets of tubes around totally geodesic complex 
submanifolds. This result has already been proved by Berndt [2] but we give 
here a simpler and more geometrical proof. 

We will think of S 2n+1 as  naturally included in C n+l so that the Hopf fibration 
Jr : S 2"+1 --+ C P  ~ is a Riemannian submersion with linear isomorphism st. : 
Ha -+ T~(z)CP ~ for each z c S 2~+1, where Ha denotes the tangent subspace 
{IRz}I N {Riz} • of GS  2~+1. The natural complex structure on Hz, given by the 
complex multiplication by i, induces via rr. the standard complex structure J on 
C P  ~. 

The Hopf fibration can be used to describe the geodesics of C P  n as projection 
of horizontal geodesics of S 2~+1, in other words, given ( c Tp(CP' ) ,  as rr is a 
Riemannian submersion, then the geodesic g(p,;)(s) of C P"  is the projection of 
the horizontal geodesic 

~(~,~)(s) = cos(s)/3 + sin(s)(,  (70) 

where the tilde notation is used here to denote corresponding points and hori- 
zontal vectors under the maps sr and rr. respectively, that is 

},(p,;)(s) -~ ~r@'(p,~)(s)), with 
7r(~) = p 

(71) 
~ . (~)  = ~. 

Let M be a Hopf hypersurface of C P  n and as usual let ~ denote a local normal 
field on M. 

By using similar procedure here, as in the case of the 6-sphere, we can also 
describe the integral curves of the Hopf vector field explicitly. 

However, we shall recall first the fundamental calculation done by Cecil-Ryan 
([4]) for the derivative of the normal exponential map G of M. They have shown 
that given q 6 M and a vector X ~ Tq M, if we denote by )( its horizontal lift to 
H z where z is a point in the fibre n - l ( q ) ,  then 

G.  [~q.,.~> (X) = drr~{cos(r)X - sin(r)(Y - (J(, i~}iz)}, (72) 

Where ~ = dsrz@), w = cos(r)z + sin(r)~ 6 s r - l (F (q ,  xi)), Y = A~X,  
and the vector on the right hand side belongs to TzS 2"+1 but not necessarily to 
uz. 

We call attention to the difference between our notation for the points z and w 
and that of Cecil-Ryan, which unfortunately is swapped. 
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Using (72), Cecil-Ryan located the focal points of a Hopf hypersurface of 
C P  n, as we summarize in the following 

L e m m a  3. Let M be a Hopf hypersurface of  C P n. I f  U = J ~ denotes the Hopf 
vector field of  M and o~ = - 2  cot(2r) is the Hopf principal curvature of  M, then 
given q �9 M 

(i)  G. I(q,re> (U) = 0 

(ii) G,  [(q,,r (X) = 0 whenever X �9 TqM is a principal vector of  
(M, ~ ) corresponding to the principal value - cot(r). 

(iii) G. ](q,~e) (X) # 0 otherwise. 
Now, to determine the integral curve cr of U through a given point q �9 M, we 

first note from the 1emma above that the focal map of M is constant along the 

integral curves of the Hopf vector field, that is, G(o-, ~) = p. 
Next, we consider a geodesic F = F(p,,~) of  C P  n normal to M at q and con- 

necting the points q and p, where ~ denotes the tangent vector to g at the point 
p. We shall assume g to be parametrized by the arclength s from p to q and so 
g (0) = p and F (r) = q. 

Let 6 be the curve in S 2~+1 obtained as the end points of the geodesics P'(~,a) 

where 

= g(t) = cos(t)~ + i sin(7)~ and { - 
sin(r) cos(r) ' 

in other words, 6-(t) = ~,a(~ (r). Let us define the vector a = ;r.~ and the curve 
o-(t) = ~p,a(,)~ (r). Then the following calculations show that o" is indeed the 
integral curve of U through q. 

