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Abst rac t .  When air or oxygen is injected into a petroleum reservoir, and oxidation or 

combustion is induced, a combustion front forms if heat loss to the surrounding rock 

formation is negligible. Here, we employ a simple model for combustion, which takes 

into account oil viscosity reduction, but neglects gas density dependence on temperature 

and uses a simplified oxidation reaction. We show that for small heat loss, this combus- 

tion front is actually the lead part of a pulse, while the trailing part of the pulse is a slow 

cooling process. If the heat loss is too large, we show that such a pulse does not exist. 

The proofs use geometric singular perturbation theory and center manifold reduction. 

Keywords: combustion, porous medium, multiphase flow, conservation laws. 

1 Introduction 

In s i tu combustion is a method of  oil recovery that uses a chemical reaction to 

cause a temperature increase; among other effects, oil viscosity is reduced and the 

oil flows more readily. It has been successfully used in many oil fields in many 

countries, especially in the former Soviet Union, and has been the subject of  a 

number of  papers in the petroleum engineering literature [2], [3], [5], [7], [ 14], [ J,8], 

and a few papers in the mathematical literature [8],[10],[12]. The mathematical 
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238 S. SCHECTER AND D. MARCHESIN 

theory of in situ combustion is an aspect of the theory of combustion in multiphase 
flow in a porous medium. The latter subject is little developed, especially by 
comparison to the theory of combustion in gases. 

In this work, we study a very simplified model, which is more representative of 
low temperature oxidation than in situ combustion [17]. We find conditions under 
which there exists a traveling exothermic oxidation pulse. These conditions are 
strict inequalities. We show that such a pulse has a triangular shape. Its lead 
part is a steep front where the reaction takes place and the temperature quickly 
increases. Its trailing part has a mild slope; the main process in this part of the 
wave is cooling by heat loss to the overburden rock formation. Such a pulse was 
observed numerically in the work of Crookston et al.; see Fig. 1 in [7]. 

We have simplified substantially the equations used in petroleum engineer- 
ing [7], [5]. We assume that the only component in the gaseous phase present 
initially is oxygen, and that the only gaseous product of the chemical reaction is 
carbon dioxide. We assume chemical reactions with a single reaction rate for the 
several hydrocarbons contained in the oil, instead of the multiple reaction rates 
that actually occur during in situ combustion. 

Most significantly, we neglect mass transfer from the oleic to the gaseous 
phase due to the reaction, and we neglect the effect of temperature change on the 
gaseous phase density. These simplifications greatly facilitate the analysis: the 
total seepage velocity becomes constant (just as in the classical Buckley-Leverett 
treatment) and can be factored out of the flow solutions. 

We also make simplifications that are more justifiable. First, we do not allow 
the presence of liquid water, which is reasonable if the temperature is relatively 
high, and if there was no liquid water initially. Thus we treat a two-phase flow 
(oleic and gaseous), and avoid difficulties associated with the analysis of steam 
production and condensation in the reservoir, as well as those associated with 
three-phase flow. These difficulties should be irrelevant to the key aspect of both 
low temperature oxidation and in situ combustion, the reduction of oil viscosity 
by temperature increase. In work on oil recovery by steam injection, for example, 
similar effects occur in both two-phase and three-phase models [4]. 

Second, we neglect the solubility of the reaction product carbon dioxide in oil, 
which occurs on a slow time scale. This is valid if the seepage velocity is large 
enough. 

Our analysis is motivated by the following physical situation. Initially, there 
is a uniform distribution of oleic and gaseous phases in a porous rock. The fluids 
are being displaced as a whole by proper injection at the left end. At a certain 
time and location, ignition starts. Is it possible that an oxidation pulse forms and 
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propagates as a traveling wave? 
We find that if the heat loss to the overburden is too large, no such oxidation 

pulse can exist. On the other hand, if the heat loss is small enough, a traveling 
oxidation pulse indeed exists as a solution to the equations. Proving the existence 
of such a pulse is an important step toward solving the ignition problem for flow 
in a porous medium. 

A more realistic, and more complicated, model is considered in [17]. Much of 
the analysis is similar to the analysis in the present paper, and analogous results 
hold. 

We now preview the rest of the paper. In Secs. 2 and 3, we explain the system 
of conservation laws that we shall study. The system contains source terms due 
to the chemical reaction. The model has two phases, oleic and gaseous, and three 
components: the gaseous phase is divided into oxygen and carbon dioxide. A 
more detailed explanation of the model can be found in [9]. We have added to 
the model of [9] a term that represents heat loss to the overburden rock. 

In Sec. 4, we derive the ordinary differential equations for traveling waves. 
Then, motivated by geometric singular perturbation theory, which is frequently 
used in the study of traveling waves [15], we first study the reduced system of 
equations in which heat loss vanishes. This system is the one studied in [9]. 
We focus our attention on two curves of equilibria of the reduced system, one 
consisting of equilibria at which the temperature is that of the surrounding rock 
and the percentage of gas that has burned varies, the other consisting of equilibria 
at which the temperature is above that of the surrounding rock and all of the gas 
has burned. These curves of equilibria of the reduced system are studied in 
Sec. 5, and the associated invariant manifolds are found in Sec. 6. The curve of 
high-temperature equilibria is normally hyperbolic; the curve of low-temperature 
equilibria is not. For small heat loss, the low-temperature equilibria remain 
equilibria; the high-temperature equilibria do not. 

In Sec. 7, we state precisely the main result of this paper, which asserts the 
existence of certain connecting orbits for the ordinary differential equation with 
small heat loss. The speed of the traveling wave is approximately the speed 
for which the reduced system has a connection with a special structure between 
certain high- and low-temperature equilibria: it is a connection between the 
unstable manifold of a hyperbolic equilibrium and the stable manifold of a non- 
hyperbolic equilibrium, rather than a connection that arrives at the nonhyperbolic 
equilibrium tangent to its center direction. The traveling wave with small heat 
loss is approximately this connection followed by slow drift along the curve of 
high-temperature equilibria of the reduced system. The temperature gradually 

Bol. Soc. Bras. Mat., Vol. 32, No. 3, 2001 



240 S. SCHECTER AND D. MARCHESIN 

falls along this curve of equilibria until it meets the curve of low-temperature 
equilibria. The traveling wave terminates near this point of intersection, which 
is a further degeneracy. 

In Sec. 8 we reinterpret the results of Secs. 5 and Sec. 6 to make them more 
useful in studying the ordinary differential equation with small heat loss, which 
is treated as a perturbation term. For small heat loss, the front end of the traveling 
pulse, which is dominated by heat generation, is studied in Sec. 9, and the back 
end, which is dominated by heat loss, in Secs. 10 and 11. The latter section 
treats the termination of the traveling wave using center manifold reduction at 
the intersection of the two curves of equilibria of the reduced system. 

The proof of the existence result is completed in Sec. 1'2. In Sec. 13, we show 
that large heat lossprevents the existence of a traveling pulse. In Section 14, con- 
clusions and discussion are presented. An appendix summarizes nomenclature 
used throughout the paper. 

2 The oxidation model with heat loss 

We will study a system of reaction-convection-diffusion equations, which models 
oxidation in a one-dimensional petroleum reservoir [9]: 

st + f (s ,  O)x = (h(s, O)sx)x, (2.1) 

- + ( ( 8 - i ( s , o ) ) o  - 
(2.2) 

= - ( ( o  +  E)h(s, O)=x)x + - 8(0 - 0o), 

(~s)t + (ef(s, O))x = @h(s, O)sx)x + ~sq(O, ~). (2.3) 

The reservoir contains a gaseous phase, consisting of a mixture of oxygen 
and carbon dioxide, and an oleic phase in the pores of a rock matrix: s is the 
gaseous phase saturation, so that 1 - s is oil saturation. The temperature is 0. 
The fraction of initial oxygen that has burnt (converted to carbon dioxide) is e, 
so that 1 - E is the fraction that has not burnt. It is assumed that the oil mass loss 
is negligible. The variables in (2.1)-(2.3) are s, 0, and E; 8 is a parameter; 00, or, 
8, Y, ~, and ~ are positive constants. The functions f and h are discussed in the 
next section. Eq. (2.1) expresses conservation of mass of the gaseous and oleic 
phases, combined with Darcy's law of force. Eq. (2.2) expresses conservation 
of energy. Eq. (2.3) describes the chemical reaction. 

