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Expression of curvature tensors
and some applications
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Abstract. We get an explicit expression of curvature operators in terms of at most eight
terms of sectional curvatures. Some applications of this result are also given, particularly
we improve a result of Chen-Tian related to the first Chern class of admissible surfaces
in pinched manifolds. We also characterize in a simple way all functions k(x, y) which
can be sectional curvatures of some curvature operator R.
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§1. Introduction

It is well known that the curvature tensor is determined uniquely by sectional
curvatures and some expressions in terms of sectional curvatures have been
given, see for example [K] and [GKM, p. 93]. In this paper we give an explicit
expression of curvature tensors with at most eight terms and show that this
expression also determines a curvature tensor algebraically. We can see that the
number of the terms in this formula is sharp in some sense.

First we have a general result.

Theorem 1. Let V be a linear vector space and R : VXV xV xV — Ra
4-linear map satisfying

R(x,y,z,t)+ R(x,z,t,y) + R(x,t,y,2) =0, (1.1
R(x7y,Z, t):_R(y7x’Zat)a (12)
R{x,y,z,t) = R(z,t,x,y), (1.3)
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where x,y,z,t € V. Denote k(x,y) := R(x, y, x, y). Then

24R(x, y,z,t) =k(x +z,y+ 1) +k(x —z,y — 1)
—kx+z,y—0)—k(x—2z,y+1)

(1.4)
—k(x+t,y+z2)—k(x—t,y—2)
+k(x+t,y—2)+k(x—1,y+2).
Conversely let k(x, y) be a real valued map with
kGux, y) = 27k(x, y), k(x,y) = k(y, x), k(x,x) =0,
and satisfying the linearity conditions below:
2(k(a,b) + k(a,c)) =k(a,b+c)+k(a,b—c), (1.5)
k(a+Ab,c) —k(a—Ab,c) = A(k(a +b,c) —k(a — b, 0)). (1.6)

Then the formula (1.4) defines a 4-linear operator satisfying (1.1), (1.2) and
(1.3), and k(x, y) = R(x, vy, x, y). In particular k satisfies equation (2.4) of the
second section.

Note that (1.5) and (1.6) are directly obtained from the 4-linearity of R. We
think that Theorem 1 could be used to obtain new examples of manifolds with pre-
scribed conditions of curvature. Note that theorem 1 is purely algebraic and we
do not assume that V has finite dimension. If further V admits an inner product,
we can define the sectional curvature K (x, y) = k(x, y)/ (Ix*Iy|* — (x, »)?),
for any linearly independent vectors x, y. When V is a Hilbert space, the in-
ner product allows us to define a 3-linear operator R: V x V x V — V as
(R(x,y,2),t) = R(x, v, z,t). In the case of finite dimension, the Ricci curva-
ture does not depend on the choice of orthonormal basis if £ satisfies the above
linearity conditions.

Note that for any four orthonormal vectors x, y, z,t € V, (1.4) implies

6R(x,y,z,t) =Kx+z,y+t)+ K(x—2z,y—1)
—Kx+z,y—t)—K(x—2z,y+1)
—K&x+t,y+2)—Kx—1,y—2)
+Kx+t,y—2)+Kx—1t,y+2).

(1.7)

The following corollary is a direct consequence of (1.7). The inequality (1.8)
is due to Berger([B]) when § is positive and Karcher([K]) in general. As shown
in many works this inequality is very useful. Besides we can give here the
characterization of the equality by the formula (1.7).
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Coroliary 1. Ler K(x,y) € [8, A] for any x,y € V. Then for any four
orthonormal vectors x, v, z,1 € V,

RGx, v, 2,1)] < %(A—ax (18)

and the equality holds if and only if either

Kx+z.y+1)=Kx—z,y-t)=K@x+t,y—2) =
=Kx—t,y+2z)=A, and

Kx+z,y—-0=Kx—-z,y+0)=K@&+ty+2z) = (1.9
=Kx—1,y—2)=3;
or
Kx+z,y+D)=Kx—z,y—t)=K(x+t,y—z7) =
=K(x—1t,y+2z)=24, and 10

Kx+z,y—-0)=Kx—z2,y+6)=Kx+t,y+z)=
=K{x—t,y—2)=A.

Note that if some formula could exist with less terms then (1.7), and the same
factor 6 on the left side, the Berger ineguality could be improved, and it is well-
known that this is not possible. When there exists an almost complex structure
J:V — V, thatis J? = —I, we have:

Corollary 2. For any four orthonormal vectors x,y, Jx, Jy € H,

6R(x, Jx,y, Jy) =Kx+y,J(x+y) +Kx—y, J(x —y))
—Kx+y, Jx—y)—Kx-y, Jx+y)
~K&x+Jy,Jx+y)—Kx—-Jy,Jx—y)
+Kx—=Jy, Jx+y)+Kx+Jy, Jx—y).

