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1. Introduction 

The theory of the Weierstrass semigroup of a pair of points on a curve was initiated 
by Arbarello, Cornalba, Griffiths and Harris [1, VIII Exercises B, p. 365], and it 
has been pushed forward by Kim [3] and Homma [2]. 

For us, a curve is always complete, non-singular and defined over an alge- 
braically closed field K of characteristic zero. Let C be a curve of genus greater 
than one and K(C) be the field of rational functions on C. Let P and Q be 
distinct points of C. We define the Weierstrass semigroup H(P, Q) of the pair 

(P, Q) by 

H(P, Q) = {(a, fl) 6 N x N  [ there exists f ~ K(C) with ( f ) ~  = otP+flQ}, 

where N denotes the additive semigroup of non-negative integers. For hyperel- 
liptic curves, Kim[3] determined explicitly the semigroup H(P, Q). 
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In Section 2 we determine the candidates H for Weierstrass semigroups of 
a pair of points on a non-hyperelliptic curve of genus 3. In Section 3, for any 
semigroup H obtained in Section 2, we give an explicit example of a curve C 

with a pair (P,  Q) of points satisfying H(P, Q) = H. Moreover, in Section 4 
we count the dimension of the moduli of curves which have a pair of points with 

a specified semigroup. 

2. Possible Weierstrass semigroups of genus 3 

First, let us review some results in Kim [3]. Let C be a curve of genus g and P 
its point. We define the semigroup H(P) by 

H(P) = {or c N I there exists f c K(C)  with (f)r = oeP}, 

and we set G(P) = N \ H ( P ) .  Let Q be another point of C which is distinct 

from P, and let 

G(P) = {/1 < 12 < . . .  < Ig} and G(Q) = {I~1 < l; < . . .  < l~g}. 

For each li with 1 < i < g, the integer min{/3l(li,/3) ~ H(P, Q)} must be equal 
to some element in G(Q), say 12(i), and this correspondence gives a bijective 
map between the sets G(P) and G(Q) (Kim [3], Lemma 2.6). Thus cr gives a 
permutation of the set {1, 2 . . . . .  g}. We denote the graph of this bijective map 

by F ( P ,  Q), that is, 

! 
F ( P ,  Q) = {(/i, 1,,(i)) ] i = 1, 2 . . . . .  g}. (1) 

The semigroup H(P, Q) is completely determined by the set F ( P ,  Q), that is, 

G(P, Q) = U (li, t )  I fl = o, 1 . . . . .  i;(,) - 1} u 
i=1 

{(0/, Z/or(i)) I Ol = O, 1 . . . . .  l i - -  1}) ,  

where we set G(P, Q) = N x N\H(P,  Q). Thus, it suffices to determine the 

set r(P, Q) for describing the semigroup H(P, Q). 
In this section we consider the case of a non-hyperelliptic curve C of genus 

3. For any point P on C, we know that G(P) is either {1, 2, 3} or {1, 2, 4} or 
{ 1, 2, 5}. Hence, for a pair of distinct points P,  Q c C, there are six possibilities 
for a pair (G(P), G(Q)), up to permutation of  coordinates. We denote them by 
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type I, II, III, IV, V, and VI. (See the table below.) We will show that the set 

F ( P ,  Q) is uniquely determined when G(P)  = G(Q)  = {1, 2, 5}, but it is not 

determined in the other cases. In the following table, we give all possible sets 
for F(P,  Q), which we classify according to the relationship between P and Q. 
Recall that two divisors D and E are linearly equivalent, denoted by D ~ E, if 
there exists a rational function f on C such that (f)o~ = D - E. 

Theorem 1. Any Weierstrass semigroup of  a pair of  points P and Q on a 
non-hyperelliptic curaw C of  genus 3 corresponds to one of  the following 13 
F ( P , Q) ' s, up to permutation of coordinates. In the table, K means a canonical 
divisor. 