The temperature of the surrounding rock formation is 00. The last term in 
Eq. (2.2) represents heat loss from the multiphase fluid to the rock formation 
according to Newton's Law of Cooling. 
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The result of this paper is that, under certain assumptions, the system (2.1)- 

(2.3) admits, for small ~ > 0, a traveling wave solution (s(z), O(z), e(z)), z = 
x - ~t,  that represents an oxidation front followed by a slow cooling process. 
As stated in the Introduction, the oxidation front is a solution of the system 
(2.1)-(2.3) with ~ = 0 and was studied in [9]. The slow cooling behind the 
oxidation front is due to the inclusion of the last term in Eq. (2.2). The speed 
cr of the traveling wave is o-(~) = o0 + O (~), where o0 > 0 is the speed for 
which the oxidation front when/~ = 0 corresponds to a connection between the 
unstable manifold of a certain hyperbolic equilibrium and the stable manifold 
of a certain nonhyperbolic equilibrium, rather than a connection that arrives at 

the nonhyperbolic equilibrium tangent to its center direction. When 3 = 0, 
the latter connections exist for an open interval of or. However, they do not 

persist when ~ > 0, because the 0 eigenvalue at the nonhyperbolic equilibrium 
becomes positive. One assumption that we make is that, when ~ = 0, the 
connection between the unstable manifold of the hyperbolic equilibrium and the 
stable manifold of the nonhyperbolic equilibrium that exists when cr = o'0 breaks 
in a nondegenerate manner as o- varies. 

A numerically computed oxidation pulse for our model with ~ > 0 is shown 

in Fig. 2.1. The wave is shown for fixed t. Since o- > 0, the wave moves to the 
right. At the oxidation front, e falls rapidly from near 1 (burnt) to 0 (unburnt). 
Also at the oxidation front, the values of s and 0 change rapidly from values 

associated with the oxidation process to their values So and 00 in the surrounding 
rock formation. Behind the oxidation front, s and 0 return more slowly to So and 
00. The limiting value of E at the left is e -  = 1 - O (e-~-) for some positive 
constant k. Thus the loss of heat to the surrounding rock formation prevents 
the oxygen from being completely consumed, a fact with important practical 
consequences. However, this effect is not visible in the simulations we have 
done. 

3 Explanation of Equations 

In this section we explain the terms in Eqs. (2.1)-(2.3) in more detail. 
The relative permeabilities of the gaseous and oleic phases, kg and ko, are 

dimensionless functions of gaseous phase saturation s and oleic phase saturation 
1 - s respectively. The viscosities #g and/Xo of the gaseous and oleic phases 
are functions of the temperature 0. The relative mobilities of the gaseous and 
oleic phases, Xg and Xo, are functions of the saturations s of the gaseous phase 
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Figure 2.1: The traveling wave  at a fixed time: s, 0, and E are shown as functions 

o f x .  A n  interval o f  length 750 on the x-axis  is shown,  scaled to the interval [0,1]. 
s 2 

The flux function is f ( s ,  0) = s2+(l+o.10)(1_s) 2, and h(s, 0) = - 1 .  Parameter 
values are ot = 3.0, fl = 1.2, y = 1.0, q = 5.0, and g = 1.0. The value o f  
is .003334541,  for which  the corresponding wave  speed is cr ----- .5105858.  The 

traveling wave  was  computed  using A U T O  [11]. 

and 1 - s o f  the oleic  phase respectively, and o f  the temperature 0: 

k o ( 1  - s )  ~g(S, O) = kg(s) and )~o(1 - s, 0) - (3.1) 
~(o) re(o) 

The "fractional f low function" o f  the gaseous  phase f (s, 0)  is then 

f (s, O) = ~.g(S, O) . ( 3 . 2 )  
~.g(S, O) + ~.o(1 - s, O) 

The pressures in the gaseous  and oleic  phases,  pg and Po, are functions o f  s 
and 1 - s respectively. The capillary pressure Pc is a decreasing function o f  s 
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measured in the laboratory and defined by 

pc(S) = po(1 - s) - p g ( S ) .  (3.3) 

Then we define the function 

h(s, O) = -)~o(S, O) f (s, O)plc(S). (3.4) 

We assume prc(S ) < 0 for 0 < s < 1. Thus 

h(s,O) > 0 f o r 0  < s < 1. (3.5) 

Let log, Po, and Pr denote the densities of gaseous, oleic, and rock phases; let 
Cg, Co, and C~ denote the heat capacities of gaseous, oleic, and rock phases; 
let ~b denote the rock porosity, the fraction of total volume occupied by the 
fluid phases; and let K denote the absolute permeability of the rock, the porous 
medium's capability of allowing fluid flow. Let Q denote the heat released by 
the oxidation per unit mass. We will assume that these are all constants. 

The thermal conductivities of the gaseous, oleic, and rock phases in the x- 
direction are all assumed to equal a constant x; we make this unphysical assump- 
tion to facilitate the analysis. Thermal conductivity transverse to the x-direction 
is assumed to be a constant Kz. 

We assume that there is incompressible flow of the gaseous and oleic phases. 
The total seepage flow of both gaseous and oleic phases v is then a function of 
time only, determined by the boundary conditions. For simplicity we assume 
that v is constant. 

The quantities oe, 13, ?/, r/, ~', and 6 are defined by 

poCo + p~Cr/~ poCo C~X 
o r =  , ~ =  V =  

poCo - peCg poCo - pgCg' K(poCo - pgCg)' 
pgQ dpK x~ 

, ~ -  v 2 ,  3 = - - .  (3.6) r] - -  Po Co - jog Cg  1) 

The first five are positive constants; the last will be regarded as a nonnegative 
parameter. 

The function q(O, E) denotes the volumetric fraction of burnt gaseous phase 
generated per unit time. 

All these terms were defined, and the equations derived, in [8] and [9], except 
that Kz was not defined there, and the last term in Eq. (2.2) was omitted. 
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The function q(O, ~) will be assumed to have the following form (see Eq. 
95.02 of  [6]), a version of  Arrhenius's law: 

K ~ ( 1  - e ) e - ~  if 0 > 00, (3.7) 
q(O, E) = 0 if 0 _< 00. 

For simplicity we shall take K ~  = L = 1. 
We assume that f ( s ,  O) is C 2 and S-shaped in s for each 0. See Figure 3.1. 

More precisely, we assume that f ( 0 ,  0) = 0, f ( 1 ,  0) = 1, and, for each 0, 
fss(S, O) is first positive and then negative for 0 < s < 1. We further assume 
that fo < 0. These assumptions are used to model two-phase thermal flow in a 
porous medium, for which oil viscosity is a decreasing function of  temperature. 
They hold, for example, for ks(s ) = s 2 and ko(1 - s) = (1 - s) 2, which were 
used in the  computation that produced Figure 2.1. 

f(so,O o) 

y Y=f(s 0 ,0o) -~  ( s - s  0 ) 

y=f ( s ,00)  

l S 

1 

Figure 3.1: Graphs of  y = f ( s ,  00) and y = f(so, 0o) + a(s - so). 

4 The Traveling Wave System 

We shall look for traveling wave solutions (s (z), 0 (z), e (z)) of  the system (2 .1) -  
(2.3), with z = x - o-t. 