(1.11)

Notice that the positive terms of the right hand side of (1.11) are sectional
curvatures of complex planes while the negative ones are sectional curvatures
of totally real planes. In particular when R is the curvature operator of Kihler
space form M (4c) of constant holomorphic sectional curvature 4c, Then

Rx,Jx,y,Jy) =2c.
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This is another reason which convinces us that the number of terms in the right
hand side of (1.4) is sharp.

Now let us state some applications of these formulas. We need to recall some
notations and facts from [CT]. A surface X is admissible in a given 4-dimensional
Riemannian manifold * if it is immersed except at finitely many singular points
in ¥ and satisfies

[ 7*(|B|*)dA < +o0,
)]

where 7 : £ — X is the oriented covering of ¥ and B is the second fundamental
form of ¥ in M. Denote by T X and N X the tangent and normal bundles of X
in M respectively. We can define

X(TS) :/ KrdA,
b))

X(NT) = / KydA,
)

where dA is the surface area element, and Kr and Ky are curvatures of the
bundles TY and N X, respectively. If ¥ is embedded in M, then x (N ) is
the self intersection number of X in M. If ¥ is immersed, then x (T'X) is the
geometric genus of X, and x (N X) is equal to the self intersection number of ¥
minus twice the number of double points in X (counted with sign). Let X be an
admissible surface in a 4-dimensional Riemannian manifold M. Around any p €
¥, we choose a local orthonormal frame {ey, e, €3, ¢4} such that {e;, e;} C TX
and {e3, e4} C NX, and {w, w,, w3, wy} are coframe vectors coresponding to
{e1, €2, €3, e4} and (w;;) is the connection matrix of the Levi-Civita connection.
Then there is an almost complex structure Jy, on M along X which is defined as

Jeey =ey,
Jrey = —ey,
Jres =ey,
J§;€4 = —é3.

Finally we have
X(TE)+ x(NZ) = | (f*TM, J5)(E),

where ¢ (.) denotes the first Chern class of f*7T'M, and f: ¥ — X is some
normalization. We can improve Theorem 4.7 in [CT] as follows:
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Theorem 2. Let M be a Riemannian 4-manifold with sectional curvatures
pinched as

5 5
—Eaz(x) < K, < —a*(x) (respectively, a*(x) <K, < §a2(x)),

Jor some measurable function a(x). If X is an admissible oriented minimal
surface in M (respectively, which satisfies Js = 0 along %), then

Xx(TE)+ x(NX) <0 (respectively, x(TZ) + x(NX) > 0), (1.12)

and, if equality holds, this implies that Jx is parallel along X (respectively, ¥ is

minimal), and either the ambient space is flat along X or the curvature pinching

ro S
lS2.

Remark. From Theorem 2 the inequality (1.12) is strict when for example M
is the hyperbolic space, or the standard sphere, since the pinching constant is 1.

Let H be the mean curvature of . Following the same idea we get:

Corollary 3. Let X be an admissible surface in a Riemannian 4-manifold M.
Let M be a Riemannian 4-manifold whose sectional curvature K satisfies

5 5
—Eaz(x) <K, <—a*x) (respectively, a*(x) <K, < Ecﬁ(x)) ,

for some measurable function a(x). Assume that one of the following conditions
is satisfied

(a) w1z = wo,

(b) wig = —wos,

(c) 2|H?> < |VJg|? (respectively, 2| H|* > |V Jx|?).
Then

x(TE)+ x(NZ) <0 (respectively, x (TZ) 4+ x(NX) > 0)

and equality implies that either M is flat along X, or the pinching g is attained.

Note that (a) together with () is equivalent to say Js, = 0 (see Lemma 4.1 in
[CT]). So our condition here is weaker than to say that Jy is parallel.
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§2. The Proof of Theorem 1

Let us collect the most useful formulas we can use, relating the operator R and
k(x,y):=R(x,y,x,¥).

