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Abst rac t .  Let f " M > M be an isometric immersion between Riemannian 
manifolds. The purpose of this paper is to find the minimum possible conditions on M 
and M (in the terms of curvatures and external diameter) in order to the image of f 
be contained in a sphere. Our results generalize the other authors work in three major 
steps, domain, range and the codimension of immersions. As a byproduct, we obtain the 
non-embedding theorems Chern-Kuiper, Moore and Jacobowitz. The proofs are based 
on the maximum (comparison) principle. 
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1 Introduction 

The aim of  this paper is to establish a pinching theorem and a non-embedding 

theorem for submanifolds of  a Riemannian manifold. 

By using the strong maximum (comparison) principle applied to the elliptic 

operators, Koutroufiotis [K] proved the following theorem: 

Let  f : S > R 3 be an isometric immersion from a compact two dimensional 

manifold S into R 3. Suppose that there is R > 0 such that either the sectional 

curvature of  S or the square of  the mean curvature of  f(S) is bounded from 

above by R -2. Then, the smallest sphere enclosing f (S) has radius larger than 

R, unless f(S) is a sphere. 
Also, Markvorsen [M] generalized the Koutroufiotis results to the isometric 

immersions f : M n > ~ n + l  such that the absolute value of  the mean cur- 
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vature of f (M) is bounded and the sectional curvature of M is bounded from 
above by a constant. 

Recently, Fontenele and Silva [FS] generalized the Koutroufiotis results to 
~n+l  

the isometric immersions f �9 M n > such that the scalar curvature of 
compact manifold M is bounded from above and the target space M is a space 
form (a complete and simply connected space with constant sectional curvature) 
of non-positive curvature. Also, Vlachos [V] proved a rigidity type theorem for 
geodesic spheres of space forms in term of/-mean curvatures. 

In this paper, we generalize the above results to the isometric immersions 
~ n  +k 

f �9 M n > with the weaker assumptions. Moreover, we obtain the 
non-embedding theorems Chern-Kuiper [CK], Moore [Mo] and Jacobowitz [J]. 

The proofs are based on the (strong and weak) maximum principle. For more 
works on this topic see [CI], [I], [J], [JK] and [L]. 

2 A Rigidity Theorem for Curves 

In this section, we prove a generalization of the main theorem of this paper for 
curves in a quite general setting. 

Let N be a Riemannian manifold (of class C 3) and let (-, .) denote the Rie- 
mannian metric on N. We denote the associated covariant derivative of N by D. 
For p c N, we denote the distance from p to x by r(x) = rp(X). The function 
rp(X) is smooth on N \  ({p} U Cp), where Cp denotes the cut locus of p. Also, 
we denote the Hessian of r(x) by Hess(r)(v, w) := (DV~ r , w), for all vectors v 
and w in the tangent bundle of N. We denote the closed ball with the center at 

q c N and the radius R > 0 by B(q, R). 

Theorem2.1.  Let?" �9 ]a, b[ > Mbearegularcurve(ofclassC2)ontheRie - 
mannian manifold M. Suppose that the image of?" is contained in B(p, R) \ Cp 
and there is so E]a, b[ such that ?'(so) belongs to OB(p, R). Suppose that the 
Hessian of  distance function on M, r(y) = rp(y), is bounded from below by 
m(r) >_ 0 on the tangent bundle of  O B(p, r), i.e. Hess(r)(v, v) > m(r) Ilvll 2 

for all vectors v in the tangent bundle of  OB(p, r). Let the curvature of?" be 
bounded from above by m(r), i.e. 0 < k(?'(s)) < m(r(?'(s))), for all s 6]a, b[. 
Then, the image of?' is contained in the sphere O B(p, R). 

Proof. Without loss of generality, we can assume that y is parametrized by 
arc-length, i.e. II ?"(s) ll = 1. Now, consider the function 

h(s) := r(y(s)). 
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Then, we have (note that I[ Vr l l  = 1) 

hi(s) = (Vr ,  • 

Vr h"(s) = (D• y'(s)) + (Vr D/(s)\ 
' ' y ' ( s ) / ,  

h'l(s) = /D vr y~(s~ y r ( s ) )  + ( V r  D• 
' ' z f f s )  ~' 

where y~(s) denotes the projection of  y'(s) on the tangent 
8B(p, r(y(s))). So, we have 

h"(s) > [ 1 - 1 ( V r ,  g ' (s))12]m(r(g(s)))-k(y(s))  

> - l ( V r ,  )/(s))]2 m(r(g(s))). 

