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Abstract. We study the motion of the slightly compressible multi-phase flow model 
proposed by Chen, Glimm, Sharp and Zhang, The interface velocity and constitutive 
law are analyzed by derivation of the exact quantity. Using singular perturbation theory, 
a formal asymptotic expansion is derived for the solution of the compressible equations. 
An asymptotic analysis in the incompressible limit, for slightly compressible flows sup- 
plies important new information to resolve nonuniqueness of the pressure difference 
between the two fluid species of the incompressible flow equations. 
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1 Introduction 

We study the motion of the slightly compressible chunk mix multi-phase flow 
model proposed by Chen et al [1]. The multi-phase flow model provides an 
averaged, or coarse gained, description of the mixing layer formed when an 
unstable interface between two fluids is driven by acceleration. New closures 
of the two pressure model of multi-phase flow have been proposed recently [4, 
8, 9, 10, 11]. The physical basis for the model and algorithms for numerical 
solutions of the model equations have been examined [2, 3, 6, 7]. A closed 
form solution was introduced in the incompressible case [11]. We derive an 
exact expression for the interface velocity by manipulation of the governing 
equations. The formulation implies that the velocity constitutive law is not a free 
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214 J. GL1MM AND H. JIN 

parameter. We present a zero parameter model, with the velocity constitutive 
law given implicitly in terms of the solution. 

The equations of compressible multi-phase flow in appropriate nondimen- 
sional form are a nonlinear hyperbolic system depending on a large parameter )~, 
the reciprocal of the Mach number. The incompressible limit of the compress- 
ible multi-phase flow equations is a time-singular and layer-type problem which 
requires advanced techniques in asymptotics. We discuss here the outer limiting 
behavior of the solutions of the compressible multi-phase equations as )~ --+ ec. 
Using singular perturbation theory, we derive formal asymptotic expansions of 
the solutions of the compressible equations, describing the outer limiting prob- 
lem, which are uniformly valid in space. A necessary and sufficient condition for 
convergence of compressible pressures through the second order of the asymp- 
totic expansion to the incompressible pressures is derived. An additional degree 
of freedom exists in the pressures for the incompressible limit. This condition 
fixes a degree of freedom related to the relative compressibility of the two fluids 
in the incompressible pressures. 

1.1 The Flow Equat ions  

The fluids are distinguished by a subscript k, where k = 1 and k = 2 denote 
the light and heavy fluids, respectively, and the primed index k' denotes the 
fluid complementary to fluid k, i.e., U = 3 - k. The dependent variables are 
ilk, P~, Vk, and Pk, which denote, respectively, the volume fraction, density, 
velocity, and pressure of fluid (phase) k. We allow here the possibility that an 
externally imposed acceleration g = g( t )  > 0 is time dependent. The equations 
of motion are 

Ot 

together with the constraint 

v* Ofk -I- - -  = 0 ,  (1.1.1) 
Oz 

O vk O flk 
+ #kPk--:-- + pk(Vk -- V*) = 0, (1.1.2) 

OZ OZ 

+ flkO~ p-k + (Pk -- P*) 
Oflk 

= flkPkg(t), (1.1.3) 
OZ 

fl l  -[- •2 = 1 ,  (1.1.4) 

A ^Yk where Pk = kPk , Yk > 1, Ak is the entropy of the fluid and assumed to be 
dpk(Pk) constant within each fluid but A1 r A2, and -dPk > 0 for Pk > 0. The 

Bol. Soc. Bras. Mat., Vol. 32, No. 3, 2001 



AN ASYMPTOTIC ANALYSIS OF TWO-PHASE FLUID MIXING 215 

quantities 1)* and p* represent averages of microscopic quantities. In [8, 10] a 
general model for the average interfacial quantities q*, q = v, p, was proposed 
and examined against DNS data of Rayleigh-Taylor instabilities. We denote 
Z~ = Z~ (t) as the position of the mixing zone edge k, defined as the location of 
vanishing/3~ and Vk = 2k as the velocity of the edge k. At edge k, the following 
boundary data holds 

1)~ = Vk(t) at z = Zg(t) . (1.1.5) 

An exact expression for v* in Eq. (1.1.1) is derived from the compressible 
continuity equations 

O (& pk ) O (& p~1)~ ) 
- -  + - O .  ( 1 . 1 . 6 )  

Ot Oz 

Eq. (1.1.6), with the spatial derivatives expanded, may be regarded as two equa- 
tions (k =1, 2) in the two unknown quantities O~a/Ot and O~l/OZ. These equa- 
tions are easily solved, and the result when substituted into Eq. (1.1.1) yields 

(01)1 1 Dip1) {0V2 1 D2P2"~ 
fll \ Oz + P--1 D---T- u2 ~- t~2 ~ Oz + P2 ~ ]1)1 

(01)1 1 DlPl ) + fl2 { Ov2 1 D2P2"~ 
fll ~ Og -1- I0--1 D---~, ~, OZ -1- t02 ~ '] 

~1v2 + d{~2Vl 

~1 + d r &  ' 
(1.1.7) 

where the phase k convective derivative is denoted Dk/Dt  -- 3/Ot § vkO/OZ and 
the coefficient 

3vk, 1 Ok, pU 1 Ok, flU - - +  
3z Pk' Dt ilk' Dt (1.1.8) 

d~ = 3Vk 1 Dkpk -- 1 Dkflk - - +  
3Z Pk Dt ~k Dt 

is a ratio of logarithmic rates of volume creation for the two phases. Refer to [ 16]. 
The constitutive factor d~ is given in terms of the solution and it thus is not a 
free parameter. It is obtained by manipulation of the original unclosed equations 
and it thus has no content which goes beyond these equations. These equations 
are not sufficient to determine any of the primitive variables. Any new relation 
involving the primitive variables is in principle admissible as a closure. 
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216 J. GLIMM AND H. JIN 

