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missibility inequalities and we solve the Riemann problem when the left- and right-hand 
initial data are sufficiently close. Our approach is based on the concept of multivalued 
representatives of L ~ functions and a generalized calculus for Lipschitz continuous 
mappings. Several interesting features arising with Lipschitz continuous flux-functions 
come to light from our analysis. 

Keywords: hyperbolic conservation law, entropy solution, Riemann problem, Lipschitz 

continuous flux, multivalued representative. 

Mathematical subject classification: Primary: 35L65; Secondary: 65M12. 

1 Introduction 

The mathematical modeling of many problems in fluid dynamics and material 
science often leads to nonlinear hyperbolic systems of conservation laws. Such 
systems consist of  nonlinear partial differential equations supplemented with 
constitutive relations describing the behavior of the specific medium under con- 
sideration. The " f l ux"  of each conservation law is expressed in term of the 
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"conservative" variables. Quite often in the applications, the constitutive re- 
lations have different forms in different ranges of values of the conservative 
variables. Typical examples are found in the modeling of multi-phase flows and 
of elasto-plastic materials. A solid material, for instance, may have a different 
behavior when its density exceeds some critical value. On the other hand, the 
constitutive relations must often be determined by experiments. In turn, the 
hyperbolic systems of interest in the applications admit flux-functions which 
are solely Lipschitz continuous and lack the differentiability property which is 
customarily assumed in the mathematical theory of conservation laws. 

Our general objective is to identify new features arising in discontinuous so- 
lutions of systems of conservation laws with Lipschitz continuous flux. In the 
present paper, we will focus attention on the so-called Riemann problem (Lax 
[5]) for the strictly hyperbolic system 

ut + f (U)x = O, u(x ,  t) c ll, x 6 IR, t > 0 ,  (1.1) 

supplemented with the piecewise constant initial condition 

[ 0, 
u(x,  0) = / uz' 

x < 

[ Ur, X > 0 .  
(1.2) 

We assume that the data u l, u r belong to 21 := ~ (u., 3) C R N, the ball with center 
u. and (small) radius 5. The function f : 21 --~ IR N is assumed to be Lipschitz 
continuous and the matrix D f  to be strictly hyperbolic. Each characteristic field 
of D f  will be assumed to be genuinely nonlinear. (Since the flux is not smooth, 
these notions have to be reconsidered; see the begining of Section 4 below.) 

Discontinuous solutions of (1.1) satisfying an entropy condition (required for 
uniqueness) will be sought. Recall that the Riemann problem plays a funda- 
mental role within the theory of conservation laws and yields many interesting 
informations on general solutions of (1.1). It is the basis to develop a large class 
of numerical schemes (Godunov scheme, random choice method, front tracking 
algorithm,...). Assuming that f be of class C 2 at least and ~ be sufficiently small, 
Lax [5] constructed the entropy solution of the Riemann problem (1.1). To ex- 
tend Lax's theory to Lipschitz continuous f ,  the difficulty is to handle possibly 
discontinuous wave speeds. We will rely here on the generalized calculus for 
Lipschitz continuous mappings, for which we refer to Clarke [1]. A generalized 
derivative is a set o f  vectors rather than a single value. We will also rely on 
the (related) theory developed earlier by Fillipov [4] for ordinary differential 
equations with discontinuous coefficients. 
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An outline of the content of this paper follows. A brief review of Clarke's 

generalized calculus is presented in Section 2. Section 3 deals with the case of 
scalar conservation laws, which is particularly straightforward but nevertheless 
of particular interest, as it allows us to exhibit the new qualitative behavior of 
shock waves and rarefaction waves associated with discontinuous wave speeds. 
Section 4 contains a general existence theory for the Riemann problem (1.1) 
and (1.2) for systems. Solutions satisfy a suitable generalization of Lax shock 
admissibility inequalities. Observe that the Riemann solution may be non-unique 
when the flux is not smooth, even when entropy inequalities are imposed. Finally, 
in Section 5, we investigate a specific example arising in fluid dynamics. A 
study of the Cauchy problem for systems of conservation laws with Lipschitz 
continuous flux-functions is in progress. 

2 Generalized gradients 

Let us recall here the notion of generalized gradients for Lipschitz continuous 
mappings and some fundamental results we will need. We follow closely the 
presentation in Clarke [ 1 ]. 

The ball in R N with center u and radius r is denoted by {BN (u, r). By definition, 
given an open subset ]1 C R N, a vector-valued mapping 

f :11 --+ IR M, f (u)  = ( f l (u ) ,  f2(u)  ..... fM(u)) 

is k-Lipschitz continuous on the set II if 

I f ( u )  - f ( u ' ) l  ~ k lu - u ' l ,  u,  u '  ~ ~ .  (2.1) 

It is k-Lipschitz continuous near some point u if, for some small E > 0 such that 
the ball {BN(u, ~) is contained in II, the function f is k-Lipschitz continuous on 
~BN (u, e). On the other hand, when f is Lipschitz continuous near some point u, 
by Rademacher's theorem it is differentiable almost eveywhere (for the Lebesgue 
measure) on any neighborhood of u on which f is Lipschitz continuous. We 
will denote by ~'2f the set of all the points at which f fails to be differentiabte. 
The notation D f  (v) will stand for the usual M / N matrix of partial derivatives 
which is well-defined whenever v is a point at which the partial derivatives exist. 
We are led to the following definition. 

Definition 2.1. The generalized Jacobian Of (u) of f at the point u is the convex 
hull of all M x N matrices Z obtained as limits of sequences of the form D f  (u i), 
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where Ui ~ U and ui r ~"~f. In other words, we set 

Of(u) := c o { l i m D f  (ui) / ui --+ u, U i ~ ~'~f }, (2.2) 

where the notation " c o "  stands for the convex hull of a set. 
When M = 1, given a real-valued function f " ~l -+ R which is Lipschitz 

continuous near some point u �9 R N, the generalized directional derivative of f 
at u in the direction v �9 l~ N is denoted by f~  v) and defined by 

f (u' + t v) - f (u') 
o U" f ( , v) := lim sup (2.3) 

uf__>u, t 
t--~O+ 

The generalized gradient of f at u is denoted by Of(u) and defined by 

o U "  O f ( u ) : = { w � 9  ( , V ) > W . V  f o r a l l v � 9  (2.4) 

Some fundamental properties of generalized gradients are summarized below. 

Proposition 2.2 [1, Prop. 2.6.2]. Let f ( u )  = ( f l ( u ) ,  f2 (u )  ..... fM(u ) )  be 
a mapping which is Lipschitz continuous near some point u �9 N N. Then the 

following statements hold: 

(a) Of(u) is a non-empty convex compact subset of  N M • N. 

(b) Of(u) is closed at u, that is, if  ui --+ u, Zi �9 Of(ui), Zi ~ Z, then 

Z �9 Of(u). 

