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Abst rac t .  The large amplitude high frequency oscillations of the flow of a compressible 
viscous fluid have been shown to obey to an integro-differential system. We consider 
here the case of homogeneous oscillations, with both gas-like pressure law and a van 
der Waals one. We show that the solution admits a limit as the time increases. This limit 
is constant in the former case, but may take up to three distinct values in the latter. 
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The flow of a compressible viscous fluid is described by its velocity u and specific 

volume v. In one space variable, we may use Lagrangian coordinates (x, t), so 

that the flow obeys the Navier-Stokes equations 

v~ = ux ,  (1)  

ut + p ( V ) x  = (IZ(V)Ux)~. (2) 

Hereabove, p is the pressure and/z is a relative viscosity ; these are given positive 

smooth functions of  v. 

The Cauchy problem on the whole line R or in bounded domains with various 

boundary conditions is well understood under natural assumptions. See the 

monograph by R-L. Lions [7] for a broad bibliography. A major feature is that 

the density is not smoothed out by this partly parabolic problem, while u and 
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the stress lXUx - p are, in the sense that their x-derivatives are L 2, locally in 
space-time variables, even though the initial data may only be bounded. This 
fact reflects in the propagation of discontinuities along the particle paths x =cst, 
first observed by D. Hoff & J. Smoller [5]. Similarly, high-frequency oscillations 
present in the initial data do propagate, even when their amplitude is not small. 
" This propagation was studied rigorously in [9] (see also an asymptotic analysis 

by russian authors [1, 2]). Let (v ~, u ~) be a sequence of solutions, associated to 
data (v~, u~) which converge in the sense of Young (therefore in L ~ weak-star). 
Denoting by u the strong limit of u ~, by a the weak-star limit of the stress and 
by V(x,  t, y) the Young limit of v ~, defined by 

f0 lim f ( v  ~) = f ( V ( . , . ,  y))dy, V f  E C, 
t o #  

(a non-decreasing V is uniquely defined), the oscillations obey to the evolution 

a + p (V)  
v ,  - ( 3 )  ' 

ut = ax, (4) 

dY P(V)dY 
u x  = a - -  + ( 5 )  

system 

Let us point out that only the first line involve all the variables (x, t, y). Also 
notice that the third line serves only as a definition of a in terms of the primary 
variables (V, u). 

We focus in this paper on the homogeneous oscillations, that is on the solutions 
of (3,4,5) such that u, V are independent on the space variable x. This occurs 
when the data do not depend on x. We easily see that u must be a constant and 
the system reduces to an integro-differential equation 

dy OtV-=p(V)  , y 6 ( 0 , 1 ) .  (6) u ( v )  

It was already pointed by D. Hoff (see [3, 4]) that for a gas-like medium (that 
is p' < 0), the amplitude of discontinuities in v decays, though it might increase 
for a van der Waals fluid, for which the sign of p' depends on the state v. We 
wish to clarify this point at the level of oscillations. More specifically, we raise 
the question of the asymptotic behaviour of the solutions of (6), given the initial 
data. We shall prove, under a non-degeneracy assumption, that V(., t) admits a 
unique limit ~'. 
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Figure 1: The typical equation of state for a van der Waals fluid. 

We first describe the rest points for the system (6), since 17 must be such a state. 
It is clear that y ~-~ p(17) must be a constant, that we denote by re. We consider 

two types of fluid. The first one is a gas, meaning that p '  < 0 everywhere, 
with p(0) = +oo  and p ( + o c )  = 0. The second one is a van der Waals fluid, 
for which s t i l lp (0 )  = +oo  a n d p ( + o o )  = 0, but p1 < 0 on (0, v,) and 
(v*, +oc) ,  while p~ > 0 on (v., v*). The intervals (0, v.), (v*, +cx~), (v,, v*) 
correspond to liquid, gas and spinodal region respectively. For a gas, 17 is 
simply a constant, while it may take up to three distinct values for a van der 
Waals fluid. Denoting by v0, v2, vl the inverse functions of p on each of  the 
intervals (0, v,), (v*, +oc) ,  (v., v*), 17 will have the form 

v0(Tr), y c (0, oe0), 
1~ (y) = vl (;c), y 6 (o!0, oe0 + eq), 

v2(Tr), y E (o~0 + eel, 1), 
(7) 

since it is non-decreasing. Denoting by oe2 :=  1 - ol0 - oq, we have 

1 2 

fo f (V)dy = Z a j f  o vj(yr), 
j=O 

V f c C .  