1.2 Closure 

From (1.1.7), the interface velocity v* is proved as a linear combination of  vl 

a n d / ) 2 ,  

I) 1) 
U* ~-- ]-L1U 2 -3 V [s , (1.2.1) 

where the mixing coefficient/z~ satisfies 

f lk  
#~k (ilk, d~) -- (1.2.2) 

and d~ is defined in (1.1.8). The property d~d~ = 1 from (1.1.8) imposes the 
fact that/ ,~ + #2 = 1. The boundary data 

k [ilk=0 = 0 /&k [/3k=l 1 ( 1 . 2 . 3 )  

implies that v* = Vk in the limit of  vanishing ilk. We assume that / z~k - > 0 and 
that lz~/fik is continuous on 0 < flk --< 1 and for all t. Therefore l*~(fik, d~) is a 
C ~ function of  fl~ and d~. 

The identity (1.2.1) gives a zero parameter model, with the velocity constitutive 
law d~ given implicitly in terms of  the solution. The coefficient d~, defined in 
(1.1.8), can be viewed as a ratio of  volume creation terms for the two multiphase 
species. We assume as a closure relation, that the ratio is spatially uniform, 

namely 

Odf = O. (1.2.4) 
Oz 

This condition states that the relative extent of  volume creation for the two fluid 
species is independent of  the spatial location in the mixing zone. Thus we assume 
that df  = d~(t) is a function of  t alone. We reformulate (1.1.8) as follows 

= 

f z  zk' avk, 1 Dk, Pk, 
k 0--7- + Pk' Dt 

f zk, 1 Dk, pk, 
- -  dz Vk, -- Vk,(Zk, t) + ' - -  dz 

dZk Pk' Dt 

f z  z~' ark 1 Dkpk 
k 0 - - 7 + - - - -  Pk Dt 

f z~, 1 D~pk dz -Vk  + Vk(Zk,, t) + - -  dz 
a zk Pk Dt 

f zk' ( l k Dk Pk  
Vk, -- Vk(Zk,, t) -- fik 

a zk Dt 
1 Dk, pk,) 

Pk' Dt ] dz 
(1.2.5) 

f z~ ,  ( lk Dkp k 
--Vk + vk,(Zk, t) + ilk' 

az~ Dt 
1 Dk'pk' "] dz 

Pk' Dt / 
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by using (1.2.4) and the identity 

Vk(Zk', t) -- Vk'(Zk, t) 
Zk, 3 

Jzk -~Z (fikVk + fik'Vk') dz 

f zk' fik DkPk ilk' Dk'Pk' 
= - - a Z k  Pk D ~ + p k  ' Dt 

- -  d z  (1.2.6) 

from (1.1.3). This form of closure is physically reasonable and experimentally 
testable. For each order of perturbation theory examined here, the relation (1.2.5) 
enters into the equations for the solution variables of the same order, and sup- 
plies an otherwise missing constraint on the pressures, assuming the constitutive 
law d~ is known, or specifies the constitutive law if a specific resolution of the 
nonuniqueness of the order by order pressure has been selected. In the present 
context the expansions are examined only through second order, which is the 
first order in which the pressure makes zero contribution to (1.2.5) and to the 
constitutive law d~. 

A model for the interface pressure p* is given as a similar expression to (1.2.1) 
when the flow is assumed weakly compressible, 

p* = / z f p 2  + /z~pl  , (1.2.7) 

where # ;  _> 0 and/zf  + / z  p2 = 1. Consistency of p* with the microphysical 
equations requires that p* = pk in the limit of vanishing ilk, which translates 
into boundary conditions 

(1.2.8) 

The coefficient/z p is assumed to depend on spatially dimensionless quantities 
only. On the basis of the boundary conditions (1.2.8) on/x p and the freedom 
to choose a common scaling factor for both the numerator and denominator, we 
can restrict the fractional linear model to 

flk 
IzP(fi~, df)  = flk + d f  (t)fik, " (1.2.9) 

It is assumed that #;/f lk  is continuous on 0 _< flk _< 1 and for all t. Thus 
tx q (ilk, d q) is a C ~ function of flk and d ; .  Imposing the condition # f  + #~ = 1 
leads to the requirement that d(d  p = 1. Thus the closure p* contains one free 
time-dependent function, namely d ( (or d;) .  
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218 J. GL1MM AND H. JIN 

1.3 Incompressible Flow 

The equations of incompressible fluid flow for volume fraction f~,k velocity vff, 
and scalar pressure p ~  are given by k 

ofy  v, ~ o fy  + = O, (1.3.1) 
3t 3z 

f~~176 3VYoz + (vk~ - v*~) 3f~3____z_ = O, (1.3.2) 

~ - ~  P k  (1.3.3) 
~'k k k Ot + v~ Oz / + fk ~z 

+ (P2-p*~)  off7 ~ P ~  , 
Oz - Pk ~ g 

together with the constraint 

f i~ + f l ~  = 1, (1.3.4) 

where p ~  is the constant density of phase k. Initial data for (1.3.1)-(1.3.4) k 