The traveling wave solutions will be required to approach constant limits as 
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z -+ -4-oc. Thus we define 

X = { g  " N --+ 9t " g is C t, lim g(z)  exists, and 
Z--+-4-oc 

dg 
lim - -  = 0}. 

z ~ + ~  dz  

L e t X  n = X x . . .  x X (n  times). 
Given (s, 0, E) in X 3, let 

s + =  l i m  s ( z ) ,  0 ~ =  lim O(z),  e •  l i m  e ( z ) .  
z--~• Z-->-t-(x) z-~ 4-oo 

Recall that So and 0o are the gaseous saturation and temperature of  the surrounding 
reservoir. We assume 0 < So < 1. We shall look for solutions (s(z) ,  O(z), e (z ) )  
of the system (2.1)-(2.3) in X 3 with 

s + = s o ,  0 •  e + = 0 .  (4.1) 

The values of  s -  and e -  must be determined. On physical grounds it is natural 
to expect that s -  = So and e -  ~ 1. 

We define 

a(cr) = aSo - f (so, 0o), 

b(cr) = - f i  + ~ - a ( a ) .  

(4.2) 

(4.3) 

We shall sometimes suppress the dependence of  a and b on the parameter cr. 
In Eqs. (2.1)-(2.3) we let (s, 0, e) = (s(z) ,  O(z), e ( z ) ) ,  z = x - crt. Eq. (2.1) 

can then be integrated. Using the boundary conditions s(oc)  = So, s~(oo) = 0, 
and 0 (<x~) = 00 yields 

ds a - c~s + f ( s ,  O) 
- -  ( 4 . 4 )  

dz  h(s ,  O) 

Substitution of  Eq. (4.4) into Eq. (2.2) and Eq. (2.3) yields 

d20 1 d 3 
d z  2 - -  y dz  ( - b O  + qEa) + -- (0  - 0o) g 

(4.5) 

and 

dE 
-- sq (0, ~). ( 4 . 6 )  

dz a 
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Proposition 4.1. Let (s(z), O(z), E(z)) c X 3 with s + = So, 0 + = 0o, ~+ = O. 
Then the following are equivalent. 

(l) (s(z), O(z), e(z)) satisfies Eqs. (4.4)-(4.6). 

(2) There is a function ~(z)  ~ X, with limz_+~ qJ(z) = O, such that 
(s(z), O(z), e(z), ~ (z)) satisfies the system consisting of Eq. (4.4), 

__dOdz = 1 ( _  b(O - 0o) + oEa + qJ), (4.7) 

Eq. (4.6), and 

d ~  
- 8 ( 0  - 0 0 ) .  (4.8) 

dz 

Proof.  To see that (2) implies (1), we only need to check that 0 (z) satisfies Eq. 
(4.5). Just differentiate Eq. (4.7) and with respect to z and use Eq. (4.8). 

To prove that (1) implies (2), let (s (z), 0 (z), E (z)) satisfy (1). We multiply Eq. 
(4.5) by - 1 and integrate from z to oc. We obtain 

1( ) 
__dO = . . . .  b(O(z) 0o) + rl~(z)a 3 (0( r )  00) d r  . (4.9) 
dz z 

For 8 ~ 0, the integral is finite because the other terms are. Hence we can define 

f �9 (z) = - 3  ( 0 ( r )  - 00)dr. (4.10) 

(For 8 = 0 we just set qJ(z) = 0 for all z.) Then (s(z), O(z), E(z), qJ(z)) satisfies 
(2). [] 

Motivated by Proposition 4.1, we shall study the first-order system consisting 
of  Eqs. (4.4), (4.7), (4.6), and (4.8), which we shall call the Traveling Wave 
System. We shall look for a solution (s(z), O(z), ~(z), tP(z)) that is in X 4, and 
that satisfies the boundary conditions (4.1) and the additional boundary condition 
limz-+~ qJ(z) = 0. The values o f s  , ~ , and qJ-  must be determined. 

The Traveling Wave System has o- and 8 as parameters. Recall that a and b are 
functions of  o-. The parameter 8 appears only in the fourth equation. Moreover, 

d ,  = 0, so q* is constant. when 8=0, ~-z 
To bring out this structure, let 

u = ( s , 0 ,  e), w = ( u ,  qJ)=(s,  0,~,qO. 
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We write the Traveling Wave System as 

d w  
- F ( w ,  or, 8) ,  (4.11)  

dz  

with parameters o- and 8. Eq. (4.11) can also be written 

d u  
- -  = G ( u ,  ~P, ~r), (4 .12)  
dz  

dq /  
--  8(0  - 00). (4 .13)  

dz  

We can think of (4.12) as defining a system of ODEs on (s, 0, e)-space with 
parameters qJ and a .  

5 E q u i l i b r i a  o f  du = G ( u ,  ~P, ~)  
dz 

d~ = G(u ,  ~P, o-). We first In this section we shall determine the equilibria of  

define three sets. The definitions use assumptions (I1)-(I4) to be given shortly. 

I = {a �9 conditions (I1)-(I4) are satisfied}, 

J = {(q.t, o ' )  �9 - t /a(cr)  _< qJ _< 0, a 6 I}, 

S = { ( s , O , e ,  qJ, a ) ' O < s < l ,  0 0 < 0 ,  0 < e < l ,  (qJ,  Cr) C J } .  

We shall restrict our attention to equilibria in S. 

Equilibria of du = G(u ,  qJ, cr) in S satisfy 

a - a s  + f ( s , O ) = O ,  

- b ( O  - 0o) q- flea -+- �9 = O, 

q(O, ~) = O. 

(5.1) 
(5.2) 
(5.3) 

From Eq. (5.3), 0 = 00 or e = 1. 

1. Equi l ibr ia  with 0 = 00. Substituting 0 = 00 in Eq. (5.2) yields 

6 - -  

qJ 

t/a 
(5.4) 

Substituting 0 = 0o and a = aso - f ( s o ,  0o) in Eq. (5.1) yields 

f (s, 0o) -- f (so, 0o) = ~r(s -- so). 
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Figure 3.1 shows the curve y = f ( s ,  00) and the line y = f(s0,  00) + cr(s - So). 
The line meets the y-axis at y : -a (cr ) .  

Since by definition the particle speed in a conservation law st + fx = 0 is 
f / s ,  the positive or negative sign of a(o-) corresponds to wave speeds o- larger 
or smaller than particle speed. In this work, we will consider forward-moving 
oxidation waves, which move faster than gas particle velocity. They are the 
waves of interest when the oxidation starts at the well where oxygen is injected. 

More precisely, we assume 

(I1) a(cr) > 0. 

The curve and the line meet at s = so and possibly at other points. We shall 

assume 

(I2) o- - f~(so, 0o) > O. 

This assumption implies that cr > 0. It says that the saturation wave characteristic 
speed ahead of  the oxidation wave is slower than the oxidation wave itself. This 
is Lax's  classical condition for the traveling wave to give rise to a shock [19] in 

the zero diffusion limit. 
We define the following equilibria of du = G(u, qJ, or) with (~ ,  o-) 6 J :  

dz 

m(qJ, o-) = (s, 0, E) where s = so, 0 = 00, and E qa(cr) 

As qJ increases from - t/a (o-) to 0, the e-coordinate of m (~,  cr ) decreases linearly 

from 1 to 0. 

2. E q u i l i b r i a  w i t h  E = 1. 
We assume that the thermal wave characteristic speed ahead of  the oxidation 

wave is slower than the oxidation wave itself. That is: 

(13) b(cr) > 0. 