In the sequel, we use the notation 7c, = p(v,), 7v* = p(v*). 
Let V0 c L~176 1) be an initial data, such that inf Vo > 0. We consider the 

Cauchy problem for (6). A local solution exists and is unique, thanks to the 

Bol. Soc. Bras. Mat., Vol. 32, No. 3, 200l 



438 DENIS S E R R E  

Cauchy-Lipschitz theory of ODEs. Moreover, for both types of fluid, we may 
choose an interval [v_, v+], such that 

0 < v _  < infV0(y) ,  supV0(y) < v+  < + o c  
Y y 

and 
p(v_)  < p(v)  < p(v+), Vv E (v_, v+). 

Then the domain X, formed of measurable function W, defined on (0, 1), with 
values in (v_, v+), is positively invariant and (6) defines a continuous semi-group 
on X, when endowed with the topology of LP(O, 1) (1 < p ___ OC). Therefore, 
the solution is globally defined for t > 0. We are interested in the asymptotics 
of V as t --> +ec .  

Our main result reads as follows. 

Theorem 1. Let Vo ~ L~176 1) be a non-decreasing initial data with 

infy Vo(y) > O. Let V (y, t) be the corresponding global solution of the Cauchy 

problem for  (6). The fluid may be either a gas or a van der Waals fluid; in the 
latter case, we assume that 

(H): the only intervals [p_, p+] (C [7r., re*]), on which vo, vl, va 
and the constants are linearly dependent functions, are trivial 
(p_ = p+). 

Then (V (., t ) ) t~+~ admits a unique limit in the LP-norm, for 1 < p < ~ .  

Remarks. 

The same question was already considered by Pego in [8]. He was able to 
remove the assumption (H). However, he was only able to treat the case 
where V0 is a step function. Equivalently, {(0, 1), dx)  was replaced by 
a finite set with an atomic measure. Our proof below works actually for 
every probability space. 

�9 Thanks to the hypothesis (H), our proof is more elementary than Pego's, 
using only Lasalle's invariance principle and explicit calculations. 

The rest of the note is devoted to the proof. 
We first remark that V(-, t) is non-decreasing in y for all time, so that V(., t) 

has a total variation bounded by v+ - v_. This implies the relative compactness 
of (V(t))t>0 in L p. Therefore it will be sufficient to prove that its omega-limit 
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set f2 is a singleton. For that, we shall use Lasalle's invariance principle [6]. 
This tells first that if L is a C 1 Liapunov function of the flow, that is 

d ~L[V] = R[V] <_ O, (8) 

then ~ is contained in a level set of L : there exists a number VL such that 
L[W]  = VL for all W in ~ .  Next, it tells that the decay rate R is zero on ~2. Last, 

must be a connected set for the LP-topology, since the flow is continous with 
respect to it. We apply Lasalle's principle to functionals of the form 

LF[V] :=  F ( V ( y ) ) d y ,  

where F' = f o p.  Such functionals satisfy (8) whenever f is non-increasing. 
The decay rate is then given by 

(fo d,) fo Jo  dyfo  dy 
f~  f ~ P(V)dY fol P(V)dY - 

Applying this with f ( s )  = - s  (for which F is the internal energy of  the fluid), 
and using the Cauchy-Schwarz inequality, we see that S2 is made of rest states 
only. 

We immediately conclude in the case of a gas. Actually, the conservation law 

dZ Vdy : o 

gives the additional information that 

f0 f0 W ( y ) d y  = Vo(y)dy  =:  e, VW e S2. (9) 

Since here any W of ~2 must be constant, we see that W = g, so that f2 is a 
singleton. 