Type G ( P )  G ( Q )  Relations between P and Q P(P ,  Q) 

I 1,2,5 1,2,5 (1, 5), (2, 2), (5, i) 
IIa 1 ,2 ,5  1 ,2 ,4  3 P ~ 3 Q  (1, 2), (2,4), (5, I) 
IIb 3P  7 c 3Q (1, 4), (2, 2), (5, i) 
IIIa i, 2, 5 l, 2, 3 h0(3p  - 2Q) = 1 (1,2), (2, 3), (5, 1) 
IIIb h0(3p  - 2Q) = 0 (1, 3), (2, 2), (5, 1) 
IVa 1 ,2 ,4  1 ,2 ,4  P + 3 Q ~ K  (1,2),  (2, 4), (4, 1) 
IVb P + 3Q 76 K, 3P  + Q 76 K (1,4), (2, 2), (4, 1) 
Va 1 ,2 ,4  1 ,2 ,3  3 P + Q ~ K  (1,3), (2, 1), (4, 2) 
Vb 3 P + Q 7 6 K ,  h O ( K - P - 2 Q ) = l  ( 1 , 2 ) , ( 2 , 3 ) , ( 4 , 1 )  
Vc 3 P  + Q 76 g ,  hO(K - P - 2Q) = 0 (1, 3), (2, 2), (4, 1) 
Via 1, 2, 3 1, 2, 3 2P  + 2Q ~ g (1, 2), (2, 1), (3, 3) 
VIb 2 P  + 2Q 76 K,  hO(K - 2P  - Q) = 1 (1, 3), (2, 1), (3, 2) 
VIc h ~  - 2 P  - Q) = h ~  - P - 2Q) = 0 (1, 3), (2, 2), (3, 1) 

Proof.  The following equivalence is used several times in the proof: (06/~) c 
H(P ,  Q) if  and only if 

h~ §  = h~ - 1)P + / 3 Q )  + 1 = h~ + (fl - 1)Q) + 1. 

Moreover, we prove some facts which will be used frequently in the proof. 

(a) (1, 1) r H(P, Q). 

(b) If  D = y~.RccmRR and E = ~ n c c n R R  are distinct effective divi- 
sors such that D ~ E ~ K, then deg(D/x  E) _< 1, where D / x  E = 
~ R c c  rain{mR, nR}R. 

(c) I f 5  E G(P)  [resp. 5 E G(Q)],  then (5,1) E P ( P , Q )  [resp. (1, 5) c 
F ( P ,  Q)]. 
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(a) and (b) are obvious since C is a non-hyperelliptic curve of genus 3. Since 
h~ + Q) = h~ = 3 and h~ + Q) = 4 by the Riemann-Roch theorem, 

(c) is proved. 

Type I" If G(P) = G(Q) = {1, 2, 5}, then, by (c) and (1), I'(P, Q) is uniquely 
determined as {(1, 5), (2, 2), (5, 1)}. 

Type II: We divide this type into two sub-types. 

T y p e I I a :  3P  ~ 3Q. Since P + 3 Q  ~ 4P  ~ K, w e g e t h ~  = 
h~ - Q) = 2. By (a), we have (1, 2) c I ' (P,  Q). Now (c) and (1) determine 

the set F (P ,  Q). 

Type IIb: 3P 7 c 3Q. We have K "-~ 3Q + R for some R 6 C which is distinct 
from P. If h~ + 2Q) = 2, then K ~ P + 2Q + R ~ for some R' 6 C, which 
contradicts (b). Thus h~ + 2Q) = 1 and (1, 2) ~ F(P ,  Q). By (1) and (a), 
(1, 4) 6 F(P, Q), and by (c), F (P ,  Q) is determined. 

Type III: By the Riemann-Roch theorem, h~ - 2Q) _< 1. 

T y p e I I I a :  h ~  = 1. We h a v e 3 P  ~ 2 Q + R  for some point R 

o f C .  S i n c e K  ~ 4P ~ P + 2 Q + R ,  w e h a v e h ~  = 2. By(a) ,  
(1, 2) 6 F (P ,  Q). Then (c) determines the set F (P ,  Q). 

Type IIIb:  h~ - 2Q) = 0. We have 3P 7 c 2Q + R for any point R of C. 
If h~ + 2Q) = 2, then P + 2Q + R ~ K ~ 4P  for some R 6 C, which 
contradicts the assumption. Hence (1, 3) 6 F (P ,  Q) by (a) and (1). Now the 
set F (P ,  Q) is determined by (c). 

Type IV" We consider two cases, according to P + 3 Q ~-" K or not. Note that 
we are determining F (P, Q) up to permutation of coordinates. 