Together with (I2), condition (I3) is part of the Lax condition for the oxidation 

wave to become a 2-shock in the zero diffusion limit. 
Substituting E = 1 in Eq. (5.2) and using the definition of b, we obtain 

1 
0 = 00 + ~ (qJ + ~a). (5.5) 

From Eq. (5.1), 

f (s, O) - f (so, 0o) = cr(s - so). (5.6) 
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By (I2) and the Implicit Function Theorem, Eq. (5.6) can be solved for s in terms 

of  0 and o- near any point (So, 00, cr), o- E I .  More precisely, we shall need the 

following: there is a number 0* and a function so(O, ~) ,  defined for 0 near 00 

and o- c I ,  such that so(Oo, or) = So, and for 00 < 0 < 0", 

I (,0(0, .), o) - I 00) = .  (,0(0, 

and o- - f ,(so(O, or), 0) > O. 
Let 01(cr) = 00 + ~ ;  notice that i f0  = 01(a) in Eq. (5.5), then 02 = 0. We 

shall assume: 

(I4) 01(o) < 0". 

du = G(u,  o2, ~)  with e = 1 Then for (02, or) E J ,  there is an equilibrium of 
at the point 

1 (02 + ~a(~r)) ,  E = 1 n(02, o') = (s, 0, e) where s = so(O, ~) ,  0 = Oo + ~ 

As 02 increases from - rla (cr) to 0, the 0-coordinate of n(02, o-) increases linearly 
from 00 to 0t (o-). 

The equilibria m(02, o-) and n(02, o-) are sketched in Figure 5.1. Notice that 
m(02, o-) = n(02, o-) at 02 = -~a(o-) .  

du 
For fixed 02 and or, the linearization of  - -  = G(u,  02, ~)  at an equilibrium is 

dz  
given by the matrix 

M = (o  o 1 h b 

X 

\ - S q  --5 sq~ - ~ s q J  

(See Eq. 5.6 of [8].) At the equilibria m (02, ur), where 0 = 00, we have q = qo = 
q, = 0, so the eigenvalues are fs-~ b and0. The first two ofthese eigenvalues h ' g '  

are negative. At the equilibria n(02, o-), where E = 1, we have q = qo = 0, so 
the eigenvalues are f ' -~  b and h , • - Ssq, .  The first two are negative. The last is 
positive for 02 > -oa(o- ) .  When 02 = - o a ( a ) ,  m(02, or) and n(02, a )  coincide, 
and the positive eigenvalue at n(02, o-) becomes 0. 

6 I n v a r i a n t  m a n i f o l d s  o f  d. = G(u, 02, or) 

We now consider invariant manifolds of d. = G(u,  02, ~r) in three-dimensional 
u-space for fixed 02 and fixed cr c I.  
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1 

0 

~u = G(u,  qJ, ~ )  for fixed o-. The picture has been Figure 5.1" Equilibria of  
projected onto 0EqJ-space. 

We first note that the plane e = 1 is invariant for each (qJ, o-). 
The point m(qJ, o-) has a two-dimensional stable manifold tangent at m(qJ, o-) 

to the plane e = constant given by Eq. (5.4); in fact, the stable manifold is 
contained in this plane for 0 _< 00. The point m(qJ, o-) also has a (nonunique) 
one-dimensional center manifold. The flow of du = G(u,  qJ, cr) near m(qJ, or) 
is determined by the flow on its center manifold. 

An eigenvector for the eigenvalue 0 at rn(qJ, o-) is (X(o-), Y(o-), 1) with 

X(er)  forla < O, y ( ~ )  = rla - - -  > 0 .  ( 6 . 1 )  
(or - f , ) b  b 

Here fs and fo are evaluated at (so, 00). We shall often suppress the dependence 
of  X and Y on o-. 

Since, from Eq. (4.6) and (I1), dE < 0 for 00 < 0, the flow on the branch of  
the center manifold of  m(qJ, o-) in the region 00 < 0 is toward m(~P, cr). Thus 
rn(qJ, o-) attracts nearby points that are on or above its stable manifold. See 
Figure 6.1. 

Each point n (qJ, o-) has a two-dimensional stable manifold, which is an open 
subset of  the invariant plane e = 1. 
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/ I 
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j /  _ 1  / 
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S - -  

0 1 ( t ~ )  

/ 
0 

a~, = G(u,  ~ ,  cr) for (~P, a )  fixed. Figure 6.1: Flow of 

For qJ > - r/a (o-), the point n (qJ, o-) has a one-dimensional unstable manifold. 
Whether the unstable manifold of n(qJ, o-) arrives at m(qJ, or), and how it does 
so, depends on qJ and or. For �9 = 0 this question is studied in [8]. We shall 
assume 

(A1) There exists or0 in ! such that the lower branch of the unstable manifold 
of n(0, or0) lies in the stable manifold of m(0, o0). 

See [8] for a discussion of  the generality with which this assumption holds. 
We shall further assume: 

(A2) The connection of ti = G(u,  0, cr0) between the unstable manifold of 
n(0, o-) and the stable manifold of m(0, or) breaks in a nondegenerate 
manner as cr varies. 

In order to explain assumption (A2) more precisely, let u (z) = (s (z), 0 (z), 
d, = G(u,  O, ao) from n(0, o'0) to m(0, a0), and let e(z)) be the connection of 

E be the two-dimensional plane through u (0) that is perpendicular there to the 
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connection. Let yo and Yl be unit vectors in E, based at u (0), that are respectively 
tangent and perpendicular to the stable manifold of m(0, a0). See Figure 6.2. 
Write u 6 E as 

u = u(O) + otyo + flY1, 

and use (or, t )  as coordinates on E. For (tp, a)  near (0, a0), the unstable manifold 
of n(qJ, a )  meets E in a point (a~(tP, a) ,  fln(~, a)) ,  with 

= (o ,  o ) .  

The stable manifold of m(O, a)  meets E in a curve pa_rameterized by, say, ~: 

(am(~, a),  flm(~, a)). We may assume that ((am(O, ao), tim(O, ao)) = (0, 0). 
We must have 

O0#n 
O~ e (0, ao) = O, (6.2) 

and we may assume that 

atom 
- - ( 0 ,  a0) r 0. (6.3) 

The unstable manifold of n (0, o-) meets the stable manifold of m (0, o-) provided 
there is a solution of the following system of two equations in the variables 
and a: 

an(0, a)  - am(~, a)  = 0, (6.4) 

fin(O, a) -- flm(~, a)  = 0. (6.5) 

Proposition 6.1. The system (6.4)-(6.5) has the regular solution (~, a)  = 

(0, ao) if and only if 
OOtn OOtm 
aa  (0, a0) -- ~ a  (0, a0) ~ 0. (6.6) 

Proof. The linearization of the system of equations in (~, a )  (6.4)-(6.5) at a 
point is given by the matrix 

OetOOff, ~ OOln Ootm ) 
= , 055 0)5 

O~ Oa Oa 
At (~, a)  = (0, o'0), Eqs. (6.4)-(6.5) are satisfied, and by Eqs. (6.2)-(6.3), the 
matrix P is invertible if and only if (6.6) holds. [] 

The inequality (6.6) is a more precise statement of assumption (A2). 

Bol. Soc. Bras. Mat., Vol. 32, No. 3, 2001 



G E O M E T R I C  S I N G U L A R  P E R T U R B A T I O N  A N A L Y S I S  253 

i' 

U 
w (n(O,e~O) ) 

W S(m(0,c~0)) 

J 

U 
W (n(0,a)) 

i 

S 
w (m(0,o)) 

(a) (b) 

Figure 6.2: Breaking the connection: (a) (~, a)  = (0, a0), (b) �9 = 0, a near 

O" 0 . 