(fiT(z, 0), vT(z, 0), p~(z, 0 ) ) =  (fl~,0(z), vk~O(Z), P~,o(Z)) (1.3.5) 

are assumed to be piecewise Cl-smooth and flk,~O(Z) is assumed to be monotone. 
Under the assumption p ~  < p~ ,  we consider a mixing layer occupying a planar 
strip Z~(t) < z < Z~(t) with the fluid below the strip purely phase 2 (heavy) 
and above the strip purely phase 1 (light) and the fluid far from the mixing layer 
at rest, where Z 7 = ZT(t  ) denotes the position of the mixing zone edge k, 
defined as the location of vanishing fl~ (z, t). We assume V~  < 0 < V2 ~,  
where Vk ~ = 2 ~  is the velocity of edge k. We also assume that fl~k is smooth 
and monotone for all t, Z~(t) < z < Z~( t ) ,  and that v~ (v~) is continuous 
across the upper (lower) mixing zone edge, where fl~ -- 0 (fi~ = 0). At edge 
k, the following boundary conditions must hold, 

f T = O ,  v 7 = V ~  a t z = Z T ( t ) .  (1.3.6) 

In [16] an exact identity for v *~ is 

m 

~7(ov~/Oz)vC + ~C(ovC/Oz)v7 
~(ov~/Oz)  + ~y(ovy/Oz) 

V C K )  O O  U O G  ( X ~  

[d, 1 V 2 + ] 1 ,  2 I) 1 (1.3.7) 
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which follows from (1.3.1) and (1.3.2). 

defined as the fractional linear form, 

and the coefficient 

Here the mixing coefficient/z ~oe is k 

~oe oe d ~oe) = f i~  (1.3.8) 
1)oe oe 

d~ ~ = (1.3.9) 
Ov /Oz 

measures the relative extent of volume creation of  multiphase volume for the two 

species. The assumption that the ratio (1.3.9) of  velocity divergences is constant 
in space, namely 

Od~oe 0 

Oz Oz 

is equivalent to the closure relation 

d~ ~ _ 

ovy/az) 

V~(t ) l  

(1.3.10) 

(1.3.11) 

In fact, (1.3.11) enters to the zero -th order term of the volume creation ratio (1.2.5) 

for two compressible fluid species. Thus we require as a closure assumption, 
that d~ ~ = d~ ~ (t) is a function of t alone. 

A similar expression for the average quantity p*~ is modeled as a convex 
linear combination of p ~  and p ~ ,  

p*~ -- /z p~ P~- ~ (1.3.12) - -  1 /J2  @ ]J'2 / ) 1  , 

p e c  p o e  
where/z  k > 0, # i  p~ + #foe = 1. The fractional linear model for/x k , 

)= ,4poe (tX;ioe (1.3.13) 

p ~  
has been proposed in [10] by assuming that the mixing coefficient/z k depends 
only on spatially dimensionless quantities. The constitutive coefficient d poe is 
modeled by 

d~ ~ -- P~' (1.3.14) 
pY 

Thus the closure q*~, q = v, p, contains no free parameters. 
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220 J. GLIMM AND H. JIN 

1.4 Analytic Solutions for Incompressible Flow 

Analytic solutions of the incompressible problem (1.3.1)-(1.3.5) have been ob- 
tained in z ~ R, t >_ 0 and are piecewise C 1 functions with discontinuous 
derivatives at the mixing zone edges z = Z ~ ( t )  of incompressible flow. The 
velocities vff and v *~ can be given explicitly in terms of the edge velocities V~  
and the volume fraction fi~. The volume fraction/3~ as a function of space and 
time is given implicitly by a history integral of v *~. In the following, we will 
briefly describe a solution for the volume fractions and velocities in terms of the 
edge trajectories for a fluid mixing layer. 

The incompressible velocities satisfy (1.3.2) within the mixing zone Z ~  < 
z < Z ~  and satisfy 

Ov~ _ 0 (1.4.1) 
az 

( - 1  ~k'7~ The solution to the ODE outside of the mixing zone, (-1)k 'z  > ~ , -k, �9 
(1.4.1) which satisfies the boundary condition that v ~ vanishes at the upper wall 
of the finite but large domain is 

v 1 (Z 2 , t )  0 i n z > Z ~ .  (1.4.2) 

Next we solve (1.3.2) for v~  in Z ~  < z < Z~ .  From (1.3.2), simple calcula- 
tions show 

0 
( 2v7 + vk, ) = 0, 

Oz 
3 

- -  VO(2  OO (vk~ - G vk ) = 0 .  
Oz 

(1.4.3) 

(1.4.4) 

These ODE's can be integrated to yield 

G ~  O o  OO O o  
fik vk + ilk' G '  = Uo( t )  , (1.4.5) 

~ ~ Ul ,k ( t )  (1.4.6) V k ,  - -  d k Vk = 

which are purely functions of t. Evaluation at the mixing zone boundaries Z ~  (t) 
yields 

O<3 O0 
v k, ( Z  k , , Uo(t )  --  v k ( Z k , , t ) =  oo o~ t)  (1.4.7) 

u~,~(t) =- vk~, (z~ ,  t) - d ~ v ~ ( z ~ ,  t) 

= vk~(Zk~,, t )  -- d ~ v ~ ( Z k ~ , ,  t ) .  (1.4.8) 
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~ ~ v  ~ in (1.4.5) must join continuously to v~ at The mean velocity flk Vk + ~'k' k' 
Z = Z ~  and to v~ c at z = Z~ ,  the former of which has been determined in 
(1.4.2). Thus we obtain 

Uo(t) = v ~ ( z T ,  t)  = v T ( z ~ ,  t)  = o. (1.4.9) 

The identity (1.4.8) leads to the relation 

- ~ Z  ~ t) IV~,~I (1.4.10) 
u~(z~, t) IV~l 

by use of (1.3.6), proving (1.3.11). Substituting (1.4.6) for #~ into (1.4.5), the 
solution for the incompressible velocity is given by 

V2~ ~, I ~  
oo (fi~o, t) ---- _-- VlOO #k'~~176 (1.4.11) 

u k 
I V ~ l ~  ~ + IV~l& ~, 

in the mixing zone. Using (1.4.9), the solution to the ODE (1.4.1) is 

(1.4.12) vy  = v y ( z T ,  t) = 0 

in the single phase z _< Z~ .  
Solving the interface equation (1.3.1) by the method of characteristics gives 

an implicit equation for the volume fraction profile, 

f0' z( f i~ ,  t) = z( f l~ ,  O) + v*~( f i~ ,  s )ds .  (1.4.13) 

If the initial mixing layer is negligibly thin, then differentiating (1.4.13), we 
obtain the equation 

Oz L' v~' 2(s)V~2(s) 
Ofl~ -- ( -1 )k '2  ds .  (1.4.14) 

oc S co 3 (ivy(s)l y + iE, ( ) 

All of these results have been presented in great detail in [9, 11]. 