Type IYa: P + 3 Q  ~ K. W e h a v e h ~  = 2. By(a),  (1,2) c F (P ,  Q). 
If h~ + Q) = 2, then 2P -t- Q + R ~ K for some R c C, which contradicts 
(b). Thus h~ + Q) = 1, hence (2, 1) r F (P ,  Q). Now we conclude that 
(2, 4) 6 F (P ,  Q) by (1), which determines F(P ,  Q). 

Type IVb" P + 3Q 7 c K and 3P + Q 7 c K. Since h~ = h~ = 2, we 
obtain h~ + 2Q) = h~ + Q) = 1 from (b), which implies that (1, 2) r 
H(P,  Q) and (2, 1) r H(P,  Q). Hence the set F (P ,  Q) is determined by (a) 

and (1). 

Type V: We consider two cases, according to 3 P + Q ~ K or not. We divide 
the latter into two sub-types, according to h~ - P - 2Q) is 1 or 0. 
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Type Va: 3P + Q "-~ K. We have h~ + Q) = 2, which implies that 
(2, 1) 6 F(P,  Q). Since deg(4P + 2Q) = 2g, (4, 2) 6 H ( P ,  Q), and hence 
(4, 3) r F(P,  Q). By (1), we obtain the set I ' (P,  Q). 

TypeVb: 3P  + Q  7 c K a n d h ~  = 1. W e h a v e  P + 2 Q + R  ~ Kfor  
some point R of C. Then h ~  + 2 Q )  = 2, which implies that (1, 2) E Y (P, Q). 
As in Type Va, (4, 3) r F(P,  Q). Hence the set I?(P, Q) is determined by (1). 

TypeVc: 3 P + Q ~ K a n d h ~  W e h a v e P + 2 Q + R 7  ~ K  
for every point R of C, hence h ~  + 2 Q )  = 1, which implies (1, 2) r F(P,  Q). 
Then by (a), (1, 3) ~ IP(P, Q). Since h~ = 2, 3P § P'  ~ K for some P'  c 
C distinct from Q. Then, by (b), h~ + Q) = 1, and hence (2, 1) ~ F(P,  Q). 
By (1), we determine F(P,  Q). 

Type VI: We consider two cases, according to 2P + 2Q ~ K or not. We divide 
the latter into two sub-types, according to h ~  - 2 P  - Q) is 1 or 0. In this type, 
we also note that we are determining l TM (P, Q) up to permutation of coordinates. 

Type Via: 2P + 2Q ~ K. We have h ~  + 2Q) = h~ + Q) = 2, which 
determine the set Y(P, Q). 

TypeVIb:  2 P + 2 Q  7 c K a n d h ~  - Q) = 1. W e h a v e 2 P + Q + R  ~ K 

for some point R of C which is distinct from Q. Then h~ § Q) = 2, 
which implies that (2, 1) E I ' (P,  Q). Moreover, h ~  + 2Q) = 1. If not, 
h ~  + 2Q) = 2, which contradicts (b). Hence the set F(P,  Q) is determined 
by( l ) .  

Type Vie: h ~  - 2P  - Q) = h ~  - P - 2Q) = 0. Since h ~  + 2Q) = 
h~ + Q) = 1 by the Riemann-Roch theorem, the set F(P,  Q) is determined 
by (1). [] 

3. Some examples of curves with a pair of points 

Every semigroup appeared in Theorem 1 actually occurs as a Weierstrass semi- 
group of a pair of points on some curve of genus 3. Indeed, for each semigroup 
H, we give the explicit equation of a plane curve C and the coordinates of points 
P and Q on C with H = H ( P ,  Q) in the table below. We note that every non- 
hyperelliptic curve of genus 3 can be embedded as a plane curve of degree 4 via 
its canonical map. The type VIc is general, see for example Arbarello, Cornalba, 
Griffiths and Harris [1, VIII Exercises B.7, p. 366]. Using the Bertini's theorem 
and elementary calculation, we can easily prove that each curve is nonsingular 
for general constants a and b, and that the given points P and Q satisfy the given 

Bol. Soc. Bras. Mat., VoL 32, No, 2, 2001 



154 SEON JEONG KIM AND JIRYO KOMEDA 

relation in the table in Theorem I and hence H ( P ,  Q) is the semigroup of  the 

given type. Note that the canonical series on each curve in the table are cut out 

by lines on the plane. 