In equations (73) and (74) below we must consider carefully along the curve 
only the horizontal components of the vectors A and B, that is, their projections 

on Ha. 

o" = (7r.la)(o-) = (Jr, a)(sin(r)a ) = 0r,13)(A). (73) 

Where A = co@(~){cos(t)iO - sin(7)~}. 

u(~) = J~)(e,a)(r) = JJr.la @(~,g)(r)) 

= Jr.la ( -  sin(r)//5 + cos(r)i~) = 3r.la (B). (74) 

Where B 
that 

= (-- sin(r)i/~ + cos(r) cos(7)iO - cos(r) sin(7)O). Now, observing 

( B , 6 ) = ( B ,  i 6 } = O = ( A , ~ )  and (A, i 8 ) = t a n ( r ) ,  
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we can see that the projections of the vectors A and B on the space H~ are exactly 
the same and hence or' = U (o-). Therefore, using all the notation above we have 

Proposition 4. The flow of  the Hopf vector field of  a Hopf hypersurface of  C P n 
can be described as: 

eFt  (y(p,,) (r)) = Y(p,S) (r) = 7r (cos(r)/3 + sin(r)~). (75) 

We give now an application of the holomorphic congruence of hypersurfaces in 
CP  ~ discussed above. The following result shows that in CP n there is a broader 
category of hypersurfaces whose Hopf vector fields are also Killing. 

Theorem 6. Let M be a connected real hypersurface of CP ~. Then the Hopf 
vector field U of  M is a Killing vector field if and only if  M lies on a tube of  
constant radius around a totally geodesic complex submanifoId. 

Proof: Let us assume first that U is a Killing vector field. This implies, using 
Lemma 2, that M is a Hopf hypersurface. Let CFt denote the flow of U on an 
open subset of M. It follows from Theorem (5) that for each t the map CFt 
can be extended to a holomorphic isometry of CP n which we shall also name as 

CFt. Thus, we obtain a 1-parameter subgroup B t of S U ( n  + 1) such that 

CE,(Tr(z)) = rc(B,(z)). (76) 

As in the case of S 6 (cf. Theorem (2)), we can also show here that the focal set 

N of M is a connected component of the fixed point set of CF, and the proof is 
exactly the same as in that proposition since, as we mentioned above, Lemma 
(3) shows that the focal map is constant along the integral curves of U. 

On the other hand, it follows from (76) that the inverse image N = zc -1 (N) 
consists only of points in C n+l which are eigenvectors for the linear operator Bt. 
Therefore, N is a disjoint union of eigenspaces of Bt, say 

= V~ 1 U . . .  U V~ k. (77) 

However, if N is not just a single eigenspace V~,, we would have a contradiction 
to the connectivity of N since in this case we would write N as a disjoint union 
of closed sets 

N = 7r(E~) u . . .  u r r (ED.  

Therefore, the focal set of M is the totally geodesic complex submanifold of 
CP n given by the projectivisation of the complex linear subspace N = Vz. 
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Conversely, let M be an open subset of a tube qsr (N) of radius r around a 
totally geodesic complex submanifold. If we make use here of some properties 
of the Hopf hypersurfaces of C P  n, then we can give a short proof of the fact that 
U is a Killing vector field. In accordance with the calculations of the eigenvectors 
of a tubular hypersurface (see [7] for details), the only possible eigenvalues for 
M are )~0 = ot = - 2  cot(2r), )~1 = - cot(r) and ~2 = tan(r). Using this we can 
verify that U satisfies (41) as follows. 

Since U has unit length and VvU = 0, we just need to verify (41) for vectors 
Y and Z orthogonal to U. Moreover, because of the linearity of (VyU, Z) with 
respect to these variables, we just need to prove that equation for any pair of 
eigenvectors Y and Z. Thus, we have a few cases to consider. 

If Y and Z lie in the same eigenspace Vz then it follows from (52) and (8) that 

(VvU, Z) = -((bAY, Z) = -~(~b Y, Z) = X(Y, (bZ) = - ( Y ,  VzU).  

For the other possibility we use the fact proved by Maeda ([6]) that the 
eigenspaces V1 = V~ 1 and V2 = Vz 2 are invariant under the operator (b. Thus, for 
each i 6 {0, 1, 2}, the space (bV/is orthogonal to the spaces {Vj}jgi. Therefore, 
given i c {1, 2}, Y ~ Vi and Z ~ Vj with i r j ,  we have 

( V y U ,  Z )  = - )~ i ( (bY,  Z )  = 0 = Xj(Y, (bZ) = - ( Y ,  V z U ) .  [] 
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