Proposition 2.1. Let V be a linear vector spaceand R : VxV xV xV — Ra
4-linear map satisfying (1.1), (1.2) and (1.3) for any four vectors x, y, z,t € V.
Then for any vectors x,y,z,t € V, we have (1.4), (1.5), (1.6) and

4R(x,v,z,v) =k(x +z,y) —k(x — z,y) (due to Karcher) @.D
2R(x,y,2,y) =k(x +z,¥) —k(x,y) —k(z,y) 2.2)

6R(xsyazat) :R(x’y+taz7y+t) _R(xvy_t’z’y_t)
—R(y,x+t,z,x+0)+ Ry, x —1,2,x — 1) (2.3)
(due to Karcher)

and the Bianchi Identity expressed by sectional curvatures:

k(x+vyv,z+t)+k(x—y,z—1)—k(x+y,z—1) —
kx—y,z+t)+k(x+z,y+t)+k(x —z,y—1) —
k(x4+z,y—1) —k(x—z,y+t) +k(x+1,y+2)+
k(x—t,y—z) —k(x+1,y—2) —k(x -1,y +2) =0,

2.4)

Note that the formula (1.4) can be obtained from (2.1) and (2.3). We will give
a different proof of (1.4), because this computation will allow us to obtain (2.4).
Note also that (2.1), (2.2) and (2.3) are trivially obtained from the 4-linearity of

R.
Proof of Preposition 2.1. Since
R('x7 y+t’z’ y+t) = R(x? y’Z, )))+R(X,t,2at)+R(x’ y9Z9 t)—’_R(x’ t’Z’ }’),

then

R(x,y,z,t)+ R(x,t,z,y) = R(x,y+t,z,y +1) 2.5)
— R(x,y,2,¥) — R(x,1,2.1) '
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In (2.5) change y — #,t — z,7 — ¥, and we get

R(x,t,y,2)+R(x,z,y,t) =R(x.,t+2z,y,t+2)

2.6)
— R(x,t,y,1)— R(x,z,y,2).
Thus 2(2.5)+(2.6)+(1.1) gives:

3R(x,y,z,t) =2[R(x,y+1t,z,y+1) — R(x,y,2,y) — R(x,1,2,1)] 27
+R(x,t+2z,y,t+2)— R(x,t,y,1) — R(x,2, y,2).

Using (2.1) in (2.7) we have

12R(x, y,z,t) =2lk(x + 2,y +1) —k(x —z,y +1) —k(x +z,¥)
+hk(x—z,y) —kix+z,0)+k(x —z,1)]

(2.8)
+k(x+y, t+z2)—k(x—y, t+2) —kx+y,1)
+k(x—y, 1) —k(x+y.2)+k(x—y,2)

Now apply (1.5) to the first six terms in (2.8) and get
2lk(x+z,y+1) —k(x —z,y+ 1) —k(x +2,y) + k(x — 2, y)
—k(x+2z,1) +k(x —z,1)]
=2k(x+z,y+0) —kx—z,y+0)] —k(x+z,y+1) 2.9
—k(x+z,y—t)+k(x—z,y+t)+k(x—2z,y—1) ‘
=k(x+z,y+0)+k(x—z,y—1) —k(x+2z,y—1)
—k(x —z,y+1).
Now applying (1.5) to the last six terms in (2.8) we obtain
k(x+y,t4+2z2) —k(x—y,t+2)—k(x+y, 1)+ k(x —y,1)
—k(x+y, ) +k(x—y,2)
=k(x+y,t+2 —k(x—y,t+2)+
1
—2—[—k(x +y.t+z)—k(x+y,t—2)+k(x—y,t+2) (2.10)

+k(x_y7t—'z)]
1
=E[k(x+y,t+z)+k(x—y,t—z) —k(x+y,t—2)
—k(x =y, t+2)]
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By replacing (2.9) and (2.10) in (2.8), we arrive at

24R(x,y,z,t) =2[k(x +z,y +1) +k(x —z,y — 1)
—k(x+z,y—t)—kix —z,y +1)]
+k(x+y,z+8)+k(x—y,z—1)
—k(x—y,z+t)—k(x+y,t—2),

@.11)

Now applying (1.1) to (2.11) we arrive directly to the Bianchi identity (2.4). By
(2.4) and (2.11) we obtain (1.4). So Proposition 2.1 is proved. ]

Proof of Theorem 1. It is immediate to verify that R defined by (1.4) satisfies
(1.1), (1.2) and (1.3). Then we only need to show that R(x, y, x, y) = k{x, y)
and that R is a 4-linear operator.

Claim 1. k(x +y,x — y) = 4k(x, y).
In fact, by (1.5) we obtain

kx,x+y)+k(x,x—y)= %[k(x, 2x) + k(x,2y)1 = 2k(x, y), (2.12)
and
k(y,x+y) +k(y, x — y) =2k(x, y). (2.13)
By summing (2.12) and (2.13) and using again (1.5) we have
%[k(x+y,x+y)+k(x—y,x+y)+k(x+y,x -y)
+hk(x—y,x =W =k(x +y,x —y) =4k(x, y),

and Claim 1 is proved.