Remark. Let A(~,  a)  denote the oriented distance from the point (oen (tp, a) ,  
fl,2(~, a))  to the stable manifold of m(tP, a) ,  where the distance is measured 
parallel to the vector Yl. It is easy to check that 

a A (0, ao) = Oo~n OOem 
o-7 (o, oo) - (o, 

In principle, oA/0 ~ ,  , a0) can be computed as follows. The linear differential 
dv = D, G (u (z), 0, a0) v has a one-dimensional space of bounded so- equation ?Tz 

lutions, which is spanned by ti(z). The adjoint equation 

dy 
dz 

-- DuG(u(z),O, ao)Ty 

has a one-dimensional space of bounded solutions, which is spanned by a solution 
y(z) with y(0) = Yl. Then 

O A fcoo OG 0.7(0, ao) = y(z) . ~-~a (u(z), O, ao) dz. (6.7) 

Thus (A2) is also equivalent to assuming that the Melnikov integral (6.7) is not 
zero. For more details, see [16]. 
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7 M a i n  Result  

At this point we can state precisely the main result of this paper. 

T h e o r e m  7.1. Let I be a a-interval on which (11)-(14) are satisfied, and as- 

sume there is a speed ao c I that satisfies (A1)-(A2). Then for  small 3 > 
O, the Traveling Wave System has a solution in X 4 with speed a = ao q- 

0 (3 )  that satisfies the boundary conditions (4.1) and the additional bound- 

ary condition l i m z - ~ ( z )  = O. As z --+ - ~ ,  the solution approaches 

(m(qJ-(3),  o'(3)), ~ - ( 3 ) )  with ~P-(3) = - r / a (a (3) )  + O(e-~). In partic- 
k 

ular, E- = 1 - 0 (e-  ~). As z --+ c~, the solution approaches (So, 0o, O, O) 

exponentially at a rate that is independent of  3. As z --+ - c ~ ,  the solution 
/ 

( m ( ~ -  (3), a(3)) ,  d2-(3)} exponentially at a rate that is 0(3) .  
\ 

approaches \ -  / 

Remark.  The expression for ~- shows that not all the oxygen is burned. The 
remaining oxygen may be significant for larger 3. 

The next five sections are devoted to completing the proof of this result. 

8 F low of  aw = F ( w , a ,  6) for 3 = 0 7~z 

In this section we analyze the flow of dw _ F ( w , a ,  6), w = (u, qJ) = 
dz 

(s, 0, E, ~P), for a near a0 and 3 = 0. The Traveling Wave System reduces 
to 

du dqJ 
- -  = G(u ,  ~P, a ) ,  
dz dz 

= 0 .  

Thus the flow is that described in the Secs. 5 and 6, except that ~P is regarded as 
a state variable rather than a parameter. 

We have the following structures: 

(1) Let rh(qJ, a )  = (m(q~, a) ,  qJ) and h(qJ, a)  = (n(qJ, a) ,  ~) .  We define 
the following curves of equilibria in w-space, each parameterized by � 9  

M ( a )  = {rh(qJ, a)  �9 - r l a (a )  < ~P < 0}, 

N ( a )  = {h(~, a)  : -17a(a ) < �9 < 0}. 

For small v > 0, we also define Nv(a) to be the subset of N(a )  with - r / a ( a )  + 
v < q J < O .  
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dw = F(w, ~, 6) for each (2) The plane e = 1 in w-space is invariant under 
(o-, 6). For 6 = 0, within this three-dimensional plane, the curve of equilibria 
N(o') is a normally hyperbolic (in fact, attracting) manifold. For an exposition 
of the theory of  normally hyperbolic invariant manifolds, see [15]. 

(3) For each fit ( qJ, o- ) in m (o'), define W ~ (fit ( ~ ,  cr )) to b e the set of  all (u, qJ) 
such that u is in the stable manifold of m(qJ, or), and define WC(fit(~P, o-)) to be 
the set of  all (u, q~) such that u is in the center manifold of m ( qJ, cr ). The former is 
a two-dimensional manifold, and the latter is a one-dimensional manifold. Then 
the curve of  equilibria M(o-), regarded as a one-dimensional invariant manifold 
of a~ = F(v, o-, 0), o" fixed, has a three-dimensional stable manifold W s (M(o-)), 

dz 

which is the union of all W ~ (fit (qJ, o-)) as qJ varies, and a two-dimensional center 
manifold WC(M(<r)), which is the union of  all WC(fit(*, or)) as tp varies. 

(4) For each fi(qJ, or) in N(o-), define W~ (fi(qJ, or)) to be the set of  all (u, qJ) 
such that u is in the stable manifold of n(qJ, or). WS (fi(qJ, cr)) is an open subset 
of  the two-dimensional plane E = 1, �9 fixed. Thus the curve of equilibria N (o'), 

do = F(v, or, 0), o- fixed, regarded as a one-dimensional invariant manifold of 
is normally attracting within the plane E ---- 1. 

(5) For each fi(qJ, o-) in N(o-) with - 0 a ( o ' )  < qJ define WU(fi(q~, cr)) to be 
the set of  all (u, qJ) such that u is in the unstable manifold of n (og, o-). This set is 
a one-dimensional manifold. Then for each small v > 0, the curve of equilibria 
N~(o-), regarded as a one-dimensional invariant manifold of d~ = F(v, ~r, 0), 
cr fixed, is normally hyperbolic. It has a three-dimensional stable manifold 
W ~ ( N~ (or)), which is the union of all W ~ (h ( qJ, o- )) with - r/a (or) + v < * < 0, 
and a two-dimensional unstable manifold W" (N~ (o-)), which is the union of all 
W"(h(kO,~r)) w i t h - ~ a ( o ' )  + v < * < 0. 

We shall now study the intersection of  the two-dimensional manifold 
W" (N~ (or)) and the two-dimensional manifold W ~ (fit (0, a ) )  in four-dimensional 
v-space. Notice that W" (N~ (or0)) and W s (fit(0, o'0)) meet along the connecting 
orbit from fi(0, a0) to fit(0, o0). One can study how the intersection breaks 
as cr varies by considering the intersection of  each manifold with the three- 
dimensional plane ~ = E x qJ-space. See Figure 8.1. We continue to use (or, 
/3) as coordinates on E,  so that (ol,/3, ~P) are coordinates on ~ .  

The unstable manifold of  h (q~, or) meets ]~ in the point (ol~ (ko, a),/3~ (qJ, o-), 

qJ). As qJ varies, the curve of  intersection of W"(N~(cr)) with Z is swept out. 

The stable manifold of  fit(0, or) meets ~ in the curve (O~m (~, O'), /3m(~, O'), 0). 
At (~, qJ, ~r) = (0, 0, o'0), the two curves meet. Other intersections can be found 
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~,o),0) 

(~ 

(~ n($,o),~n(~,o),~) 

q~ 

Figure 8.1: Intersection of invariant manifolds with three-dimensional l~, which 
is pictured as o~/%space (~) crossed with ~-space. 

by solving the following system of three equations in three unknowns: 

0/n (kI/, (7) - -  (3/m(~, (7") : 0;  

f ln(kI ,t, (9") - -  f lm(~ ,  (7) : 0 ,  

q J = 0 .  

(8.1) 
(8.2) 
(8.3) 

The linearization of this system of equations at a point is given by the matrix 

= 

OOg m OOg n OOgn OOg m "~ 

a~ aqJ aa aa ] 
0 1 0 / 

At (~, qJ, o') = (0, 0, o'0), the matrix/5 is invertible if and only if the matrix P 
defined in Section 6 is. This proves: 

P r o p o s i t i o n  8 .1 .  Eqs. (8.1)-(8.3) have the regular solution (~, qJ, a)  = 

(0, O, ~ro) if and only if(A2) holds, i.e., if and only if(6.6) holds. 
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dw = F ( w ,  a,  8) for/~ > 0: Fast Connection 9 Flow of ~-z 

dto = F(w,  a, 6) for a near a0 and small We now begin to analyze the flow of  ~-z 
6 > 0 .  