Type C P Q 

I y B z - y z  3 - x  4 = 0  ( 0 : 0 : 1 )  
IIa - x  4 + x y  3 + 2 y z  3 = 0 (0 : 0 : 1) 
IIb - ( x - z )  4 + x y  3 + 2 y z  3 = 0  ( 1 : 0 : 1 )  
IIIa yz  3 - x 4 + xy  3 - 2y2z 2 = 0  ( 0 : 0 :  1) 
IIIb a(yz  3 - (x - z) 4) + b(xy 3 + y2z2) = 0 (1 : 0 : 1) 
IVa - x B z  + xy  3 + 2yz 3 = 0  ( 0 : 0 :  1) 
IVb - ( x  - z)Bz -t- xy  3 q- 2yz 3 = 0 (1 : 0 : 1) 
Va a(yz  3 - -  x B ( x  - -  Z ) )  q- by 4 = 0 (0 : 0 : 1) 
Vb a(yz  3 - xBz) q- b(xy 3 + y2z2) = 0 (0 : 0 : 1) 

Vc a(yz  3 - (x - z)Bz) + b(xy 3 + y2za) = O ( 1 : 0 : 1 )  
Via a(yz  3 - -  X 2 ( X  - -  Z) 2) @ by 4 = 0 (0 : 0 : 1) 
VIb a(yz  3 - x2(x - z)(x - 2z)) + by 4 = 0 (0 : 0 : 1) 
VIc any curve general 

(0 : 1 : O) 

(0:1 : 0) 
(0 : 1 : 0) 
(0 : 1 : 0 )  
(0 : 1 : 0 )  
( 0 : 1 : 0 )  
(0 : 1 : 0 )  
( 1 : 0 :  1) 
(0 : 1 : 0 )  
(0 : 1 : 0) 
( 1 : 0 : 1 )  
( 1 : 0 :  1) 
general 

4. The dimension of the moduli 

Let Yv/3 be the moduli space of  curves of  genus 3 and 2}/- 3 ~ ff~3 the hyperelliptic 

locus. It is well known that dim ffV/3 : 6 and dim 5q(3 = 5. We have an 

isomorphism 

(~14 _ A ) / P a L ( B ;  C) V_ .~3 - ff~3, (2) 

where A is the closed subvariety corresponding to the forms which define singular 

plane curves of  degree 4. In this section we count the dimension of  the subscheme 

2 ~  H : {[C] E 3V/3 I there exist two distinct points P and Q 

of  C such that H ( P , Q) = H }  

for a Weierstrass semigroup H of  each type in Theorem 1. We use the notations 

2M~, M l l a ,  "-" , 2Mvlc for subschemes conesponding to given types, respec- 

tively. 

Theorem 2. For each semigroup H appeared in Theorem 1, the d imension o f  

the corresponding subscheme 3VlH is given as fo l lows:  
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Type o f  H D i mens i on  o f  Modul i  in M 3  

I 4 
IIa 4 

l ib 5 

IIIa 5 

IIIb 5 

IVa 5 

IVb 6 

Va 6 
Vb 6 
Vc 6 
Via  6 

VIb 6 

VIc 6 

Proof .  Type  | :  Since the Weierstrass semigroup of  any pair of  two hyperflexes 

is of  this type, this dimension is equal to that of  moduli of curves with two or 

more hyperflexes. Thus we have dim M r  = 4 by Vermeulen [4, II.9.4]. 

Type  l l a :  Let  C be any nonsingular plane quartic curve with a hyperflex P and 

a flex Q such that 3P  ~ 3 Q. Then the tangent line at Q passes through P.  After 

a suitable projective transformation we may assume that P has the coordinate 

(0 : 0 : 1) with tangent line y = 0 and Q has the coordinate (0 : 1 : 0) with 

tangent line x = 0. Since (0 : 0 : 1) is a hyperflex with tangent line y = 0, the 
curve C can be expressed by the equation x 4 § yF = 0 where 

3 v 9 9 2 2 9 
F : a l x 3 q - a 2 y 3 + a 3 z  - + - a 4 x - y + a s x - z + a 6 x y - q - a 7 y  z + a s x z  §  

Moreover, since (0 : 1 : 0) is a flex with tangent line x = 0, we have a2 = 0,  

a7  = 0 and a9 = 0. Thus we obtain 7-dimensional irreducible closed subvariety 

of  lP 14 - A. On the other hand, let B = (bij) be an element of  PGL(3;  C). If 

B fixes the point (0 : 0 : 1), we must have b13 = 0 and b23 = 0. Moreover, we 

get b21 = 0 when B sends the point (1 : 0 : 1) to a point on the line y = 0. We 

obtain b12 = 0 and b32 = 0 if B fixes the point (0 : 1 : 0). Thus, from (2), we 
get dim MH~ = 4. 