Let o~ _> 2. Define the function h ,  as the following: 

ha(s) : =  [ h ( s ) ]  ~ . 

Then, we have 

and 

h ~ ( s )  = 

> 

bundle of 

hl~(s) = o~ [h(s)] (~-1) h'(s), 

ot(~ - 1) [ h ( s ) ]  (c~-2) [ h ' ( s ) ]  2 -[- 0 / [ h ( s ) ]  (c~ 1) h " ( s )  

oe [h (s)] (=-2)/(oe - 1) I (Vr ,  g ' (s ) ) [2  _ r (y  (s))  
f -  

�9 (Vr,  y'(s)}12m(r(y(s)))l 

ot[h(s)](~-2) ,(VF, y'(s)),2 [o t -  l - r(g(s))m(r(y(s)))].  

Now, let o~ be large enough such that [ol - 1 - r (y ( s ) )  m(r(y(s)))] >_ 0, for s 
close enough to so. Therefore h ,  (s) is a convex function, for s close enough to 
so. Since that ha(s) attains its maximum at the interior point so 6]a,  b[, by the 
(strong) maximum principle, ha (s) is a constant function�9 This completes the 
proof of theorem. [] 

m 

Corol la ry  2.2. Let notations and assumptions be as in Theorem 2.1. Let M be 
a space form, i.e. a complete and simply connected Riemannian manifold with 
constant sectional curvature. Then, the image of y is contained in a circle (with 
center at p and radius R ). 
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Proof. By Theorem 2.1, we know that the image of ?/ is contained in the 
sphere OB(p, R). Then, by the Meusnier theorem [H, p. 77] and the fact that 

k(g(s)) _< m(r(g(s))), we see that k(y(s)) = m(r(F(s))) = m(r(g(so))); and 
F is a geodesic in the sphere OB(p, R). This completes the proof of 
corollary. [] 

Remark  2.3. In the Theorem 2.1, when M = R ~+1, we can instead of the 
condition k(g (s)) < in (r (g (s))), replace the following weaker condition: 

1 
lc(y (s)) _< 

I(7(s) - p ,  N(F(s)))I '  

where N (?/(s)) is a unit vector which is in the direction of F" (s). 

Remark 2.4. Suppose that in Theorem 2.1, we replace the assumption f (so) 
OB(p, R) (for some interior point so c]a, bD by the following condition: 

Either a = - o e  and h(s) is non-increasing, or b = +oe  and h(s) is non- 

decreasing. 
Then, the conclusion of the Theorem 2.1 remains valid by replacing the sphere 

OB(p, R) by the sphere OB(p, Ro), for some R0 < R. 

3 The Maximum Principle 

In this section, we introduce two operators on the Riemannian manifolds in such 
a way the (weak and strong) maximum principle remains valid. 

Definition 3.1. Let N be an n-dimensional Riemannian manifold with the Rie- 
mannian metric (., -). Let h : N > ]R be a C2-function. We define the upper 
Laplacian of h at the point x c N as the following: 

Auh(x)  := sup (h o y)(s) , 
F s 0 

where the supremum is taken over all geodesics F such that F (0) = x. Similarly, 
we can define the lower Laplacian of h at the point x (by replacing inf instead 
of sup), and we denote it by ALh(x). Let f2 be an open subset of N. We say 
that h is generalized subharmonic on ~, if there are orthonormal vector fields 
{el (x), e2 (x) ..... e~ (x)} on f2 such that the following condition holds: 

a (x) -d s2 (h o >_ o, 
i = 1  s=O 
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where gi is a geodesic such that yi(0) = x and yi'(O) = ei(x), and ai(x) 's  are 

positive numbers. Moreover, there is A > 0 such that ai (x) > A, for all x c ~2 

a n d l  < i  < n .  

It is not hard to see that 

1 
ALh(x  ) <_ - Ah(x) < A~h(x).  

n 

Also, if h is generalized subharmonic on g2, then A ~ h ( x )  > O, for x c ~.  

Proposition 3.2. (Weak Max) Let N be a Riemannian manifold and let f2 

be an open subset of  N (with smooth boundary). Let h : N ~ IR be a 

C2-function. Then, we have 

(i) Suppose h attains its (local) maximum at xo ~ f2, then A~h(xo)  <_ O. 