(1) M ( a )  remains as a curve of equilibria. Linearization shows that for 6 > 0, 
M (a)  has a three-dimensional stable manifold and a two-dimensional unstable 
manifold. The former is close to the stable manifold of M(o-) for 6 = 0; the 
latter is close to the center manifold of  MOO for 3 = 0. (These facts follow 
from the Center Manifold Theorem [20].) 

(2) The plane e = 1 remains invariant. Thus near N(o-) there is, in the plane 
= 1, an invariant curve N(o-, 6) which is hyperbolically attracting within that 

plane. 

(3) Near N~ (o-) is a normally hyperbolic invariant curve N~ (a, 3), which can 
be taken to be the set of  points in N(a ,  6) with - q a ( a )  + v _< qJ. N~(o-, 8) 
has a three-dimensional stable manifold W ~ (N~ (o-, 8)) and a two-dimensional 
unstable manifold W ~ (N~ (o-, 8)). The former is the closure of an open subset 
of  the plane e = 1. The latter is close to W"(N~(a)).  (This fact follows from 
the theory of  normally hyperbolic invariant manifolds [ 15].) From Eq. (4.8), the 
flow along N~ (a)  is in the direction of increasing qJ. 

Proposition9.1.  F o r e a c h s m a l l 3  > Othereisauniquespeeda(6)nearaosuch 
that W" (N~ (~ (~), 6)) contains a solution ws (z) that approaches m (0, a (8)) as 
z -+ (x). The function a(6) is smooth, and a(O) = ~o. 

Proof. For each o- near a0 and small 6 > 0, the three-dimensional manifold 
WU(N,,(o , 8)) meets ~ in a curve (c~ (q~, a, 6), fl~(*, a, 8), * ) .  The functions 
~ (~ ,  o-,/~) and fi~ (~ ,  a, 8) are smooth, and for 3 = 0 they coincide with the 
previously defined functions oe~ (g,', o-) and fin (~,  o-). 

The Center Manifold Theorem implies that for each o- near a0 and small 
8 > 0, the three-dimensional stable manifold of M(o-) is foliated by two- 
dimensional invariant surfaces WS(rh(~, a), 8), consisting of points forward 
asymptotic to r~(qJ, o'). W' (rh(qJ, a ) ,  0) coincides with W s (rh(qJ, a ) )  defined 

in Sec. 8. The two-dimensional surface W'(rh(0,  a ) ,  6) meets I~ in a curve 
(eem (~, o', 8), flm(~, a, 6), qJ(~, O', fi)). The functions Oem (~, o', 0) and tim (~, a, 0) 
coincide with the functions olm(~,o-) and fl~(~,o-) defined earlier, and 
~P(~, a, 0) = 0. Intersections of W"(N,~(a, 8)) and WS(rh(0, or), 6) can be 
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found by solving the following system of three equations in four unknowns: 

o~n(w, o-, ~) - oem(~, a ,  ~) = 0, 

~n ( ~ ,  a ,  ~) - r (~, ~r, ~) = 0, 

-- ~ (~, ~r, ~) = 0. 

(9.1) 

(9.2) 

(9.3) 

The linearization of Eqs. (9.1)-(9.3) at a point is given by the matrix 

? =  afln Ofln aflm afln Oflm | 

a~ 1 aq, aq, aa aa ~ / 

One solution of Eqs. (9.1)-(9.3) is (~, ~,  o-, 8) = (0, 0, o0, 0). At this point, 
0__y_, _ 0 and o,v = 0, so the first 3 x 3 block of /3  equals the invertible matrix 

/5. Therefore, by the Implicit Function Theorem, Eqs. (9.1)-(9.3) can be solved 
for (~, ~P, o-) in terms of/~ near (~, qJ, o-, 6) = (0, 0, o0, 0); 0-(5) is the desired 
function. [] 

/ 

/ 

( ~ 1  

~I(O,(Y) 

o 

Figure 9.1: The solution w~ (z). 
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Notice that for fixed (o-, 6), the curves (o6~ (~P, a, 8), fin (ko, a, 6), ko) and 

(am (~, a, 6), fim(~, a, 8), qJ(~, a, 8)) in E are close to the corresponding curves 
pictured in Figure 6.2. 

The solution w~ (z) is shown in Figure 9.1. At ~P ~ 0, in backward time, the 
solution quickly moves from the point rh(0, a(8))  toward the invariant curve 
N~ (a (3), 6). The solution then drifts slowly along N~ (a  (~), 8) in the direction 
of  decreasing ~P. 

10 F l o w  o f  d~ = F(w, a, 8) for  ~ > 0: S l o w  Drif t  dz 

As the solution w5 (z) drifts slowly along N~ (a (8), 8) in backward time, it is 
attracted to this curve. The result of  this attraction is described by the following 
proposition. 

P r o p o s i t i o n  10.1. There is a constant k > 0 such that for small 8 > O, the 
solution w6(z) arrives at �9 = - o a ( a )  4- v within O(e-'~) of  N~(~r(6), 6). 

Proof .  LetUbeasmallneighborhoodofN~(a) in which O-Oo _> C1 > 0. For 
small 8 > 0, the solution w~ (z), followed in backward time, enters U at a point 
with tp near 0. Let D be a number a little smaller that I - rla (a)  + v J. The solution 

D N,(o'(8),  8) to - ~ a ( a )  + v. w~ (z) requires time at least ~ to pass along ~ = 
Once w~(z) is in U, there are positive constants C2 and C3 such that w~(z) 
approaches N~ (a (6), 8) in backward time like C2 eC3t. Thus w~ (z) arrives at 

C3D 
qJ = -r /a(o-(8))  4- v within C2e-Wi~ ~ of N~(o-(8), 8). Notice that the constants 
Ci and D depend on the choice of v and U, but are independent of 8 for 6 
sufficiently small. Let k C3D = C--5-" [] 

B 11 ehav ior  o f  t h e  c o n n e c t i n g  orbi t  as z --+ - o c  

To see how the connecting orbit behaves as z ~ - o c ,  we shall use center 
manifold reduction. 

We first make a parameter-dependent shift of  coordinates in w-space. Let 

r = s - So, (11.1) 

co = 0 - 00, (11.2) 

~P 
P = ~ + 0 a ( a ) '  (11.3) 

�9 = tp + 0a(o-). (11.4) 
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This t ransformation takes 

{(u, ~P, a ,  8) " u = m(qJ, o')} (11.5) 

to the subspace r = co = p = 0 in (r, co, p ,  qs, a ,  8)-space, and takes 

{(u, ~ ,  a ,  8) �9 u = m(tP, a ) ,  �9 = - r la(a)}  

to the subspace r = co = p = �9 = 0. 

Since we are studying the connecting orbits, we shall assume throughout this 

section that a = a (8). For simplicity of  presentation, we shall suppress the 

dependence of  a and b on o-. Then in (r, co, p,  q~, 3)-coordinates, the Traveling 

Wave System becomes  

1 ( ) 
- -  = a --  a ( s o  + r)  + f ( s o  + r, Oo + co) 
dz h (So + r, Oo + co) 

(11.6) 

do) 1 
= - ( - b c o  + OaP), (11.7) 

dz V 

dp 1 ( ( s o + r )  p -  e -~  + 
dz a 

(11.8) 

dcP 
= 8co. (11.9) 

dz 

We add the equation 

d~ 
- -  = O ,  (11.10) 
dz 

and we regard (11.6)-(11.10) as a f ive-dimensional  system. 