1.5 Nondimens iona l i za t ion  of  Compress ible  Flow 

The first step in understanding the singular limit of incompressible flow is through 
the nondimensionalization of the compressible fluid equations. The equations of 
compressible isentropic ideal fluid flow are written in nondimensional form in 
terms of (fl~, p),  v)) depending on a large nondimensional parameter k. Since 
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the equation of state disappears from the equations in this limit, we assume a 
simple equation of state for the compressible equations, that of a y-law isentropic 
gas, 

P(P, )0 =- X2p(p) = X2AP • = AzP • , y > 1, (1.5.1) 

where A is the entropy of the fluid. An isentropic gas does not have temperature, 
energy, or entropy as a dynamic variable, but has a (constant) entropy Ax = )~2A 
which becomes large as )~ increases. The above formula defines p(p) in terms of 

P(P, )0: P(P) = X-2p(p,  )0. The pressure p(p) is bounded as X --+ co. Here 
@(p, x) p(p,  X) is a one-parameter family of equations of state with dp > 0 for 

p > 0 and p(p,  X) -+ c~ as X --+ oe. The sound speed calculated from (1.5.1) 
is 

( dp(p'~, ~) ) 1/2 ( dp(lOL) ~ 1/2 
c = ~ ~ = (yp(pX, X)/pX)l/2 = X I, ~ ] 

In particular, the Mach number M is defined by the ratio of the typical fluid speed 
]Vm [ to the typical sound speed Cm, 

M _ m Ivml IVml 
m 

cm (gP(Pm,)O/Pm) 1/2 " 

In this physical model, entropy and temperature increase while velocity and 
density are fixed. Therefore c ~ ec and M --+ 0. On the other hand, a )~- 
dependent change of length scales would keep the global system entropy and 
the temperature fixed and send all vX's to zero when a length scale tends to zero 
as )~ --+ oc. Also pressure, which is force per unit area, would remain fixed 
while the extensive quantity, force, tends to zero due to the change in units for 
measurement of area. Then c is fixed and also M --+ 0. This is the normal 
version of the incompressible limit. Introducing the pressure pX = p(pZ), with 

P(P) = (A_lp)!/r  dp(p) _ yA1/• p(y_l)/• ' 
' dp 

we obtain the following hyperbolic system of the dimensionless compressible 
equations: 

- -  + v  *z0flk - -  0 ,  ( 1 . 5 . 2 )  
Ot 8z 

(Op~ v ~ O p ~ - ~  xOv~ v * Z ) ~ = 0 ,  (1.5.3) 
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\ at + V Tz) + az 
2 X p , X )  Off ff 

+ ;V ( P k -  Oz 

= /~xpx k kg,  (1.5.4) 

fl~ +f l~  = 1. (1.5.5) 

)~ p) and p)  We want to analyze the singular limit process of the solutions fl2, G, 
as;V-+ oo. 

2 The Asymptotic Analysis of Two-phase Flow Equations 

A uniformly valid asymptotic expansion describing a singular limit process ex- 
ists uniquely. Each order of asymptotic expansions for the solutions of the com- 
pressible flow (1.5.2)-(1.5.5) describing the incompressible limit process has an 
independent existence, defined as proportional to a derivative of the compressible 
solution with respect to ;V evaluated at the value ;V = 0 of the expansion parame- 
ter. The slow variables and fast variables in the uniformly valid expansion, which 
have the slow time scale t and the fast time scale ;vt, ;V --~ cx~ exist within identi- 
cal expansion orders and they are defined independently. In the exterior domain 
(-1)~'z > (-1)k'Zk , , there exists single phase flow and the compressible flow 
is described by the Euler equations for Vk, pk, p~ with flk = 1. Specifically, 
in this domain the limit process is the incompressible limit of the compressible 
Euler equations which has been discussed in [5, 12, 14, 15]. Main difference 
of our case is complications of second phase. In this paper we only discuss the 
outer limit process valid away from the initial curve t = 0 and uniformly valid in 
space. Further discussion on the fast variables and uniformly valid expansions 
of the solutions for compressible multiphase fl0w equations will be presented 
in [13]. 

2.1 Formal Expansions 

Consider the dimensionless compressible isentropic ideal multi-phase equations 
in (1.5.2)-(1.5.5) suppressing superscript ;v's. We introduce outer limit asymp- 
totic expansions 

Vk 

Pk 

+ + o(;v-3),  

.~. p~ O's) .-~ ;V lV~I's) q- ~-2Vs q- O(;V-3)  , 

~(O,s) -t- ~'-1 ^(l,s) __ - - -2  (2,s) = & - , ~  & -t-^ & +O(;V-3).  