(ii) Suppose that A~uh(x) > O, for  all x c f2, then maxh(z) = maxh(z). 
z E ~  zEOf2 

Proof. It is similar to the proof of [GT, Thm 3.1 ] with minor changes. [] 

Proposition 3.3. (Strong Max) Let N be a Riemannian manifold and let h : 

N > IR be a C2-function. Let ~ be an open subset of  N (with smooth 

boundary) and let h be generalized subharmonic on f2. Suppose that max h ( z ) = 
zcS2 

h(xo), for  some xo E S2, then h is a constant function on S2. 

Proof. Let notations be as in Definition 3.1. Then, we have 

d 
~ ( h  o yi)(s) = (Vh, y/(s)), 

d 2 i 
_ _  { D  v h  
ds 2 (h o yi)(s) = ,--vi,(s ) yi'(s)) + (Vh r~vi(s)\ , , ~ •  i .  

Since that Vi is a geodesic, we have 

d 2 
/DVhy/(s)' V/(s)). d s j ( h  o yi)(s) = \ 
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Therefore, we obtain 

E _ ~-aa2~'x.~/DVh a2i (x) (h 0 y i ) ( S )  - -  / 1 1  i k , \  e i (x )  , e i ( x ) )  

i=1 s=0 i=1 
n 

= , V i ( X ) ) ,  

i=1 

where Ui(X ) : =  ai(x)ei(x). Consider the orthogonal vector fields {vl(x), 
v2(x) ..... vn (x)}, we can define the operator T as the following: 

H 

Z(h)  := 
i=1 

Since that ai (x) >__ A > 0, we obtain that T is a uniformly elliptic operator. 
Now, the proposition follows from [GT, Thm 3.5]. [] 

4 The Rigidity Theorem 

In this section, by applying the strong maximum principle to generalized sub- 
harmonic functions, we extend the results [FS], [M] and IV] to more general 
setting. 

We start this section with the following lemma which is a generalization of 
this fact that on every compact hypersurface of IR n there is at least one point with 
the positive (sectional) curvature. 

~ n + k  
Lemma 4.1. Let f �9 M n > be an isometric C2-immersion between 
Riemannian manifolds. Suppose that the image o f f  is contained in B (p , R ) \ C p 
and there is xo c M such that f (xo) ~ OB(p, R). Suppose that the Hessian of  
distance function on M, r(y) = rp(y), is bounded from below by re(r) > 0 on 
the tangent bundle of  OB(p, r), i.e. Hess(r)(v ,  v) > re(r) llv]12 for  all vectors 
v in the tangent bundle of  OB(p, r). Then, for  any unit normal vectorfield 
N ( f  (x)) such that N ( f  (xo)) = -Vr(x0) ,  there is a small neighborhood of  xo 
such that all principal curvatures of  M in the normal direction of  N ( f  (x ) ) are 
positive. 

Proof. It is clear that OB(p, R) is tangent to f ( M )  at the point f(xo).  Let A be 
a principle curvature of M in the normal direction of N ( f (x)) at the point x0 with 
the corresponding (unit) principle vector e. Let y be the geodesic y (0) = x0 
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and y ' (0 )  = e. Define h(s) :=  r(y(s)) .  Then, by using the proof  of  Theorem 

2.1, we have 
vr , D• h"(s) = (D/(s),  y'(s)) + (Vr y (s))" 

Since that h attains its maximum at s = 0, we have h"(0) < 0. Then, we have 

Hence 

VP (D/(o) y'(O)) < ( - V r  D/(~ 
' - -  ' y ' ( 0 )  / 

0 < m(r(xo)) < k. 

This completes the proof  of  lemma. [] 

�9 ~ n + k  
T h e o r e m  4.2. Let f M" > be an isometric C%immersion between 
Riemannian manifolds�9 Denote the l-mean curvature vector of  f (M) in M by 
H1 (see [Ch] for the basic definitions)�9 Suppose that the image of f is contained 
in B(p,  R)\Cp and there is Xo c M such that f (xo) E OB(p, R). Suppose that 
the Hessian of  distance function on M, r (y) = rp (y), is bounded from below by 
re(r) > 0 on the tangent bundle of  OB(p, r), i.e. Hess(r)(v,  v) > re(r) [[v[[ 2 

for all vectors v in the tangent bundle of  OB(p, r). Moreover, suppose that for 
all x ~ M and any unit normal vector field ~l(f (x) ) on M, we have 

I (Hl( f (x ) ) ,  ~/(f(x)))[  < m(r ( f ( x ) ) )  I(H1-1(f(x)),  o( f (x))) l ,  

where I >__ 1 is an integer (define I(Ho(f(x)), ~/( f (x) ) ) l  :=  1). I f  M is con- 
nected, then the image o f f  is contained in the sphere OB(p, R). 