There  are equilibria where  r = co = p = 0, ~P and3 arbitrary; these correspond 

is invariant. This corresponds to invariance to the set (11.5). The plane p = ~ 

dw = F(w,  a, 8). of  the plane e = 1 under 

Let  us linearize around the equilibrium at the origin. We have 

dz 

~f~ - a  
h 

0 

0 
0 
0 

fo 0 0 0 ~ 

b oa 
0 0 

Y Y 
0 0 0 0 
0 0 0 0 
0 0 0 (3 

(11.11) 
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where f s  and fo are evaluated at (so, 00). Notice that the same linearization is 
obtained at any equilibrium with r = co = p = 6 = 0. The eigenvalues of this 

matrix are the negative numbers ~ and - ~ ,  each with multiplicity one, and 

0 with algebraic and geometric multiplicity three. A basis for the eigenspace of 
the eigenvalue 0 is 

{ ( X , Y , I , 0 ,  O), ( 0 , 0 , 0 , 1 , 0 ) ,  (O,O,O,O, 1)}, (11.12) 

where X < 0 and Y > 0 are given by (6.1). The three-dimensional center 
manifold of  (11.6)-(11.10) at the origin is thus parameterized by (p, q~, 6), and 
is given by 

r = p X ( p ,  ~ ,  3), (11.13) 

o9 = p~ ' (p ,  d#, 6), (11.14) 

with 2(0 ,  qb, 0) = X and I~(0, qb, 0) = Y. The factor p in Eqs. (11.13)-(11.14) 
is due to the family of  equilibria r = o9 = p = 0, which must lie in the center 
manifold. We shall suppress the dependence of 3~ and I? on (p, qJ, 3). 

Substitution of Eqs. (11.13)-(11.14) into Eqs. (11.8)-(11.10) yields the flow 
on the center manifold in p~6-coordinates,  which we shall refer to as cen ter  

mani fo ld  coordinates:  

spY) dp  1 ':I~ )e-1/P~ + , (11.15) 
d z  - a ~(So + p ) f ) ( p  - ~a ~l 

d O  
-- 6pJ?, (11.16) 

d z  

d6 
- -  = 0 .  (11.17) 
d z  

* is invariant. The plane p = 0 consists of equilibria, and the plane p = 0-S 
If  we restrict to the plane 6 = 0, then the line p = 0 consists of equilibria 

also consists of  equilibria. For with two zero eigenvalues, and the line p = 0--S 

> 0 these equilibria have one zero eigenvalue and one positive eigenvalue. 
The lines qb = c are invariant. The flow on the two-dimensional slice of  the 
center manifold with 6 = 0, near (p, q~) = (0, 0), is shown in Figure l l . l ( a ) .  

The flow for fixed 6 > 0 is shown in Figure 11.1(b). The line p = 0 still 

consists of  equilibria, but now one eigenvalue is 0 and the other is L_f > 0. The 
~Ta 

• is now the unstable manifold of  the origin. This line corresponds, line p = oa 
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O p=~IT I a(~) 

o* 

,t ** i, 

, p  

(a) 

�9 9=o/~ a(~) 

P 

(b) 

Figure 11.1: Flow on the center manifold for (a) 6 = 0 and (b) 8 > 0. 

under the coordinate changes, to part of  the invariant manifold N (or (/~), 3) for 
the Traveling Wave System. The portion of this line with q5 > v corresponds 
to part of  N~ (o-(6), 6). The region p > 0, q5 _> v corresponds to part of  the 

a .  is positive, so the unstable manifold of N~(o-(6), 6). Notice that for p > 0, 
flow in Figure 11.1 (b) is upward. 

In center manifold coordinates, the solution w~ (z) of  the Traveling Wave Sys- 
tem that is given by Proposition 9 meets the plane q5 = v at the point (p, qb, 6) 

with 

( p ,  = - p ( 8 ) ,  v . 

B y Proposition 10, p (6) is O (e - ~ ). 

(11.18) 

Proposi t ion 11,1. As z --+ -oc ,  w~(z) approaches, in center manifold coor- 

dinates, apoint (0, ~0(~)) with 0 < ~o(6)and ~o(6) = O(e-~).  

drb Proof.  Since ~-z > 0 and the lines p = 0 and p = --  are invariant, �9 decreases qa 

in backward time to a limit. Since the only invariant sets with �9 constant are 
points on the qb-axis, it follows that the solution converges in backward time to 
a point (0, qs0) with qs0 > 0. 
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--* 0 < q b ,  From (11.13)-(11.14), in the region 0 < p < ,Ta' 

1 8pl ~ 
dp ~ ~ 1 

dcb 8p~" rla" 

Now the solution of 

dp 1 

d ~ tla 

that passes through the point (11.18) is the line 

p -- p(8), 
~Ta 

which meets the ~-axis at 

~l  (8) = oap(8). 

Thus ~1(8) is  O(e-}) .  The inequality (11.19)implies that ~0(8) < qbl(8). 

(11.19) 

(11.20) 

[] 

12 Completion of the Proof of the Main Result 

In this section we complete the proof of Theorem 7.1. 
We have constructed a solution w~(z) = (s(z), O(z), 6(z), tP(z)) of the Trav- 

eling Wave System with cr = or(8) = o'0 + 0(8).  Since w~(z) lies in 

which is close to WS(rh(O, Cro) , 0), w~(z) approaches (s, 0, E, v!-') = (So, 0o, 0, 0) 
as z --+ eo at an exponential rate that is independent of & 

As z --+ - o c ,  in center manifold coordinates, w~ (z) approaches (p, ~,  8) with 
(p, qb) = (0, ~0(8)). Using (11.1)-(11.4) and (11.13)-(11.14), we see that, as 
z --+ - o c ,  w~ (z) approaches 

(s, 0, r qs) = (so, 00, 1 , ~ 

t#a 

Since the positive eigenvalue of the system (11.15)-(11.17) at an equilibrium 

(0, qs) is ~ the desired solution of the Traveling Wave System is just 
r / a  ~ 

O(z), E(z), *(z)). 
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13 Nonexistence of the traveling wave for large heat loss 

In this section we prove the following result. It states that if  the rate of  heat loss 
to the surrounding rock formation is sufficiently large, then traveling oxidation 
waves cannot occur. 

Theorem 13.1. For ~ sufficiently large, any bounded solution of  Eqs. (4.4)-(4.6) 
such that (1) dO is bounded and (2) 0 < s(z) < 1 and 0 < E(z) < 1 for  all z 

- ~ Z  - -  - -  

must have O(z) = Oofor all z and ~(z) also constant. 
To prove this result, let (s (z), 0 (z), ~ (z)) be a bounded solution of  Eqs. (4.4)-  

(4.6) that satisfies (1) and (2). We shall regard s(z) and E(z) as given, and we 
shall show that it must be the case that 0 (z) = 00 for all z. Then from Eq. (4.6) 
we see that E (z) is also constant, so the theorem is proved. 