Type  IIb:  Let V be the subscheme of  M3 - H3  consisting of  curves with at 

least one hyperflex. Every curve in V has another hyperflex or flex, hence V 

is the union of  three subschemes M I ,  MHc, and Ml lb .  On the other hand, V 

is an irreducible 5-dimensional variety (Vermeulen [4, 1.4.9]). Now the fact 

d i m M l  = dim M l l ,  = 4 implies that dim MHb = 5. 
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Type IIIa: Let C be any curve with a hyperflex P and an ordinary point Q such 
that h~ - 2Q) = 1. Note that h~ - 2Q) = 1 if and only if the tangent 
line at Q passes through P. We use a similar argument as in Type IIa. But, in 

this case, Q is not a Weierstrass point, hence a9 does not need to be zero in the 

similar calculation. Hence we get dim MtlIa --= 5. 

Type IIIb: Let C be any curve with a hyperflex P. Obviously the tangent line at 
a general point does not pass through P. Hence we may let Q be such a general 
ordinary point. Thus, we get dim Miiib = dim V = 5. 

Type IVa: Let C be any curve with two flexes P and Q such that P + 3 Q ~ K. 
Note that P § 3 Q ~ K means that the tangent line at Q passes through P. After 

a suitable projective transformation we may assume that P has the coordinate 
(0 : 0 : 1) with tangent l i n e y  = 0 and Q has the coordinate (0 : 1 : 0) 
with tangent line x = 0. Then the curve C can be expressed by the equation 
allX 4 + al2x3z q- y F  = 0 where F is as in Type IIa. Comparing with the 
equation in Type IIa, we have only one more term x3z in this equation. By a 

similar calculation, we get dim Mira  = 5. 

Type IVb: By Vermeulen [4, 1.1.19 and 1.4.9], a general curve in M3 - H3 
contains 24 flexes. Since M 1 v a  has codimension 1 in M3 - H3, we have 

dim M I V b  = 6. 

Type Va: Let C be a general curve with a flex P. There is a unique point Q 
of C such that K ~ 3 P § Q. If Q is a flex or a hyperflex, then C belongs to 

MIIa' U Mira,,  where Type IIa ~ [resp. Type IVa'] is the semigroup obtained by 
changing the first and second coordinates of elements in the semigroup of Type 

IIa [resp. Type IVa]. Since dim M~Ia, tO M i w ,  = 5, we obtain dim M w  = 6. 

Type Vb: Note that h ~ (K - P - 2 Q) = 1 means that the tangent line at Q passes 
through P. We use a similar argument with Type IIa, Ilia, and IVa. Comparing 
with Type Ilia, we only change the equation x 4 + y F  to ai1 x4 q- al2x3z -}- yF.  
Thus we get dim Mvb = 6. 

Type Ve: Let C be any curve with a flex P. Choose a point Q such that Q is not 
contained in the tangent line at P and the tangent line at Q does not pass through 
P. In fact, such a point Q is general one. Then we proved that [C] c Mvc. 

Thus, we obtain dim Mvc = 6. 

Type Via: Note that any nonsingular plane quartic curve has 28 bitangents. (For 
example, see [4, 1.2.2].) If we choose ordinary points P and Q such that two 
tangent lines at P and Q coincide, then H(P,  Q) is the semigroup of Type Via. 

Thus dim Q~VIa = 6. 
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Type VIb: For a general point P on any curve C, the tangent line at P meets 
C at two distinct points other than P. If we let Q be one of these points, then 
H ( P ,  Q) is of Type VIb. Hence, we get dim 5Mvzv = 6. 

Type VIc: By Arbarello, Cornalba, Griffiths and Harris [1, VIII Exercises B.7, 
p. 366] we have dim 5VlVlc = 6. [] 
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