Claim 2. R(x,y,x,y) =k(x, y).
In fact, by (1.4) and Claim 1 we have

24R(x, v, x,y) = 16k(x, V) +k(x+y,y—x)+k(x —y,y+x) =24k(x, y).
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Claim 3. (2.1) holds.
Indeed, by (1.4) we have

24R(x,y,z,y) =4k(x +2z,y) —4k(x —z,y) —k(x + y,y +2) —
kx—y,y—2)+k(x+y,y—2+ (2.14)
k(x—y,y+2).

By applying Claim 1 to each one of the last four terms in (2.14) we get

1
24R(x,y,z,y) =4k(x +z,y) —dk(x —z,y) + Z[—k(x +2y+4+2,x—2)

—k(x —z,x=2y+2)+k(x+2y—z,x +2)
+k(x+2z,x—2y — 2.

Now apply (1.5) and obtain

1
24R(x,y,2,y) =4k(x + 2, y) — 4k(x — z, y) + 5[—k(x -27,2y)

—k(x—z,x+2)+k(x+2,2y)+k(x +2z,x — 2)]
=6k(x +2z,y) — 6k(x —2,¥),

And (2.1) follows.

Claim 4. (2.3) holds.
It suffices to apply (2.1) to (1.4), obtaining immediately (2.3).

Claim 5. R(x, y, z, y) depends linearly on z.
By (1.6) and (2.1) we have R(x, y, Az, y) = AR(x, y, z, y). By (2.1) we have
4R(x,y,z,y) =k(x +z,y) —k(x — 2, ) (2.15)
and

4R(x,y,a,y) =k(x +a,y) —k(x —a,y). (2.16)
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We sum (2.15) and (2.16), apply (1.5) and (2.1), and get

1
4[R(xv y’Z,)’)+R(x,y,aa )’)] - E[k(2x+z+a,}’)+k(z—a,}’)

—k@2x —z—a,y) —k(a—z,y)]
=2R(2x,y.z+a,y)=4R(x,y,z+a,y),

So Claim 5 is proved. Now Claim 5 together with (2.3) imply that R(x, v, z, #)
depends linearly on z. Thus Theorem 1 is proved. U

§3. The Proof of Theorem 2 and Corollary 3

The curvature tensor can be expressed as

Q= E Rijrewi A wy.
%t

It follows from Propostion 4.2 in [CT] that if ¥ is minimal, then

1
X(T'S) + X (NE) = f Qs +f HP - —/ VP G
= b3 2 /s
where Qx = Q1> + 34, and H is the mean curvature vector.

Proof of Theorem 2. We will prove for the case of nonpositive pinching. The
other case is completely similar. Since

f Qy = f (K(€1, e2) + R(eyq, ea, 3, e4))dA, (3.2)
x %

and
K(er,e2) + R(ey, e, 3, €4) =
1
K(ey, e) + E[K(el +e3, e+ es)+ K(er — ez, 0 —eq)+

K(ei +es,e0—e3) +K(eg —es,er+e3) — K(ey +e3,e2 — es) (3.3)
— K(ey —e3,ex+es) — K(er +es, 62 +e3) — K(ey — eq, €2 — €3)]

2 25
< —d’(0) - 3@ W+ 35670 =0,
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hence (1.1) is proved. Notice that the equality holds in (3.3) if and only ifa = 0
or

K(e1,e) = K(e; +e3,ex + e4)
= K(ey —e3,e2—e4)

= K(e; — e4,e; + €3)

=K(e; + e4,¢p —e3) = —a’,
and
K(ey —e3,e2+e4) = K(ey + e3,e2 — ey)
= K(e) +e4,e2 + e3)
=K(e1 —es,60 — &3)
=—d
So the pinching constant is % and the proof is complete. O

Proof of Corollary 3. By [CT], p. 883, we have
x(TX)+ x(NX)

= /2(5212 + Qa4 + w13 A waz + Wia A Waa + Wiz A wis + Woz A W)
= /2(912 + Q34 + wig A (was + wia) + (wig + wa3) A w24)

= /2(912 + Q3+ wis A (Wis + wig) — wag A (wig + w23))

= /E(le + Q34 + (w13 — wae) A (W14 + w3)).

So any of the conditions of Corollary 3 implies that

X(TS) + x(NS) = f (@12 + D),
>

and the same proof of Theorem 2 applies. O
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