We may now restrict to the case of a van der Waals fluid. From Lasalle's 
principle, there exists a number VF for each F of the form F '  = f o p with f 
non-increasing, such that 

L F [ W ]  = VF,  V W  C f2 .  ( 1 0 )  
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Since every function of bounded variation is the difference of two non-increasing 
functions, this is still true when f ~ B V ( v _ ,  v+). 

We split our analysis into three cases. Recalling that elements W of ~2 are 
rest states, for which p o W is some constant Jr, we first assume that S2 contains 
such a state with 7r > Jr* (or as well Jr < Jr,). Then W is a constant and it is 
an isolated rest point in the hyperplane defined by the constraint (9). Since S2 is 
connected, it must be equal to the singleton {W} and we are gone. 

The second case is the one where an element W of ~2 is such that rr, < Jr < 
Jr*. Then nearby points 1~ in fa must be of  the same form, with a pressure 
# 6 (r~., Jr*) and lengths/3j instead of ccj. Let denote by vj and Oj the points 
vj (Jr) and vj (#) in the following calculations. Using the lemma 1 below, we see 
that the triplet ~ is uniquely determined in terms of rc and ~, using the equations 

J J J 

Now, if  f2 is not a singleton, we may choose V( as above, and we conclude that 
must be distinct from Jr. We always may assume that Jr < ~.  Then we have 

Vo < Vo < vl < vl < v2 < v2. From (10), we write LF[W] = LF[W]  : 

E a j F ( v j )  = E f i j F ( v j ) .  

J J 

in other words, 

lY2 q-(C/2 4- fi0 - 1) + r i o  q- (o t2  - f12) 
2 1 0 1 

+(/3o - Olo) f o p ( v ) d v  = O. 

Since this holds for all f in B V, we deduce that eea =/32, o~0 =/3o (that is 6~ = fi) 
and also 

a2 --Oil q-/30 f o p ( v ) d v  = O. 
2 1 0 

This last equality amounts to 

�9 p' o vj f ( p ) d p  = O. 

Since this holds for all f in B V, we deduce that 

c~j ------0 on ( ; r ,~) ,  
p ' o v j  

J 
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which contradicts (H). Therefore, f2 is a singleton. 

In our last case, the pressure of elements of f2 can only take the values 7r, or 
rr*. Since f2 is connected, it takes only one of  these values and this shows as 

above that W is unique. [] 

We complete the proof of the theorem with the 

Lemma 1. Let f be strictly decreasing (or strictly increasing). Let choose 
7r ~ (7r,, 7c*), Then 

det v0(rr) vl (7r) v2(zr) 7~ 0. 

F(vo(rr)) F(vl(Tr)) F(v2(rr)) 

The vanishing of  the determinant would mean that the three points (v j ,  F (v j ) )  

are aligned. Since v~ lies between v0 and v2, we write vl = (1 - O)vo + Or2 with 
0 c (0, 1). We must prove that F(v l )  - (1 - O)F(vo) - OF(v2) is non-zero. 
However, this equals 

fV l  f v 2  (1 - O) f o p ( v ) d v  - 0 f o p (v )dv .  
0 1 

Since p < 7r on (v0, vl) and p > rc on (vl, v2), and f is decreasing, this quantity 
is strictly positive. [] 

Remarks. 

For a van tier Waals gas, (H) is generically satisfied. When it is not, the 
numbers m such that there exists a linear c o m b i n a t i o n  Z j  y j v j  (572) ~ m ,  

with Vj > 0 and }--~j yj = 1, form an at most denumerable set M. When 
the data V0 is such that g r M, the convergence to a single equilibrium 
state still holds, 

A typical example of  a pressure law which violates (H) is a cubic poly- 

nomial (on some restricted interval). For instance, one may consider 
p(v)  :=  - v  3 + 4v 2 - 5v, with/z(v)  = 1/v (constant viscosity). Here, 
we have v0 + vi + v2 ---- 4. Though the previous analysis does not end 
to a conclusion when g = 4/3, we have been able to prove directly the 
convergence, at least when the initial data consists in three constant states 
on intervals of lenghts 1/3. This is a particular case of Pego's result [8]. 
However, the general question of  convergence when (H) fails is still open. 
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