(c) Of(u) is upper semi-continuous at u, that is, for  any e > 0 there exists 

> 0 such that foral l  v �9 fl3N(U, 6) 

Of(v) C Of(u) + e ~MxU, 

where NMxN is the unit ball with center 0 in the space of  M x N-matrices. 

(d) I f  each component f i  is ki-Lipschitz continuous at u, then f is k-Lipschitz 

continuous at u for  some constant k, and Of(u) C kNM• where ~BM• 

is the closure of  ~BM• 

(e) Of(u) C Ofl(u)  x Of2(u) x ... x o f  M(u), where the latter denotes the 
set of  all matrices whose i-th row belongs to Of i (u) for each i. I f  M = 1, 
then Of(u) = Of 1 (u) (i.e., the generalized gradient and the generalized 
Jacobian coincide). 
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In general, the generalized gradient is not lower semi-continuous. Recall that 

a set-valued function g with domain f2 C ~N and taking values in R u is said to 
be lower semi-continuous at a point u c f2 if, for any open subset ~ C f2 such 
that ~ fq g(u) ~ 0, there exists ~ > 0 such that 

g(v) A ~ ys O, v E ~ N ( U ,  T]). 

To illustrate our claim, consider the real-valued function h : R --+ R, u 
h (u) = lul. A simple calculation shows that 

{ -1} ,  u < 0 ,  

Oh(u)=  [ - 1 , 1 ] ,  u = 0 ,  

{1}, u > 0 ,  

so that the generalized gradient Oh is not lower semi-continuous at u = 0. 
We now state some key results of the theory of Lipschitz continuous mappings, 

extending classical theorems which are well-known for smooth mappings. 

Theorem 2.3 (Mean value theorem) [1, Prop. 2.6.5]. Let f : ~ --+ ]R M be 
Lipschitz continuous on an open convex set Z[ C R N, and let u and v some 
points in 2L Then, there exists a matrix A(u, v) ~ co Of ([u, v]) (where [u, v] 
stands for  the straightline segment connecting u and v) such that 

f ( v )  - f ( u )  = A(u, v) (v - u). (2.5) 

Theorem 2.4 (Chain rule formula) ]1, Cot. 2.6.6]. Let f : ~N _.._> ]~M be 

Lipschitz near u and let g : • v  __+ RK be Lipschitz continuous near the point 
f (u). Then, for  any v c ~x x one has 

O(g o f ) ( u ) v  C co (Og( f (u ) ) (Of (u )v ) ) .  (2.6) 

I f  g is continuously differentiable near f (u), then equality holds (and taking the 
convex hull is superfluous). 

Theorem 2.5 (Inverse mapping theorem) [1, Th. 7.1.1]. Let f be Lipschitz 

continuous near a given point uo ~ R x. I f  Of (uo) is non-singular, in the sense 
that every matrix of  the generalized Jacobian O f (uo) is non-singular, then there 
exist neighborhoods ~ and 3? of  uo and f (u o), respectively, and a unique Lipschitz 
function g : V --+ ] ~ x  such that 

g ( f ( u ) ) = u  for  everyu ~ 2~ 
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and 
f ( g ( v ) ) = v  for everyv c V. 

We will also need the implicit function theorem. Consider a mapping h �9 
R M x IRK --+ R zc, together with the implicit equation 

h ( v , w ) = O  where (v ,w)  cIR M x l R  K. (2.7) 

Assume that h is Lipschitz continous near the point (v0, w0) 6 IR M x R K, and 

that (Vo, wo) satisfies the equation (2.7). Denote rrw3h(vo, wo) the projection 
in the w-direction, that is, the set of all K x K matrices A such that, for some 
K x M matrix B, the K x (K + M) matrix (B A) belongs to 3h(vo, Wo). 

Theorem 2.6 (Implicit mapping theorem) [1, Cot. 7.1.1]. Under the above 
notation and assumptions, suppose that each matrix of the set zrw3h(vo, wo) 
is of maximal rank. Then, there exists a neighborhood ~ of Vo and a unique 
Lipschitz continuous function r : V --+ IRK such that r(vo) = wo and 

h(v, r (v ) )= O' forevery v e V. (2.8) 

3 Scalar conservation laws 

To begin with, in this section we consider the equation (1.1) when N = 1 and 
investigate the Riemann problem. Recall that we solely assume that the flux f 
belongs to WI'~(R).  For such a function of a single variable one can set 

f ( v  + h) - f (v )  
f+(u) = lim sup 

v--,, h 
h-~O+ 

f'_(u) = liminf 
v-~~ h h--+0+ 

f ( v  + h) - f ( v )  
(3.1) 

Proposition 3.1. At every point u ~ R we have 

t U i Of(u) = [ f ' ( ) ,  f+(u)].  (3.2) 

Proof. First of all by the definition (2.3) we have 

f+(u) = f~  1) 
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and 

f '  (u) = - l i m s u p (  h f ( v ) )  
h~O+ 

( - - f ) (v  + h) -- ( - - f ) (v )  
= -- lim sup 

h v---~ u 

h ~ 0 +  

= - ( - f ) ~  1) ~ u = - f  ( ; - 1 ) .  

(3 .3)  

By definition, w E Of(u) if and only if 

~ u w .  v < f ( ; v) ,  v e R .  

Since both sides of  the last inequality are positively homogeneous of degree one, 
the condition reduces to 

w < f~ 1) and - w < f ~  - 1 ) .  

From (3.3) we also easily deduce that 

~  / u w <  f ( ; 1 )  = f + ( ) ,  
o U w > - f  ( ; - 1 )  = f'_(u), 

which completes the proof. 

The wave speed 

~.(u) :=  f ' (u )  

solely belongs to L ~ (IR). The associated shock speed defined by 

[] 

f (v) - f (u) 
o'(u, v) - (3.4) 

V - -  bl 

is a Lipschitz function of its argument away from the diagonal { u = v }. Observe 
that given some state u0 and for specific sequences u, v --+ u0 we may reach any 
value within the interval Of(uo). 

We will generalize here Oleinik's construction of  the solution of  the Riemann 
problem (1. t)-(1.2) to the case of a Lipschitz continuous flux. To begin with, we 
will review the notion of  generalized inverse of monotone mappings. Consider a 
function h : [a, b] ~ R which is non-decreasing on a closed interval [a, b] c I~, 
i.e., 

Yo, Yl ~ [a, b], Yo > yl ~, h(yo) > h(yl). 
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Then, the function h has locally bounded variation and its set of discontinuity 
points is at most countable. Moreover, at each discontinuity point y we can define 
left- and right-hand limits denoted by h_(y) and h+(y), respectively. Since h 
is non-decreasing, there is no ambiguity between this notation and the one in 
(3.1). At points of continuity we have obviously that h_(y)  = h+(y) = h(x).  
The functions h_ and h+ are the left- and right-continuous representatives of the 
function h. For each ~ E [h(a), h(b)] consider the set 

G(~) := {y E [a, b ] / h ( y )  = ~}. (3.5) 

We can distinguish between three cases: G(~) may be either a single point, or 
an interval I C [a, b] with distinct endpoints, or the empty set. We state without 
proof (see [3]): 

Lemma and Definition 3.2. Let h : [a, b] --+ ~ be a non-decreasing function. 
Its (non-decreasing) generalized inverse denoted by h -t  : [h(a), h(b)] --+ [a, b] 
is defined as follows at each ~ E [h(a), h(b)]: 

(i) I fG(~)  = {y}, then we set 

h -~ (~) = y .  