(2.1.1) 
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224 J. GLIMM AND H. JIN 

The equation of state gives us the expansion 

)- lp(1,s)  +)~ 2p(2,s) Pk = p~O,s) + k k + O(X -3) (2.1.2) 
).-1 _2r ^(0,s)~ ^(1,s) 

= Pk(P~ ~ + c~tPk )Pk 

i/1 d2pk r (0.s), (1 s)2 2~ (0 s), (2,s)'~ 
._[_)-2 I X ~ - 2  tPk )Pk ' H- c k ( P  k ' )Pk ) -~ O()~-3) , 

\ Z aPk 

where c 2 (p) = dpk /dpk  (p) = Yk Ak p yk- 1. The variables with a slow time scale 
in asymptotic expansions of the solutions of (1.5.2)-(1.5.5) are determined in the 
mixing zone Z1 < z < Z2 and in the single phase region (--1)k'z > (--1)k'Zk ,, 
respectively. The equations for the slow variables are derived by repeated appli- 
cation of outer limit to the compressible equations (1,5.2)-(1.5.5) and by equating 
terms of the same order of X. The leading order terms satisfy nonlinear differential 
equations. The slow variables of higher order in X -1 satisfy simple differential 
equations which are linearized incompressible equations. The variables fi~m,s) 
and " (re,s) u~ , m = 0, 1, 2, solve a subsystem of equations. The remaining equa- 

tions can thus be viewed as equations for p~m,s) alone. An effective velocity is 

. ( m , s )  and fl~m,~). Decoupling is a part of solvability. Our introduced to decouple v k 
_(0,s) analyses of Pk , p~l,s) and p~2,s) use an effective pressure. We solve the equa- 

tions to obtain two linear relations between the k and k' variables. From these 
relations we express the solutions in terms of the initial and the boundary data. 
For details, the reader may consult [13]. In higher order in )-1,  there exist tran- 
sition layers in the intermediate region of the mixing zone edges Zk and Z ~  for 
the compressible and incompressible flow. The slow variables, uniformly valid 
in space, are determined by matching of the outer limit and the transition-layer 
expansions. 

2.2 Boundary Conditions and Asymptotic Assumptions 

We specify boundary conditions for the compressible flow. Imagine a container 
subject to a strong downward acceleration. In the flame of the container, gravity 
points up. We need to keep a top on the container, so that the fluid stays inside, 
but the bottom can be open. This intuitive picture leads to the following set of 
boundary conditions. We assume existence of rigid wall at the top of a finite but 
large domain 2). Then the velocity is zero and the pressure is unknown there. At 
the bottom of this domain, we conceptually have an open container. This fixes 
the pressure at some ambient value, but not the velocity at the bottom of �9 This 
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leads to the boundary conditions 

vl(z +~,t) = O, (2.2.1) 

p2(z -~, t) = const ,  (2.2.2) 

where z = z +~ (z = z - ~ )  denotes the position of  the upper (lower) wall of  the 
domain 9 .  The incompressible flow boundary conditions must be derived from 
these assumptions. 

Measurement  of  the trajectory of  the mixing zone edge must be provided as 
data. We assume a formal outer limit asymptotic expansion for the compressible 
mixing zone edge, 

Z)(t) = Z~~ + Z-lZ~a")(t) + X-2z~Z's)(t) + 0(,t.-3), (2.2.3) 

where Z~ ~ = Z~ ~ (t) denotes the location of  vanishing/~0,s). Thus Z)  and 
7(m,s) each of  the expansion coefficients ~k , m = O, 1, 2, are input to the model 

equations. We assume that the first leading order term equals to the incompress- 
ible edge trajectory, 

Z~ ~ = Z~~ (2.2.4) 

We also assume that 

>_ 

z (o) = zy(o) 

t > O ,  
(2.2.5) 

and assume a similar inequality for any finite number of  terms in the expansion 
(2.2.3). Thus, 

(--1)kz~ re's) > 0 ,  rn = 1 ,2 .  (2.2.6) 

The edge velocity of  the compressible flow satisfies Vk = Zk = vk(Zk, t) and 
therefore, it must have an asymptotic expansion associated with the expansion 
(2.2.3) in the form 

Vk~(t) = Vk(O,s)(t) _~_ ) - 1  r(kl,s)(t)  _~_ )-2V(k2,S)(t ) + O(X 3). ( 2 . 2 . 7 )  

From the expansion of  Vk in (2.1.1), we see that the leading order term of  the 
(0,,)c7(o,,) t), where Zk (~ = Z~ ~ asymptotic expansion of  Vk must be v k ~ k  , 
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denotes the location of vanishing fi~O,s). Thus V~ ~ (t) = u~ (O,s)kz'k~'~(O's), t). From 

(2.2.3) and (2.2.7), we note that 

dZ m,s (t) 
dt 

_ m = 0, 1, 2. (2.2.8) 

In Sec. 1.1 the mixing coefficient/z q , q = v, p, is given as the fractional linear 
form, (1.2.2) and (1.2.9), with the constitutive law d q . An asymptotic expansion 

for/z~ can be directly derived from the expansions of ilk, introduced in (2.1.1), 
and d q . We assume that the coefficients d[(t) and dP(t) have a formal outer 

limit asymptotic expansion 

d q ( t ,  •) = dq(~ + k - l d q ( l ' s ) ( t )  + )~-2dq(2's)(t) + O ( k - 3 ) ,  ( 2 . 2 . 9 )  

where q = v, p, 

dk(~ ( , ) -  VI{~ v~~176 (2.2.10) 
v(O,s) - -  . ( 0 , s ) / 7 ( 0 , s )  ' 

v k kLk , t)  

dff(o,~) (t) = p~~ (z~~ t) (2.2.11) 
p (O,s) 1,7(O,s) 

k kz'k , t )  