Let co = 0 - 00. From Eqs. (4.5)-(4.6) and the definitions of  b and q, we have 

d2co b do) 
- -  - -  + - - c o  + N ( z ,  co ) ,  (13.1) 
dz 2 y dz  y 

where 

{ - - ~ s ( z ) ( 1 - r  if c o > 0 ,  
N(z ,  co) = 0 if co < 0. (13.2) 

(Recall that s (z) and e (z) are given.) 
_ L  . . 1 . 

e ~o which is the derivative of  e -  ~, has, on the interval 0 < co < The function o)2 , 
~ ,  a maximum value of  

1 Therefore atco = 7. 

4 
M = - -  ~ .54 

e 2 

~ M  
Io~ -- d)l. (13.3) 

Y 
IN(z, co) - N(z ,  &)l < 

do) Let y = (Yl, Y2) = (co, 7~z)" Then Eq. (13.1) is equivalent to the system 

(13.4) 

with 

dy  = Ay + (0, N(Z, Yl)) 
dz 

(13.5) A =  b �9 
• 
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The eigenvalues of A are 

L• = ~-~y1 (-b 4- v/b 2 q- 42/3) . (13.6) 

We shall assume that b > 0, so that )~+ > 0 and X < 0; the cases b < 0 and 
b = 0 are similar. Corresponding eigenvectors are (1, X• Let 

(~0- O) U~_. ( 1  1 t U- 1 _ _ 1  (2;_ 11) A =  X+ ' )v+ ' -- ~ + - - X _  ' 

(13.7) 

so that U-  1A U = A. Notice that A, Z• A, and U are all functions of  o- and 8. 
Let y = Ux.  Then Eq. (13.4)becomes 

where 

d x  
- -  A x  + P ( z ,  x,  rr, 3), (13.8) 

dz  

1 N ( z ,  xl + x 2 ) ( - 1 ,  1). P(z ,  xt ,  x2, rr, 3) = U- t (O,  N ( z ,  x~ + x2)) -- )~+ _ ;~m 

Let C (91, 8t e) denote the B anach space of bounded continuous functions from 
9t to 91e, s = 1, 2. In C(91, 91) the normis  [[kll = sup(lk(z)l : z ~ 91). In 912 we 

use the norm II (Xl, x2)II = max(Ix~ I, Ix21), and we use the corresponding norm 
in C(91,912): 

Ilxll = s u p ( l l x ( z ) l l ' z  ~ ~)  = sup(ll(xl(z), x2(z)ll) "z e 91) 

= max(tlxl II, Ilx211). 

The following lemma is an easy consequence of the Variation of  Constants 
formula. 

L e m m a  13.2. Let h(z)  = (h i ( z ) ,  h2(z)) E C(~, ~2). Then the only bounded 
solution o f  ~ = A x  + h is x ( z )  = (Xl(Z), x2(z)) with 

xl (z) = e ~ (z-s)hl (s) ds,  
oo 

x2(z) = eZ+(z-S)h2(s) ds. 

1 In addition, Ixll ~ - 1 1 h l l  and lx2l < F+ Ih21- 

Using Lemma 13.2, we define a linear mapping L from C(~ ,  912) to itself by 
Lh  = x. We also define a mapping 

�9 C(91, 912) • ~ • ~+ __> C ( ~ ,  ~2) 
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by /3(x, or, 3)(z) = P(z, x(z), or, 3). From Eq. (13.8), if, for some (o-, 8), 
(s (z), 0 (z), e (z)) is a bounded solution of Eqs. (4.4)-(4.6) that satisfies (1) and 
(2), and x(z) is related to (s(z), O(z), E(z)) as described in this section, then 

we must have x = L['(x, or, 8), i.e., x must be a fixed point of  the mapping 
LP(.,o,3).  

Let Pi(z, x, or, 8) denote the ith component of P(z, x, a, 8), i = 1, 2. We 
have, for each i = 1, 2, for each z, and for each x and 2 in ~2, 

IPi(z,  x ,  ~, 3) - Pi(z ,  2,  ~, 3)1 ~ - -  
)~+ - )~_ 

IN(z, xl + X2) --  N(z, 21 + 22)1 

r/ffM 
y ( Z +  - z _ )  

IXl + x2 - 21 - 221 

r/~'M 

- y ( Z +  - ~ ) 
([Xl --  211 + Ix2 - 221) 

< 2rlffM 2r/ffM 
IIx - 2 II - IIx - 2 II. 

- f (X+ - X ) v/b 2 + 4y8 

Therefore, i f x  and 2 are in C(gt, 912), 

I I / ~ ( x , ~ ,  3) - / ~ ( 2 , ~ ,  3)11 
20~M 

C b  2 -q- 4y8 
IIx - 2 II. 

Since 0 < )~+ < - X _ ,  Lemma 13.2 implies that I[LI[ = 1 ~ .  Therefore 

I I t / ~ ( x ,  ~,  3) - t / ~ ( 2 ,  o-, 3)11 
2~ffM 

IIx - 211. 
) ~ + r  2 + 4V8 

Now 

2r/~M 

) ~ + r  2 -+- 4y8 

4r/ffyM 

( -  b + v/b 2 + 4YS)v/b 2 + 4y8 

~ l ~ M ( b  + l )  2 ~ l ~ M <  

8 ~/b 2 + 4V 8 - 3 
(13.9) 

Therefore, if 

8 > 20~M, (13.10) 

then L/3( ., or, 8) is a contraction of  COt,  ~ 2 )  for each (o-, 8). Notice that the 
inequality (13.10) is independent of  or. 
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Now N(z, 0) = 0 for all z and a,  so P(z, 0, a, 3) = 0 for all z, or, and 3. 
Therefore x = 0 is a fixed point of L/3( -, o-, 3) for each (a, 3). For ~ sufficiently 
large, Lfi(., a, 3) is a contraction, so x = 0 is the only fixed point. Since 
x (z) = 0 implies 0 (z) = 00, the result follows. 

Remark.  Figure 2.1 illustrates a traveling wave with 3 --- .003334541. Since 
= 5 and ( = 1 in that example, the estimate (13.10) implies that no traveling 

wave exists for 3 > 10M ~ 5.4. In fact, if we attempt to continue the traveling 
wave in 3, we find that o- decreases, and there is a turning point at 3 about 0.0178. 

14 Conclusions and Discussion 

In this work we have considered the existence of oxidation heat pulses excited in 
a petroleum reservoir originally under oxygen or air injection, so that a uniform 
ratio of oil to oxygen is in place initially. We have shown (see the end of Sec. 10) 
that the width of the slow cooling part of the pulse increases unboundedly as 
the heat loss to the surrounding rock formation decreases. This is the case, for 
example, when the thickness of the petroleum-bearing formation increases, or 
when the total seepage velocity of the fluid increases. When heat loss is very 
small, only the lead front of the pulse may fit between the injection and the 
producing wells. When the heat loss vanishes, the triangular oxidation pulse 
reduces to an oxidation bank, with no decay behind it. 

On the other hand, in the case of excessive heat loss to the surroundings, we 
have shown that no oxidation pulses are supported by the medium. An important 
open problem is to understand how the pulse vanishes as the heat loss increases. 

Our analysis implies that if simulations of combustion processes in petroleum 
engineering are to predict correctly the occurrence of combustion pulses, they 
must take into account heat loss to the rock formation. 

We have treated a severely simplified model in order to avoid complications 
in the analysis and thereby focus on the essential mathematical issues. In a com- 
panion paper [ 17], the focus is the modeling, and most unphysical simplifications 
are removed. After an analysis that is not harder but more complicated, we arrive 
at physical conclusions that are basically the same. Taken together, these papers 
suggest that the simplified model analyzed in this work captures the essential 
features of combustion of fluids in porous media. 
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Appendix  A. Nomenc la ture  

~b - rock porosity 
p g ,  ,0o - densities of gaseous and oleic phase, assumed not to depend on pressure 
or temperature 

Pr -- density of  rock 
Sg, So - saturations of  gaseous and oleic phase 
Vg, Vo - seepage velocities of gaseous and oleic phase 
Cg, Co, Cr - heat capacities of gaseous, oleic and solid phase at constant pressure 

Xg, Xo, xr - heat conductivities of  gaseous, oleic and solid phase 
0 - temperature (assumed to be the same in gaseous, oleic and solid phase) 
pij  - capillary pressure:pressure difference between phase i and j 

)~i - mobility of  phase i 
ki - relative permeability of phase i 

/.L i - -  viscosity of phase i 
Pi - pressure of  phase i 
vi - seepage velocity of  phase i 
j5 - fractional flow of  phase i 
E i  - massic energy density of  phase i per unit volume 

K - absolute permeability of  rock 
)~ - total mobility of  fluid 

v - total seepage velocity 
q - rate of  oxygen consumption 

- burned volume fraction of  the gaseous phase 
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