(ii) I f  G(~) is an interval I C [a, b] with distinct endpoints Yo < Yl, then we 

can pick up any value 
h- l (~)  E I, 

for  instance the lower bound Yo of  the interval I. In that case, ~ is a point 
o f  discontinuity of  the function h, the set of  such points ~ being of  course 
at most countable. 

(iii) I f  G(~ ) = 0, then there exists a unique value y E [a, b ] such that h_(y)  < 
< h+(y). Then we set 

and we have 

h-~(~) _= y 

h q ( ~ )  = y 

foral lva lues  ~ E [h_(y), h+(y)]. 

The function h 1(~) i s  non-decreasing in ~. Moreover, if h is strictly increas- 
ing, then its general&ed inverse h -~ is continuous. 

This notion is obviously consistent with the standard definition when h is 
invertible. Throughout the present paper, the inverse of a monotone function is 
always understood in the sense above. 

Our main result in this section is the following one. 
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Theorem 3.3. Consider a Lipschitz continuous flux-function f and some Rie- 
mann data ul and Ur such that (for definiteness) ul < Ur. Let 

f"  Jut, ur] ~ 

be the (Lipschitz continuous) convex hull o f f  on the interval [uz, u~]. Consider 
also the generalized inverse of  f '  in the sense of  Definition 3.2 

g := ' " [f~(ul), f'_(ur)] --+ IR. 

Then, the explicit formula 

~t U ut, x < t f+( l), 

u (x , t )  = g(x / t ) ,  t f+(ul) < x < t f'_(Ur), (3.6) 

[u~, x > t f '  (Ur), 

defines a function with bounded variation which is the entropy solution of the 
Riemann problem (1.1)-(1.2) satisfying Oleinik's entropy inequalities. 

Proof. Setting 
v(~) :=  u ( x , t ) ,  ~ = x/t, 

we must show that the Borel measure 

dv d 
. : =  + = + d~ (3.7) 

vanishes identically, where dv/d~ is a measure and Volpert' s superposition f~ (v) 
is the function of bounded variation defined by 

. f  [ f'_(v(~)) at points of continuity of v, 

[J0  f (Ov (~))+(1-O)v+(~))dO atpointsofjumpofv.  

Here, the representative if_ is chosen for definiteness, only. See [3] for ajustifi- 
cation of the above chain rule. Given an arbitrary Borel set B we can introduce 
the decomposition 

~(8)  = ~(Bc) + ~ ~({~m)), 8 = Bc U {~1, ~2 . . . .  }, 
m 
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in which v is continuous at every point of Bc and discontinuous at each ~1, ~2 .... 
We can now deal with the set of points of continuity and of points of jump 
separately. 

First of all, suppose that f is convex on the interval [ul, ur], so that 

f ( u )  = f ( u ) ,  u E [Ul, Ur]. 

We distinguish between two situations. If v is continuous at some point ~ and 
that f is differentiable at v(~), then we have by definition 

f ' ( v ( ~ ) )  -- f ' ( v ( ~ ) ) .  

Since v is precisely the inverse of f~ this yields 

f ' ( v ( ~ ) )  = ~. 

If now v is continuous at some point ~ but f is not differentiable at v(~), i.e., 

then we have 

< 

v ( f '  = 

Since v is monotone, v remains constant on the non-trivial interval 

[f'_ (v (~) ) , /+  (v(~))] 

(which contains ~). We conclude that the measure d v / d ~  vanishes identically 
in this interval. Collecting our conclusions in both cases, it follows that if B is 
a subset of the set of continuity points of v, then 

tt(B) = O. 

Next, let ~ be any point of  discontinuity of v. We have 

/t({~}) --- - ~  (v+(~) - v_(~)) § f ( v + ( ~ ) )  - f ( v _ ( ~ ) ) .  

Since f~ is the inverse of v, f~ must be constant on the interval [v_(~), v+(~)], 
that is, 

f ' ( u )  = ~, u E [v_(~), v+(~)]. 

Therefore, w ~-~ f ( w )  is affine on this interval and is given by 

f ( w )  =- f ( v _ ( ~ ) )  + ~ (u - v_(~)), w E [v_(~), v+(~)], 
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and in particular we obtain 

= 0  

This completes the proof that (3.6) provides a solution of the scalar conservation 

law (1.1), at least when the flux f is assumed to be convex. 
To treat the general case when f need not be convex let us set 

A := { w / f ( w )  = f ( w ) }  

Since both f and f are continuous, the set A is closed and can be decomposed in 
a countable union of  closed intervals, say [an, b,~], n = 1, 2, �9 �9 -. In each interval 
[an, bn] the function f is convex and our arguments in the first part of this proof 
show immediately that the formula (3.6) determine a weak solution of (1.1) if 
the initial data lie in [an, b,]. The remaining set A c is open and, therefore, can 

be decomposed into a countable union of  open intervals (c~, d~), n = 1, 2, . . - .  

Without loss of generality we can assume that c~, d~ ~ Jt, so that 

f '_(c.) f!_(cn) and f+(  n) f+(dn). 

By definition, f must be affine on the interval [c~, d,]. Thus, we get 

f!_(c~) = f'_(c~) = f+(dn) = f+(dn)=:  )~. (3.8) 

The conditions (3.8) imply that, at the point )~, the function v has a jump discon- 
tinuity and 

v_ (Z) = c~ and v+ ()~) = dR. 

Then we have 

/z({)~}) = - Z  (v+(X) - v_(X)) + f (v+(Z))  - f (v_(Z) )  = 0. 

Therefore, i f  the initial data belong to the interval [cn, d,~ ], then )~ is the unique 
point of discontinuity of v, and for ~ ~ X, the function v is constant. This 
means that the function v (or, more precisely, u = u(x,  t)) has a discontinuity 
propagating at the speed X. 

Finally, if  the initial data take values in several distinct intervals, we can find 
a decomposition the formula (3.6) to reduce the problem to solutions with data 
belonging to a single interval. 

To complete the proof, it remains to check that Oleinik's entropy inequalities 
hold at each discontinuity connecting some left-hand state u_ to a right-hand 
state u+, that is, 

a ( u _ ,  u+) < a ( u _ ,  w), w 6 (u_, u+). (3.9) 
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Consider the shock wave determined earlier from the conditions (3.8), with now 

u_=cn,  u+=dn, o-(u_,u+)=)~. 