We also assume that q(j,s) d~ (t), j = 0 , 1 , 2 ,  be longs to  C ] i n 0  < t < o~. 
Specifically, we assume that for 0 < t _< T, 

ddq(j,s) 
d q(j's) + ~ -  < C](T) ,  j = 0 , 1 , 2 ,  (2.2.12) 

where HI" ]1 is the maximum norm and C1 (T) is a constant depending only on T, 
for any T, 0 < T < o~. The property dqd q = 1, q = v, p, gives the relations 

dq(O,S)  Aq(1,s) 
1 ~2 + 

dq(O,S)Aq(2,s) Aq(1,s)Aq(1,s) 

d q(O's)Aq(O's) 1 (2.2.13) 
1 ~'2 ~ ' 

d q(l's)3q(~ = 0 (2.2.14) 
1 '*2 

d q(z's)Aq(O's) = 0 (2.2.15) 
1 '*2 

between the terms in the expansion (2.2.9). 
We assume 

d~~ #- d p~  for a l l t .  (2.2.16) 
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A 

Figure 1: The expansion ratio ~ 2 / C g l  and the density ratio p~/p~  of the mixing 2 / 1 

zone as a function of the Atwood ratio A = ( P 2 ~ 1 7 6  p~)/ (p~ + p~). 

._ (2,s) This assumption is used in the proof of the second order term p~ . In the 
special case of RT mixing of the incompressible self-similar flow under a constant 
acceleration g > 0, Z~( t )  = (--1)%tkAgt 2, where oq and a2 are positive 
constants which depend on the Atwood ratio A = (p~ - p~) / (p~ + p~). The 
ratio [V~/V~[ = 0~2/O! 1 = d~ ~ and as a constitutive assumption p~/p~2/1 ---- 

d p~ are constants, so d~ ~ (t) r d~ ~ for all a twood numbers a 7~ 0 in this 
problem. See Figure 1. 

2.3 The Slow Transition Layers 

In this section, we discuss transition layers in the gap of the mixing zone edges 
Z~ and Z~ ,  caused by moving of the compressible edge faster than the mixing 
zone edge of the incompressible flow. Since we assume (2.2.6) in the outer limit 
expansion for Zk, there are two new transitional regions 

in the first order expansion, and similar additional regions at every new order. 
The slow variables are matched continuously order by order at the boundaries of 
these layers. Solution of the asymptotic transitional terms is needed to provide 
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boundary conditions for the slow variables by matching. In this way a uniformly 
valid expansion in z is defined for the slow variables. 

At 

. . . .  -1 ~,(1,s) ._ .  ~r,~l)~ ~ z=Z~' 

" \  \ i / o ; . - - - z = ~ 2  ~-A 

q i I /  "1 
~h 

. , ,  . . . . . . . . . . . . . . . . . . . . . .  a . . . . .  ' . . _ _ . *  . . . . . . . . . . . . . . . . . . . . . . . .  , .  

z 

Z~ 1,s) 

Figure 2: The five layers in the first order expansion 

The first order slow variables have the transition layers through z = Z ~  + 

X-I Z}l,s), i = k, k'. Therefore five regions, the lower exterior, lower transitional, 
incompressible mixing zone, upper transitional and upper exterior define the first 
order expansion. As seen in Figure 2, we define the five regions 

1 (1,s) ~k"(1) = {(z, t) " (--1) k (Z•  +~. Z~ ) _< (-1)~Z} , 

= { (z ,  t ) .  < z < 

We introduce a new inner space variable 

and assume transition layer expansions of the form 

: ~ - 2 R  (2,st) (~ (1), ~,-lfl(l'st)(~ (1) t) + t) + . . .  i~ k ~O,s t )  (~i(1), t) + k i ' t~k i ' 

1)k tJk" (O'st) r~'(1)kgi , t )  -t- 1 - 1  .(1,st),~.(1) t )  -[- ~.-2U(2'st)(~(1),  t) + . . .  
(2.3.3) 

1 _  2 ^ (2,st) { ~. (1) ~,_lp(1,st)(~(1), t)  + ,~  & ~ , t)  + . . .  Pk = p~O,st)(~.i(1), t )  -}- k i 

) _ l p ( 1 , s t ) ( ~ ( 1 )  t )  -+- ~.-2p~2"st)(~i(1), t )  + ' . .  Pk = p~O.,t)(ffiO), t) + k i , 

in ( -1) i+Iz}  l's) < (-1)iffi O) _< 0. We make the change of variables from (z, t) 
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to ((i (1~, t). Eqs. (1.5.2)-(1.5.5) become 

O fl__~k - k (Vi ~ + k 1V/O")) 3fl~ + kv* Ofl~ _ 0 (2.3.4) 
Ot 0~.i (1) O~'i (1) ' 

+ kvk + ;kfl~p~ (1) 

, O& 
+Xpk(vk -- v )O~d) = O, (2.3.5) 

Ogi (1) . O~i  

+k3(pk ,, 3fl~ = flkpkg(t) (2.3.6) 
- -  p ) 3 ( i  d)  

We substitute the transition-layer expansions (2.3.3) into the compressible equa- 
tions (2.3.4)-(2.3.6) and equate powers of k. Since X is arbitrary, the coefficient 
of )P for each order n must vanish, defining differential equations for the tran- 
sitional terms. The transitional variables are solved in closed form in [13]. 
Matching the outer limit expansions in the exterior domain with the outer edge 
of the transition-layer, and the inner edge of the transition layer with the outer 
edge of the incompressible mixing zone to O (k -1) defines the uniformly valid 

�9 ( l s )  .(1,s) _(1,s) _(1,s)  expansion in z for the slow variables flk ' , Vk , Pk and Pk �9 This process 
. (O,s) _(O,s) also determines the zero-th order terms v k , Pk and p~0,~) uniformly in qdl) k' " 