Proof .  Without loss of  generality, we can assume that M is a submanifold of  

M (at least locally)�9 Suppose that x c M is an arbitrary point which is close 

to x0. Consider the second fundamental form of  M (in M) in the direction 

of  the unit normal vector field N ( f ( x ) )  such that N(f (xo) )  = -XZr(x0). Let 

0 < ~1 ~--- )~2 ~< ... ~< ~n denote the principal curvatures (in the direction 

N ( f ( x ) ) )  at the point y = f ( x )  with the corresponding principal (unit) vectors 

el, e2 .. . . .  en (note that by Lemma 4.1 we know that ki 's are positive at x). Let  

Yi be a geodesic in M such that gi (0) = x and yi/(0) = el. Define 

hi(s) :=  r(yi(s)), 

hi,.(s) := [hi(s)] ~. 

BoL Soc. Bras. Mat., Vol. 32, No. 2, 2001 
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By using the proof of Theorem 2.1, we have 

hi'~(s) > [hi(s)](~-2)(m(r(y(s))) - )~i(y(s))), 

for ol > 2 large enough. Then, we have 

h:'~(O), > olr(x) (m(r(x))  - )~i(x)). 

) By multiplying the above inequality by 1-[j~#i, k=l )~J~ > 0 and using the 

assumptions of theorem, we obtain 

i=1 \ j k # i ,  k=l  

Therefore, the function p (x), is a generalized subharmonic function for all x in a 
small neighborhood of x0, where p := r ~ o f ,  for some oe _> 2. Now, Proposition 
3.3 implies that p is constant on a neighborhood of x0. This implies the 

theorem. [] 

Corollary 4.3. Let notations and assumptions be as in Theorem 4.2. Let M 
be a space form, i.e. a complete and simply connected Riemannian manifold 
with constant sectional curvature. Then, the image of y is contained in an n 
dimensional sphere (with center at p and radius R ). 

Proof. It is similar to the proof of Corollary 2.2. [] 

Remark  4.4. In the Theorem 4.2, suppose that M = R n+1. Then we can 

replace the condition: 

I{Hl(f(x)) ,  o(f(x)) ) ]  _< m ( r ( f  (x))) ]{Hi l ( f ( x ) ) ,  ~(f(x))) ] ,  

by the following condition: 

](HI(f (x)), ~(f(x)))[  _< 
[{H1_a(f(x)), t / ( f  (x))) [ 

I( f(x)  - p ,  N(f(x)))[  ' 

where N ( f ( x ) )  is a unit normal vector field on f ( M ) .  Compare [FS, Thm B]. 
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Remark 4.5. In Theorem 4.2, we can replace the condition: 

I ( H l ( f ( x ) ) ,  o(f (x) ) ) l  < m ( r ( f ( x ) ) ) I ( H l - l ( f ( x ) ) ,  O(/(x)))l ,  

with the following (stronger) condition: 

[ (Hi ( f  ( x ) ) ,  o ( f ( x ) ) ) l  < m t ( r ( f ( x ) ) ) .  

Note that by the Hessian comparison theorem (see for instance [SY, p. 4]), we 
can obtain the Markvorsen result [M]. Moreover, by Remark 4.4 and Remark 
4.5, we can recover the results [FS] and [V]. 

Question 4.6. Let M be an orientable and compact (without boundary) hyper- 
surface in M = N "+1 . Suppose that Ricci curvature of M is bounded from below 
by R -2, for some R > 0. Suppose there is a ball B(p ,  R) C -M which is inside 
M. Then, we have 

�9 For n = 1; M is the circle OB(p, R), by the Fenchel theorem (see [C1, p. 
399]). 

�9 For n = 2; M is the sphere OB(p, R), by the Gauss-Bonnet theorem (see 
[H, p. 111]). Compare [K, Thin 1]. 

�9 For n _> 2; M is the sphere OB(p, R), by the Bonnet-Myers and Cheng 
theorems (see [C2, p. 201] and [Chg]). 

Is it possible to generalize the above theorem with weaker assumptions similar 
to Theorem 4.2 and Remark 4.4? 

5 A Non-Embedding Theorem 

The aim of this section is to generalize the non-embedding theorems Chem- 
Kuiper [CK], Moore [Mo] and Jacobowitz [J]. See also [I] and [JK]. 

We start this section by the following algebraic lemma which is due to Otsuki. 