Since f is the convex hull of  f and is distinct from f at each point of the interval 
(u_, u+), we have 

f ( w )  < f ( w ) ,  w e (u_, u+). (3.10) 

Thus, (3.10) yields for all w 6 (u , u+) 

f ( w ) -  f ( u - )  f ( w )  - f ( u _ )  
a ( u _ ,  w)  = > 

W - - U _  ~ - - ~ _  

f(._) I X  

W - - U _  

The proof of  Theorem 3.3 is complete. [] 

To illustrate some interesting features of the loss of  regularity in the flux- 
function f ,  let us discuss an example. Suppose that, for some critical value 
u,  c JR, the flux f is a smooth convex function in both intervals u < u,  and 

u > u, ,  but the speed )~(u) = f l ( u )  is discontinuous at u ,  with 

)~_(u,) < )~+(u,), 

so that the flux f is globally convex but solely Lipschitz continuous. Then, on 
one hand, a rarefaction wave connecting ul < u,  to ur > u,  contains a constant 

state: 

u(x ,  t)  = 

Ul, 

f ' - l ( x / t ) ,  

U,~ 

blr ~ 

x < t)~(ul), 

t )~(uf) < x < t )~_(u,), 

t Z_(u, )  < x < t)~+(u,),  

t )~+(u,) < x < t )~(Ur), 

X > t)~(ur). 

On the other hand, concerning shock waves, it is easy to see that the shock 
speed always has a limiting value if  one data coincides with u ,  while the other 

approaches u, ,  namely 

a ( u , ,  Ur) -+ X_(U,),  Ur ~ U, 

and 
a(u l ,  u , )  -+ Z+(u,) ,  ul --+ u, .  
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However, the speed o-(ut, ur) has no limit when both ul, ur --+ u.  and instead 

we obtain 

l iminf  a(ul ,  u~) = )~_(u,) 
btl ,Ur-->bl . 

and 

lim sup cr(ul, ur) = )~+(u,). 
Ul,  Ur --->/,t * 

4 Riemann problem for Systems 

We now turn to general N x N systems (1.1) with Lipschitz continuous flux f 
and, following Lax 's  approach [5], we construct explicitly the entropy solution of 
the Riemann problem. As is usual, we restrict attention to self-similar solutions, 
u(x,  t) = u(y)  with y = x / t  and rely on two fundamental families of  solutions, 

the shock waves and the rarefaction waves. 
Let us first introduce a notion of  strict hyperbolicity for systems of conservation 

laws with non-smooth flux. Recall that all of the values u under consideration 

will remain in a ball ~ :=  ~3(u,, 60) with sufficiently small radius S0. The system 
(1.1) is assumed to be strictly hyperbolic. We fix some N x N matrix A* with 
real and distinct eigenvalues 

and corresponding basis of left- and right-eigenvectors l~ and r~, j = 1 . . . . .  N, 
respectively. After normalization we can have IrTI = 1, l ? . r~  = 0 i f /  ~ j and 

l~. r~ = 1. We assume that the Jacobian matrix of the flux f �9 ~ ~-> ~N remains 
close to A*, i.e., 

II D f ( u )  - A* [I < 7 for almost every u 6 ~ ( u , ,  So), (4.1) 

where the constants S0 and 7 > 0 are sufficiently small and IIBII denotes the 
Euclidian norm of a matrix B. For 7 small enough, (4.1) implies that, for almost 

every u in ~ ( u , ,  50), the matrix D r ( u )  has N real and distinct eigenvalues 

)~(u) < . . .  < )~x(U) 

and corresponding basis of  left- and right-eigenvectors l j (u) ,  r j (u) ,  j = 

1, . . .  , N, respectively. Moreover, for some uniform constant C > 0, (4.1) also 
implies for j = 1, . . .  , N and for almost every u 6 ~ ( u . ,  So) 

I i(u) - _< c 7,  

]tj(u) l~.1 < C 7, (4.2) 

Irj(u) - r]l _< C 7. 
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Thanks to the definition of  generalized Jacobian (see (2.4) in Section 2) and the 
property of  convex hulls, the properties in (4.2) remain valid for the generalized 

Jacobian Of(u), that is, 

]IA- A*II ~ fo ra l l .4  c Of(u),  ucIB(u , ,3o) .  (4.3) 

Let Aj (u) be the set of  all j -eigenvalues of  the matrices belonging to the set 
Of(u). In view of  (4.3), for each 2j  6 A j (u )  there exists a left-eigenvector [j 
and a right-eigenvector Yj such that 

[[j - I~1 < C rh (4.4) 

I ? j - r j ]  < C r~. 

The corresponding sets of  "normal ized"  left- and right-eigenvectors will be 
denoted by Lj (u) and Rj (u), j = 1 . . . . .  N,  respectively: 

I[ j - l~[  < C ~  f o r a l l / j  c L j ( u ) ,  

[?j - r~l _ C r/ for all f j  ~ Rj(u). 

For u 7~ v we denote by Aj (U, V) the set of  j-eigenvalues ~.j of  matrices 

a(u,  v) ~ co (Of([u,  v])) satisfying 

A(u, v) (v - u) = f ( v )  - f ( v ) .  

Second, we state a generalized notion of genuine nonlinearity for Lipschitz 
continuous flux-functions. Basically, we impose that characteristic speeds and 
wave speeds are monotone along wave curves. Precisely, for each j = 1 . . . . .  N 
each Lipschitz continuous curve (-G0, G0) 9 G w-~ v(G) c 21 satisfying 

Iv ' (G)--r~l  ~ C o  for almost every G ~ (--Co, Go), (4.5a) 

and each measurable selections (-Go, e0) 9 e w+ ~.(e), or(e) c IR satisfying 

o'(G) e Aj(v(0), v(G)), Z(G) e Aj(v(G)), (4.5b) 

the functions )~(G) and cr (e) are (strictly) increasing. Moreover, for some uniform 

constant m > 0 and a l l -G0 < el < e2 < G0, we have 

~,(E2) - -  )~(E1) > re(G2 - -  G1). (4.6) 
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This assumption represents a direct generalization of Lax's concept. 
Finally, we assume the following regularity assumption on the flux along wave 

curves: for each Lipschitz continuous curve v satisfying (4.5), the function f is 
continuously differentiable at v(e) for almost every e s (-E0, e0). For example, 
we will use later (when dealing with rarefaction waves) that the following chain 
rule holds 

f ( v ( e ) ) '  = D f ( v ( e ) )  v({) '  for almost every e 6 (-e0,  e0). 

We begin with the derivation of two classes of elementary solutions, which 
will be used next to solve the Riemann problem. A shock wave traveling at the 
speed rr 

u ( x , t )  = [Uo, x < crt, 

[ U ,  X > O" t ,  

with u0, u c 21, must satisfy the Rankine-Hugoniot relations: 

-or (u - Uo) q- f (u) - f (uo) -~ O. (4.7) 

The Hugoniot set of all states u connected to a fixed state u0 decomposes into 
N curves, which must be firther constrained with an entropy condition. Ob- 
serve that, because the flux f is solely Lipschitz continuous, wave speeds are 
not defined as functions but rather as subsets of IR. Accordingly, we need a 
generalization of Lax shock admissibility inequalities, stated in (4.8) below. 