Therefore the zero-th order terms are defined in the region ~1) U ~y~l) U 2V[ U ~.(1) 

extending the definition in ~1) U ~y~l) U A/[. 

i t  
z=ZF 

z =  Z ~~ /~ l zl(l 's)  ""  ~ ( 2 ~ 1 ) ~  : ~g[ i z =  Z~~ 

. . . . . . . .  ?-,~2) " ", X ! x / ~ 1 ( 1 )  . " Z =  Z~~ Z ~  l 's )  
e~ -1 tl, s) -2 tz,s) ......... x : r 

z = Z  1 -~X Z 1 -F-'~ Z1 ........ x \  \ : / " 5 " ~ ( )  "i . . . .  
"% x \ . / ~ -} . . . . . .  ~oo__ ~ 1  ~i,t ,s) x-2,7tz, s) 

/,~ "'o+ \ ~ : / i -  _.,. .o. Z=ZJ2 m A  Z~ 2 - - A  D 2 ~ -...:, \ . / ,- ....... 

"I i I,.'- ..... 
~1 . . . . . . . . . . . . . . . . . . . . . . . .  �9 . . . . .  "-----~ . . . . . . . . . . . . . . . . . . . . . . . .  t ~  

Z 

Figure 3: The seven layers in the second order expansion 

In second order, there are four transition layers, the first layers defined as above 
and the second layers extending out to z = Z ~  + k-1Z}l.s) + k_2 Z}2,,), i = k, U. 
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Therefore, the second order slow variables have seven regions, the lower exterior, 
second lower transitional, first lower transitional, incompressible mixing zone, 
first upper transitional, second upper transitional and upper exterior. We define 
the seven regions as the following 

k I 

_< ( -1)kz  < ( - 1 )  ~ Z ~ + X  z k + x - a Z ~  2'') , 

T (') = { ( z , t ) " ( - 1 ) ~ Z ~  < ( -1)kz  < ( - 1 )  k ( Z ~  +)~-IZ~I"))1 k t - -  , 

= { ( z , t ) :  z ~  < z < z y } .  

Introducing the second inner space variable 

t Z -- Z~ xD "q- ) ~ - I z  1,s) q_ ~ - 2  Z 2,s) , i = k, k', (2.3.7) 

we make the change of variables from (z, t) to (ffi(2), t) in (1.5.2)-(1.5.5), leading 
to the equations 

_ _  Ofik _ O, (2.3.8) 0t~k )v2 (Vi  ~176 Jr- )v-lv/(l 's)  Jr- )v-2Vi(2's)) Oflk -]- ~v2V* ~(2) 
O t 3 gi(2) O gi 

o,o, a, - ( + vi(l's  + '- '  v?s ) + a#l  ] 

ark a& 
--}- ~.2 flkPkq--- ~ q- )~2pk(V k -- V*) = O, (2.3.9) 

0 ffi 0 ~.i(2) 

ave 2 ark \ (OUk )v 2 )v_ 1 W / ( 1 , s ) ~ _ 2 V i ( 2 , s ) ) o ;  i . 

4 3pk 3ilk fi~pkg(t) (2.3.10) 
-~ )~ flko~(2 q- X4(pk -- p*)  0~i(2) - -  

We substitute the second transition-layer expansions 
-1 (1,stt) (2) ~k ~- ~O'stt)(~i(2) , t) "-~ )v ~k (~i ' t)  q- ~,-2fl~2"stt)(~i(2), t)  -~-''" , 

1 - 2  ,(2,stt)l~.(2) t)  "q-''" Vk = us162 t) "q- Z - l v ~  l'stt) (r t) q- .~ V k I.g i , 
(2.3.11) 

Pk = p(O'stt)(~i(2) , t )  q_ )~--1 b'k̂ (a'stt)l~(2)kgi , t )  q- .~l-2 t)k̂ (2'stt)l'(2)l.g i , I) q- . . .  , 

- - - - - 2  (2,stt)/~(2) t) q - . . -  _(O,stt)(~.(2), t)  -q- ~v-lp~l'stt)(~i(2) t)  ~- A Pk ~.gi ' Pk = Pk ~ 
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into (2.3.8)-(2.3.10) and equate powers of )~. Within a single power of )v, the 
transitional variables of each order in ~-l  are defined as a solution of simple 
differential equations in (-1)i+lz}2's) < ( -1) i ( i  (2) < 0. They are determined 

in closed form. We match the outer limit expansions in the exterior with the 
outer edge of the second transition layer, the inner edge of the second transition 
layer with the outer edge of the first transition layer, and the inner edge of 
the first transition layer with the outer edge of the incompressible mixing zone 
continuously. Thus a uniformly valid expansion in z to O (X-2) is defined for the 
slow variables fik (2'*), - (2,s) ^(2,~) _(2,s) v k , / o  k and l-'k . From this process, the zero-th order 

.(0,s) _(0,s) .(1,s) _(1,s) _(1,s) terms v k , & and p~O,s) and the first order terms v k , Pk a n d  P k  a re  
q-(2) also determined uniformly in ~ k, �9 Thus, they are defined in the region g~z) tO 

T~2) UT~I)t0 2r to T~I)U T~{), extending the definition in g~2)U9~2)U 9-~1)tO ~ U T~I). 

All of these estimates are given in [13]. 