Lemma 5.1. Let L : IR'~ • R" ~ IR k be a symetric bi-linear form. Suppose 
that there is fl > 0 such that 

(L(v,  v ) ,  L (w ,  w)) - IlL(v, w)ll 2 _</32, 

for  all orthonormal vectors v, w 6 IR" with Euclidean inner product (., .} on 
R '~. I f k  < n, there is a unit vector e �9 IR n such that 

]]L(e, e)[] _< ft. 
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Proof. See [C2, p. 224]. [] 

--~n+k 
Theorem 5.2. Let f �9 M n > be an isometric C2-immersion between 

Riemannian manifolds with codimension k < n. Denote the sectional curvature 

of  M and M by K( . ,  .) and K( . ,  .), respectively. Suppose that the image o f f  

is contained in B(p ,  R)\Cp and there is xo �9 M such that f ( xo)  �9 OB(p, R). 
Suppose that the Hessian of  distance function on M, r(y)  = rp(y), is bounded 

from below by m ( r ) >_ 0 on the tangent bundle of  O B ( p , r ), i.e. Hess  ( r ) ( v , v) > 
re(r) I lvl IZ for  all vectors v in the tangent bundle of  O B (p, r ). Moreover, suppose 

that for  all x �9 M, there is a subspace Px of  dimension k + 1 in tangent space 

TxM such that for  any orthonormal vectors Vx, Wx �9 Px, we have 

K(vx ,  Wx) - K(vx ,  Wx) < m Z ( r ( f ( x ) ) ) .  

Then, the isometric immersion f with the above properties cannot exist. 

m 

Proof.  Let B ( . , - )  denote the second fundamental form M in M, i.e. 
B(v,  w) :=  Dwv - D~v, for all v and w in the tangent bundle of M. By 

the Gauss formula, we have 

g ( v x ,  Wx) - - K ( v x ,  Wx) = (B(vx, Vx), B(wx,  Wx)) - IIB(vx, Wx)ll 2, 

where orthonormal vectors Vx, Wx �9 Px. By the Otsuki's lemma, for any x �9 M 

there is a unit vector ex �9 Px such that 

I[B(ex, ex)ll < m(r(x ) ) .  

Consider the geodesic Y in M such that y(0)  = x and y '(0)  = ex. Define the 

function h as the following: 

h(s) :=  r (y (s ) ) .  

Then, similar to the proof of Theorem 2.1, we have 

- - V r  
h"(s) = <Dy,<s>, / ( s ) )  + <Vr, 

Now, let x = x0. Since that Vr is orthogonal to M at x0, we obtain 

h"(O) > m(r(xo))  - i > O, 

where ), =:  lID• (s> • (s) lls=0 (note that since that y is a geodesic in M, we have 

DY/s> = 0). Therefore, we have Aup(x0)  > 0, where p := r o f .  But, p 
y (s) 

attains its maximum at x0, then, by Proposition 3.2 we have A u p  (x0) _< 0. It is 
a contradiction. This completes the proof of theorem. [] 
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Remark  5.3. In Theorem 5.2, if we replace the condition: 

K (vx, Wx) -- -K(vx, wx) < m2(r(f  (x))), 

with the following (weaker) assumption: 

K(vx, Wx) - --K(vx, wx) < m2(r(f  (x))), 

we can show that f (M)  touches OB(p, R) at infinitely many points (by Propo- 
sition 3.2 and the proof of Theorem 2.1). 

Remark  5.4. In Theorem 5.2, we need the condition: 

K(vx, Wx) - -K(vx, Wx) < m2(r(f(x))), 

only at the point x = xo. 

Remark  5.5. We can relax the assumptions of Theorem 5.2, similar to Remark 
4.4 when M = ]R n+~. 

Note that the non-embedding theorems Chern-Kuiper [CK] and Jacobowitz [J] 
are an immediate consequence of Theorem 5.2 and the non-embedding theorem 
Moore [Mo] is followed from Theorem 5.2 and the Hessian comparison theorem 
([SY, p. 4]). 

Remark  5.6. By using Lemma 4.1 and [BS, Thm 2], we can prove Chem- 
Kuiper theorem [CK] for more general target space M. 

Remark  5.7. We can remove the condition f(xo) c OB(p, R) in Theorem 5.2, 
and by adding other assumptions similar to [JK] and using Omori theorem (see 
[JK]) in order to obtain a lower bound for external diameter. 

Question 5.8. In Theorem 5.2, is it possible to replace the condition f(xo) 
OB(p, R) with a different condition? Compare Remark 5.7 and also see [BZ, 
28.2.7]. 
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