Theorem 4.1. Assume that the system (1.1) is strictly hyperbolic and genuinely 

nonlinear. For each i = 1, . . .  , N, there exist 81 < 8o, el > O, and a unique 
Lipschitz continuous mapping 

~oi : ( -El ,  0] x ~3(u., 81) --+ 23(u,, 80), 

and a unique bounded measurable mapping 

oz- : (-~1, 0] x ~ (u . ,  81) --+ IR, 

which is locally Lipschitz continuous on ( - e l ,  0) x ~ (u . ,  81), such that the 
following holds. 

For every e c ( - e l ,  0) and uo ~ ~ ( u . ,  81) the left-hand state uo can be 
connected to the right-hand state u := ~oi(e; uo) by an i-shock wave with speed 
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~oi (El; Uo). That is, Rankine-Hugoniot relations (4.7) hold together with the 
fol lowing generalized Lax shock admissibility inequalities 

ai(uo)  ~ (yi(0; Uo) > (~i(e; Uo) > a/(E; (pi(e; Uo)) E Ai(goi(E; Uo)). (4.8) 

The functions cri is increasing with respect to E and 

q)i(O; UO) ~- l, to, 

Oq)i (0; uo) C Ri (Uo), (4.9) 

cri (0; u0) ~ Ai (u0). 

Note in passing that the following Taylor-like expansion follows from Theorem 
4.1 

q)i(E; Uo) ~ uo + ~ Ri(uo) + o(e)~B(0, 1), (4.10) 

which determines the local behavior of the shock curve. 

Proof. By the (generalized) mean-value theorem stated in Theorem 2.3, there 
exists a matrix-valued and measurable function A (u0, u) ~ co (Of ([u0, u])) such 
that 

f (u) - f (uo) = A(uo, u) (u - Uo). (4.11) 

Hence, the Rankine-Hugoniot relations (4.7) become 

(-~r I + A(uo,  u))  (u - Uo) = O, (4.12) 

where I denotes the identity matrix. 
Let us fix u0. Thanks to (4.3), the averaging matrix A(uo, u) satisfies 

Ila(u0, u) - A*II _< r/. (4.13) 

Let )~i(Uo, U) and ri(uo, u), i =  1 . . . . .  N be the eigenvalues and right- 
eigenvectors of A (u0, u), respectively. The equations (4.12) take the following 
equivalent form: There exists i = 1 . . . . . .  N and a real ot such that 

U --  UO : o t r i ( u o ,  u ) ,  Cr = )~i(UO, U). (4.14) 

The main difficulty in order to solve (4.14) lies in the lack of regularity of the 
eigenvectors and eigenvalues of A (u0, u). 
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Consider (4.7) and multiply it successively by each left-eigenvector l~: 

- a ( u )  I j .  (u - Uo) + l~.  ( f ( u )  - f ( u o ) )  = O, j = 1 , . . . ,  N .  (4.15) 

Fix some index i. The i-th equation in (4.15) determines the shock speed: 

l* .  ( f ( u )  -- f ( u o ) )  l* .  A(uo ,  u) (u - uo) 
or(u) = = (4.16) 

I? . (u - uo) 1". (u - uo) 

We are going to show that there exists a curve E ~ ~Pi (e; u0) defined for small 
1~1 such that along this curve, the shock speed 

~ri(~; u0) := ~r(,)i(~; u0)) 

determined by (4.16) fulfills the system of N equations (4.15). 
The formula (4.16) requires u to satisfy l* �9 (u - u0) g= 0. For that reason, we 

restrict attention to the cone 

Cy,i(Uo) : =  {u E ~ [ / l l i * "  ( u - -  u0) I > },' ]bt -- /"0l}, 

where g e [ll/t - a, II*1) is a fixed constant, for some ee ~ (0, 1). Note that uo 
does not belong to this open cone. Note also that the Lipschitz regularity of the 
shock speed, as stated in the theorem, follows immediately. 

Then, observe that the shock speed remains uniformly bounded in the cone 
C>i (uo), namely 

l* .  A* (u - Uo) 1". (A(uo ,  u) - A*) (u - Uo) 
a ( u )  = + 

12. (u -- uo) I*.  (u - Uo) 

l* .  (A(uo ,  u) - A*)  (u - uo) 
= ) ~ T +  

I * .  (u - uo) 

In particular, we find 

I ~ ( u )  - z~l  _< 
II*l 

[[A(uo, u) - A*II _< C ~7- (4.17) 
Y 

On the other hand, the shock speed is continuous on C• However, in 
general, it cannot be extended by continuity to u = u0. 

Plugging the expression (4.16) of the shock speed in the relations (4.15) yields 
f o r j  # i: 

F j ( u )  := -- l * . ( f ( u ) - - f ( u o ) )  , 
~ T g _  uo) I a �9 (u - uo) (4.18) 

+ l~.  ( f ( u )  - f ( u o ) )  = O. 
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Since f is Lipschitz continuous and the shock speed is bounded, the functions 
Fj are locally Lipschitz continuous on Cy,i (uo). They are easily extended by 
continuity to u = u 0  by setting 

Fj (uo) = O. 

We now prove that the functions Fj are Lipschitz continuous up to the point 
u0. To this end, it is sufficient to check that the gradients V F j  are uniformly 
bounded. We rewrite Fj in the form 

Fj (u )  = l~ . (u - uo) �9 
l* .  (u - Uo) l* .  ( f ( u )  -- f ( u o ) )  + l j .  ( f ( u )  - f ( u o ) ) ,  

so that for almost every u c C• (Uo) 

l[ . ( f ( u )  - f ( u o ) )  
V F ~  (u)  = - 

l ~ .  (u - u0) 
l; 

l~  " (U - -  Uo) 
+ ( l , . ( U _ U o ) ) 2 1 * . ( f ( u )  - f ( u o ) ) l *  (4.19) 

12 . (u  - u o )  

l? . ( u  - u o )  
l; . D f  (u) + lT . D f  (u). 

Since f is Lipschitz continuous and u belongs to the cone, every term in the 
right-hand side of the formula above is uniformly bounded. 

Our objective now is to apply the implicit function theorem to the functions 
Fj.  We claim that the N - 1 vectors V F j ( u )  are linearly independent in R N, 
uniformly for almost  every u ~ lI. We can rewrite the expression of the gradient 

as: 

V f j ( u )  : K1 lj + K 2 ( u ) l ~  + g 3 ( u ) l *  
(4.20) 

+ ( D f ( u )  - a*) + (Dr (u)  - a*) 

with 

K1 = Xj - X i , 

l* . (A(uo,  u) - A*) (u  - uo) 
K2(u) = - 

li*- (u - uo)  

l ~ .  (u - uo)  
K3(u) = (l* . (u - u0)) 2 l*-(A(u0, u) - A*)(u  - Uo), 

l 2 �9 ( u  - -  u0) 
K4(U) ~- 

l ~ .  (u - uo)" 
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We estimate these coefficients successively. Observe that Kt is a constant inde- 
pendent of u. Next, using (4.13) and the fact that u belongs to the cone, we get 
for some constant C'  > 0 

1 _ C '  IK2(u)Z~l <_5 IgN(U)lll~l <_ ~ l/~11/~1 rl < rl. 