2.4 Main Result 

The incompressible problem (1.3.1)-(l .3.5) has piecewise C ~ solutions fl~, v~ 
and p ~  for z c R, t _> 0. In [3] it was shown that degeneracy and solvability 
conditions always hold and therefore, there exists a one parameter family of 
solutions to the pressure equation (1.3.3). The resolution of this extra degree of 
freedom is found in the expansion of the constitutive quantity d~, measuring the 
relative ratio of volume creation for the two fluids. In other words, the pressures 
and d~ have linked indeterminacy: one has an arbitrary degree of freedom and 
once specified, the other is known. We have already seen that 

IV2~l 
d~ ~176 -- (2.4.1) 

IVl l 

is a ratio of volume creation terms. In addition, we require 

d;  ~(I,s) : ( [ g 2 [ ~  (l's) I g ~  g~  l ~ s ~ ~ vyv(1,s  
I k ~ j  = VlOO 2 , (2.4.2) 

Z2 1 D2p 2 , I (2,s) 
V2 - u2(Z1,  t)  q- f - - - -  a z  

Jz 1 P2 Dt  
dl(2's) = ['z2 --11- DI'-~p; 7 l 

--V1 q- Vl(Z2,  t)  --]- .17 - -  - -  
1 t01 D t  a z J  

v• 
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1 [ z ~ f l T + d ~  ~ (3P~ v~3p~'~ 
p c (pF) + 0z ) 

+ dz \ 0t P2 2 P2 oZ / 

1 l+d~ ~ f z+~op~ 
q V~ ~ p F c ~ ( p F )  J z~  3---7- 

dz  (2.4.3) 

as necessary and sufficient conditions for the convergence of compressible pres- 
sures to the incompressible pressures through the second order of the expansion. 
Here 2 e~ Ck (P ~ ) = 3pk/Opk(p~)  and Z = Z +~ (Z = Z - ~ )  is defined as the position 
of the upper (lower) wall of �9 These equations can be regarded as constitu- 
tive constraints on the expansion. To understand (2.4.2), we note that there are 
no compressible contributions to volume creation to first order in the asymp- 
totic expansion of (1.2.5). Specifically, (2.4.3) relates the constitutive law to 
the selection of the incompressible pressures and it enters to the second order 
term in a ratio of volume creation terms for two phases in (1.2.5). Compress- 
ible flow has nonunique solutions parameterized by choice of d~ while incom- 
pressible has nonuniqueness parameterized by pressure solutions. The identity 
(2.4.3) joins these and shows how one maps onto the other in incompressible 
limit. For self-similar flow, d~ (t) = d~ (0) is independent of t. The initial data 
p ~  ( Z ~  (0), 0) = p ~  ( Z ~  (0), 0) is required by the initial condition Z ~  (0) = 0. 

~ -  .sv(2,s) This condition imposes a solvability constraint un u~ . In this case, the pres- 
sure solution exists uniquely in the incompressible limit. Refer to [13]. See 
Figure 4. 

A fluid is in mechanical equilibrium if 

pF = V p , (2.4.4) 

where p, p and F are a density, a pressure and a body force per mass of a fluid. 
In the case of a vanishing body force and 1-dimensional space, necessary and 
sufficient conditions for mechanical equilibrium is that the pressure of a fluid is 

_(1,s) satisfy constant in space and time. Especially, we say that the pressures/'k 
the O 00 pressure equilibrium condition if 

(l,s) 
= = (2.4.5) 

where p(1) is constant in space and time. In [13] it is shown that the gravity 
_(O,s) _(1,s) effective pressure p~2,eff) =_ force g = g( t )  does not affect p~ , Pk and the 

(2,s) Pk - p~ .  Since the variation of the equation of state p ( p ,  )~) = X2p(p) 
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Figure 4: The incompressible pressures for self-similar flow: t = 7.0, p ~  = 0.1, 
p~Z = 0.4, g = 0.3, O~ 1 = 0.06, O~ 2 = 0.093693 and Z ~  = (-1)%t~Agt 2. 

with fixed p(p),  Op/Op > 0 is given in (1.5.1), (2.4.5) is called the "O()0" 
equilibrium condition. 

The volume fraction tiff, velocity vff and constant density p ~  of incompress- 
ible flow are proved to be the outer limit fl~0,s), v~O,s) and p~0,s) in the expansion 
(2.1.1) describing this incompressible limit process. The leading order terms 
p~O,s) satisfy the O ()2) pressure equilibrium condition defined as 

(0,~) = p(0) (2.4.6) p~O,s) = P~, 

where p(0> is independent of space and time. Assuming that dffl'~>(t) in the 
expansion (2.2.9) satisfies (2.4.2), we derive the O (~.) pressure equilibrium con- 

_O,s)  dition for t'k . This implies that the first order term p~l,~) in the expansion of 
(1 s ) ,  p~ is defined by the constant initial data p~ ' tz, 0) which may be assumed to be 

zero. In fact, it is shown that (2.4.2) is a necessary and sufficient condition for the 
O 00 pressure equilibrium condition (2.4.5) for p(1,s). The first order terms fl~ l's) 

and v~ 1'~) are coupled. They are linear in space in the transitional regions 9",.(1) 
of magnitude O ()-1) and are smooth within the incompressible mixing zone. 

(2,s) = p ~  The second order term in the expansion of p~ satisfies Pk k § O 0  ~-1) 
and therefore, it is fixed to be bounded, under the assumption that p ~  satisfies 
(2.4.3). Actually, (2.4.3) is derived as a condition equivalent to a bounded second 
order term p~Z,s). The transition layers introduced in Sec. 2.3 affect the O (;.-1) 

term in p~Z,s). All technical issues are presented in [13]. For self-similar flow, 
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Figure 5: The volume fractions for self-similar flow: )~ = 10, Agt  2 : 8.82, 
p ~  = 0.1, p ~  = 0.4, g = 0.3, aa = 0.06, or2 = 0.093693 and 
Z~ 2'~) = Z~ l's) = Z ~  = (--1)~ukAgt  a. 

see Figures 5 and 6. 
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