Similarly, we obtain 

IK3(bt)/;l < IK3(bt)ll/* I < l l ; l  l] < C ] ~. 

This proves that the second and third term in the right-hand side of (4.20) are of 
order rL The coefficient/s is of order 1 but, using (4.1), we have the estimate 
(for some constant C' > O) 

1 II~1 I/~l r /<  C'r/ IK4(u)l?. ( D f ( u ) -  a*)l  _< ~- 

and, thus, the fourth term in tile the right-hand side of (4.20) is of  order ~7 as well. 
Finally, the last term satisfies 

Iz;. (Df(u)- A*)I _< C'v. 

It follows from the above estimates that for some uniform constant C'  

IVFj(u) - K~l~l < C'~ for almost every u. (4.21) 

The functions Fj are defined within the cone only. Le t / ? j  be a Lipschitz con- 
tinuous extension of Fj to the whole set ]1 such that (4.21) still holds for the 
function F: 

IV/?j(u) - K1 IjI _< C' 77 for almost every u. 

Therefore, by the property of  generalized gradients, 

1O Fj (u) - K1 l~1 ___ C'  ~/ for every u c 1I. (4.22) 

Since {I~, j = 1, 2 . . . . .  N} is a basis, we can always assume that 0 is small 
enough so that (4.22) implies that the set made of the vector l 7 and any selection 
o f N  - 1 vectors in OFj(u), j # i is a basis. 
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Consider the function G = G(e, w) e IR N defined for (e, w) in aneighborhood 
of (0,0) c R • R u by 

Gi(e, w) :=  l* �9 w. 

G j(E, w) := Fj(uo + ~ r[ + w) f o r j r  

Differentiating with respect to w we get, for almost every (e, w), 

a~oGi(e, w) = {1"}, 

awGi(e, w) = O,-Fj(Uo + eri* + w) f o r j  r i. 

Observe that 

G(0, 0) = 0 

and, as explained earlier, 

OwG(O, O) C OwGl(O, O) x OwG2(O, O) x . . .  x OwGN(O, O) 

is of maximal rank. Applying the implicit function theorem (Theorem 2.6) to 
the function G, we see that there exist an el > 0 and a unique Lipschitz function 

wi(., u0) : ( - e l ,  El) -+ R N such that wi(O, u0) = 0 and 

Fj(uo + e r* + wi(~, u0)) = 0 for j 7~ i, 
(4.23) 

l,*. wi(e)  = 0, �9 �9 ( - e l ,  el) .  

Let us define 

~oi (E; uo) = uo + e r[ + w,(e ,  uo), 

o-i(e; uo) = o-(~0i(e; u0)). 

We need to show that these functions ~oi, oi are the ones for which we are seaching. 
Taking the derivative in e to the equations of  (4.23) and applying the chain rule 

formula (2.6), we have 

! 
0 = l ;  �9 W i ( ~ ) ,  

0 = Aj �9 (r* + w~(e, uo)), for a.e. e e ( - e l ,  El), j r i, 

for some Aj �9 O Fj(uo + er* + wi(E, uo)). Observe that the vector Aj is closed 
to Ktl~j in the sense that OFj(uo + er* + wi(e, uo)) fulfills the estimate (4.22). 
By writting 

Aj = Kll~ § (Aj - Kil~), 
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and substituting it into the last equality, after re-arranging the terms, we have 

- K l I j  " w I = ( A j  - K l l ~ )  " ( r*  + w l ) .  

That yields 

IKIIIIj" w;I 5 IAj - KlI~l(lr[I + Iw;I) ~ C'r/(1 + [w;[), 

i.e.~ 
c % ( 1  + ]w~l) 

[[~ . w;[  < [KI[  ' J 7 s  

Besides, w I can be expressed in terms of  eigenvectors by, observe that l~. w I = 0, 

, ) , ( ,  , , 
w i = ~ l j  �9 w i ) r  j 

j # i  

Hence, we find 

- - IKll IKll j r  j7s 

i .e. ,  
N - 1  
- - C ' q  

IwjI < IKII 
- N - 1  

1 - - C ~ /  

Ie l l  

Since it is not restrictive to require that 

N - 1  
_ _ C  I 

C > ]KII 
- N - 1  

1 - - C ~ r /  
]Kll 

it follows that L ip ,  (wi) <_ C 71, and therefore 

II~. (~i(E, uo) - uo) I - ~ I~i @:, uo) - uoI = - yl~" r i  * - w~(~)l 

> I~1-  y(IEI + Lip~(w/)lel) > I~1- > yl~l(1 + C~) > O, 

provided y is chosen such that g < 1/(1 + Cq),  and thus 

~o~(~; uo) e C• 
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This enables us to replace Fj  in (4.23) by Fj .  Therefore, the i-Hugorfiot curve 
~oi (~; u0) is uniquely defined. 

Let us next consider with the relations (4.9). The first equality is obvious. 
Observe that 

[q)~@; u0) - r/*l _< Lipe(wi)  ___ C t/ for a.e. e e ( - e l ,  e l )  , 

which implies 

[O~oi(O; u0) - r*[ < C 7- (4.24) 

On the other hand, the upper semi-continuity property of  generalized gradients 
(Proposition 2.2, item c)) shows that given e > 0 there exists 8 > 0 such that for 

a l l l u - u 0 1 < 8  
Of([uo, u]) C Of(uo) + e 23(0, 1). 

The right-hand side of  the above inequality being convex we have 

co Of([uo, u]) C Of(uo) + E 23(0, 1). 

Since the eigenvalues and eigenvectors depend continuously upon their 
arguments, it follows from the last inclusion that, for any matrix A(uo, u) c 
co Of([uo, u]) with i-eigenvalue ;vi (u0, u) and i-eigenvector ri (uo, u), 

]zi(uo, u) - zi(u0)[ < c " <  

Iri(uo, u) -- ri(uo)l < C"6, 

for some C" > O, )vi (uo) 6 Ai (Uo), and ri (uo) ~ Ri (uo). Thus, we get 

~,i(Uo, qgi(~; NO) ) ~ )~i(bt0), 
(4.25) 

ri(uo, ~oi(~; u0)) --+ ri(uo) as E --+ 0. 

Combining (4.14), (4.24) and (4.25), we  obtain the second and the third inclusions 

in (4.9). 
We are left with checking the shock admissibility inequalities (4.8). As indi- 

cated above, we have 

[q)~(~;u0)-r/*l <_ Cr/ fora.e,  e c ( -~ l , e~ ) .  

Therefore, by our genuine nonlinearity assumption it follows that 

oi (e, Uo) < oi (0) 6 Ai (u0) for all - sl < e < 0, 

cri (E, uo) > ai (0) 6 Ai (u0) for all 0 < E < ca, 
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so that the first inequality in (4.8) is satisfied and the part {E > 0} of the i- 
Hugoniot curve is excluded by violating (4.8). Considering the part of the i- 
Hugoniot curve "between" u0 and ~oi (E; u0) as the Hugoniot curve issuing from 

~0i (~; u0), 

we find 

and 

U ( S )  :-m- fp i (E;  UO) - -  (E - -  S )  t'* - -  tOi(E - -  S ) ,  ~ < S  < 0 ,  

U(0) -~- U0, /,/(E) = ~Oi(E ; U0), 

* t(E -- S) U' (S )  =- r i -q- w i 

which satisfies the genuine nonlinearity assumption. The shock speed 
~ri(s; ~oi(e; u0)) is increasing and, for - e l  < e < 0, 

oi(0;  i(E; .o)) > oi(E; u0)) u0)). 

This establishes the second inequality in (4.8). The proof of Theorem 4.1 is 
completed. [] 

For each i = 1 . . . . .  N the i-shock set gi (Uo) is defined to be 

Si(U0) :~-~- {qTi(E; b t0 ) /E  e ( - -E1 ,0 ]} .  

Next, we search for self-similar, Lipschitz continuous solutions u(x, t) = 
v(~), ~ = x / t  to (1.1) connecting a given left-hand state u0 to some right-hand 
state Ul. A rarefaction wave u(x, t) = v(~), ~ = x / t  satisfies the differential 
equation 

dv d v( dv 
- ~  ~ (es )  + ~-~f(  ~)) = ( - ~  I + Df(v(,~))) ~- (~)  = 0. (4.26) 

If (4.26) holds in the usual sense, then there exist right-eigenvector ri (v(~)) and 
eigenvalues Xi (v(~)) of Df(v(g;)), and a scalar function c(~) such that for all 
relevant values ~: 

dv 
(~ ) = c(~ ) ri(v(~ ) ), (4.27) 

= ) ~ i ( v ( ~ ) ) .  

The function ~ w-~ ri (v(~)) is L ~ and continuous almost everywhere. Since the 
right-hand side of (4.27) may be discontinuous, we have to understand solutions 
of (4.27) in the sense of Filippov [4] and Dafermos [2]. 
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Let us consider the following ordinary differential problem 

d~ 
d~s (s; u0) = ri(f~(s; uo)), a.e. s e [0, el), 

(4.28) 

~(0; u0) = u0. 

For el sufficiently small, a solution of (4.28) in the sense of Filippov exists (see 
[4]). Precisely, there exists a Lipschitz continuous mapping fi(s; u0), s 6 [0, el) 
satisfying 

d~ 
-Cori ( v ( s ;  6~3(0, [0, e l ) ,  ~ss (s; uo) 6 0 , u 0 ) +  1)) a.e. in 

3>0 

~(0; u0) = u0. 

The fact that ri is continuous almost everywhere along the curve ~ (.; Uo) yields 

u o ) +  a e in 
3>0 

The last equality simply means that the function ~(.; u0) is a sohition of (4.28) 
in the usual sense as well. Thanks to the assumption of genuine nonlinearity, 
the function ;.i (v (s; u0)) is strictly increasing and admits a Lipschitz continuous 
inverse, denoted by 

g, : D~(u0), )~(~(el; u0))] ~ [0, eli 

which is increasing as well. We now claim that the function 

v(~) :=  ~0P(~); uo), ~ c J :=  [~(uo),)~(~(El; uo))], 

is a solution of (4.24). Clearly, v is Lipschitz continuous. Besides, let f2o be the 
set of all points at which ~ fails to be differentiable, which has Lebesgue measure 
zero. Set 

E = {~ c J : 7~(~) ~ ~ } .  

By [3, Th. A.1] the measure DO vanishes on E: 

IDOl(E) = 0. (4.29) 
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Therefore, (4.26) holds in the set E. For ~ ~ J \ E the function v satisfies 

d d ) 
v'(~) = ~ ( ~ ( ~ ) ) ~ f , ( ~  

= r i ( v ( @ ( ~ ) ) )  ~r(~)  = - ~ r ( ~ ) r i ( v ( ~ ) ) .  

From the above analysis we obtain the wave curve 

E k---> ~bi(~; u0) :~--- v (6 ;  u0) 

and arrive at the following conclusion. 

T h e o r e m  4.2. Given Uo ~ ~ (u,,  8o) and i = 1 . . . . .  N, there exists a Lipschitz 

continuous curve [0, ~1) ~ E ~+ qSi(e; uo) ~ ~ ( u , ,  80) (defined over some small 

interval [0, el)) such that the state uo can be connected to 4~i(~; Uo)from the 
right by a rarefaction wave. 

We define the i-rarefaction curve JCi (uo) by 

J~i(Uo) := {(~i(E; U O ) / ~  E [0, El) } . 

The i-wave curve issuing from Uo is 

Wi (u0) := gi (uo) u JCi (u0). 

We are at the position to state the main result of  this section. 

Theo rem4 .3 .  There exist 81 > O and ~l > O such that for  every uo c ~ ( u , ,  81) 
and i = 1, . . .  , N, there is a wave curve issuing from uo 

W i ( U o )  :~_ {~ri(Ei; UO ) / ~i E ( - - E l , E 1 )  }. 

Given data ut, ur c ~3(u,, St), the corresponding Riemann problem (1.1)-(1.2) 
admits a self-similar, piecewise Lipschitz continuous solution made of N + 1 
constant states 

b/l --_~ U0, Ul, . . .  , UN ~ Ur~ 

separated by elementary waves. The intermediate states satisfy Uj E ~/Q j (U j _ l )  

with uj = Oj(eJ, uj-1) :=  7rj(eJ)(uj_l)  for  some (wave strength) eJ c 

(-~1,  ~1). The states u j-1 and u j are connected by either a rarefaction wave i f  
eJ > 0 or by a shock satisfying the generalized Lax shock inequalites (4.8) i f  
EJ < 0 .  
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Proof. Consider the mapping obtained by combining wave curves together 

6 --" (61 , E :2 . . . . .  6N) ~ klj(6) = I/fN(EN) 0 1/rN_l (6 N - l )  O . . . O  l]f l(61)(Ul) --  bt I. 

It satisfies 
�9 (0) = 0. 

According to Theorems 4.1 and 4.2 we have 

~ i ( E i ) ( U )  E U 4 -~ i  R i ( u )  q - o ( E i ) ~ ( 0 ,  1). 

Hence, we get 

q / ( 6 )  C E 6  i R i ( Y i )  nt- o ( 6 ) ~ ( 0 ,  1), 

i 

where 

Pi = ~)"i-1 (E i - 1 )  O ... O 1/tl (61)(/~1), 

Vl = Ul- 

Thus, we have 

for /  = 2  ..... N, 

3qJ(o) C (R1(uz), R2(ve) . . . . .  R N ( V N ) ) .  (4.30) 

The upper semi-continuity of the generalized gradient, 

3f(vi) C Of(ul) + 6'~(0, 1) for vi near ul, 

implies that Ri depends continuously on its argument upon small perturbation, 

i.e., 
Ri(vi) Q Ri(ul) + O(6')~(0, 1 ) .  

We can assume that q and e I are sufficiently small so that the last estimate and 
the hyperbolicity property imply that any selection of the vector sets Ri (vi) is 
a basis of IR :v. Therefore, the matrix 0qJ(0) shown by (4.30) is of maximal 
rank. Applying the inverse function theorem (Theorem 2.5) we conclude that, 
for lu~ - us I sufficiently sma/1, there exists a unique vector 60 = (6~, 62 . . . . .  %N) 

such that 
kIl(EO) = It r --  U I. 

In other words, we have 

 N(60 o  N_I(6S ' -1)  o . . . o  = , r ,  

which completes the proof of Theorem 4,3. [] 
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5 A model from compressible fluid dynamics 

In this last section we consider the Riemann problem for the so-called p-system 

ut + p(V)x = O, 
vt - Ux = 0. (5.1) 

Here v > 0 and u denote the specific volume and the velocity of the fluid, 
respectively. The pressure p = p(v) is assumed to be smooth everywhere in 
v > 0 (say of class C 2) except at one point v,. More precisely, we assume that 

p'_(v,) < p+(v,), p"(v,+) > o, 

p'(v) < O, p"(v) > 0 forv  # v,, (5.2) 

lira p(v) = + ~ ,  lim p(v) = O. 
v--~0+ v--++~ 

These conditions are typical in models arising in fluid dynamics when the equa- 
tion of state is defined by distinct formulas above and below some critical thresh- 
old. We set U = (v, u) T and f ( U )  = ( - u ,  p(v)) :r, so that (5.1) has the form 
(1.1) with U playing the role of u in (1.1). For v 7~ v,, the Jacobian matrix of 
the system is 

( 0  ; 1 )  (5.3a) D f ( U ) =  p'(v) 

and the generalized Jacobian (in the sense of Section 2) at the point (v,, u) is 

( [p'_ (v,),0 p~_(v,)] 1) 
Of(v,,  u) = ; . (5.3b) 

Eigenvalues and eigenvectors are given by 

zl(v) e { - ~ / ~ / X c O p ( v ) } ,  z 2 ( v ) ~ { v ~ / 2 ~ O p ( v ) } ,  (5.4) 
ri(v) = (1,--)~I(V)) T, F2(V ) = (--  1, X2(V)) r. 

The system (5.1) is strictly hyperbolic since 

Furthermore, away from v 
genuinely nonlinear since 

hi(v) < 0 < )~z(v). 

7~ v, both characteristic fields of the system are 
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Finally, we set also 

a _  := {(v, u) / o ~ v < v,} ,  a +  := {(v, u) / v > v,} ,  (5.5) 
a ,  := { ( v , u ) / v  = v,} .  

The first is decreasing while the second is increasing. We determine the rarefac- 
tion waves for the system (5.1) as follows. Let U0 = (v0, u0) be a fixed state. The 
rarefaction waves issued from Uo are continuous solutions U (~) = (v (~), u (~)) 
(in each interval where u (~) ~ f2,) to the problem 

d 
~du(~) = ~(~) ri(v(~)), ~ >_ ~o, 

(5.6) 

= ~,i(v(~)), U(~o) = u0, 

where i = 1 or 2 and c~ = a (~) is some real-valued function. Differentiating the 
relation ~ = )~i (v(~)) away from the region ~2, yields 

dv 
1 = v ;~ i (v(~))  �9 Z ( ~ )  

(5.7) 

= ~(~)  v ; ~ ( v ( ~ ) ) ,  ri(v('~)). 

Substituting (5.7) into (5.6) we obtain 

= 1 i+l 2~C-P  '(v) 2 - p ' (v)  v1(~) ( - )  , u ' ( ~ ) -  
p'(v) p ' ( v )  

Since v'(~) # 0 this system of ODE's  enables us to write u = u(v; Uo) 

d u = ( - 1 ) i + l ~ - ~ ' ( v ) .  (5.8) 
dv 

For i = 1 the condition ),1 (v) > M (v0) yields p ' (v)  > pl(vo) and, therefore, 
v > v0, since p '  is strictly increasing by assumption. Hence, from (5.8) it follows 
that the 1-rarefaction curve is 

:RI(Uo) = u(v; Uo) = Uo + ~ d y ,  

Similarly, for i = 2 the 2-rarefaction curve is 

:R2(Uo) = u(v; Uo) = uo - ~ - p ' ( y )  dy, 
o 

v > v0}. (5.9) 

v < Vo/. (5.10) 
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For Ul E Ni(Uo) the i-rarefaction wave ~ ~ U(~) connecting U0 to U1 on 

the right is given by 

[v0, 
u(~)  = | (v(~), u(v(~); uo)), (5.11) 

/ 

[ U l ,  

It is solely a Lipschitz continuous function in the variable ~ = x / t .  There may 
exist a new intermediate constant state, which is a direct consequence of the 
discontinuity in characteristic speed. The profile v (~) in (5.11) is determined by 
inverting the relation ~ = )~i (v(~)). For i = 1 one gets 

/ (_p , ) - t  (~2), 

v(~) = | 
/ 

and, for i = 2, 

(_p,)-~(~2),  

v(~) = 

Xi(vo) ___~ _<z/(vt), 

>_Xi(vt). 

< - ~ / - p ~ ( v , )  or 

- , / -p '+(~, )  < ~ < - d - p ' ( + ~ )  

- , / - p ' _ ( v , )  <_ ~ <_ - , / -p '+(v , ) ,  

d - p ' ( + ~ )  < ~ < v/-p'+(v,) 

> v/-p'_(v,) 

- , / -p '+(v , )  <_ ~ <_ , / -p '_(v,) .  

(5.12) 

o r  

(5.13) 

We now summarize the above discussion. 

Proposition 5.1. For each Uo = (Vo, uo) such that Vo > 0 and for  each i = 1, 2 

the rarefaction curve v ~ u = u(v; Uo) issued from Uo, ~i(Uo), is globally 

defined by (5.9) and (5.10). For i = 1 this mapping is increasing and concave in 
v and for  i = 2 it is decreasing and convex. Moreover, each mapping u(v; Uo) 

is locally Lipschitz continuous in (v; U0). For each fixed Uo it is of  class C 2 
in the variable v 7~ v,, but its derivative exhibits a jump at v = v.. The same 

regularity holds true for  u (v; U0) considered as a function o f  vo while keeping v 
and Uo fixed. 

We turn to the investigation of shock waves of the system (5.1). That is, 
discontinuous solutions of (1.1) connecting two constant states U0 = (v0, u0) 
and U = (v, u) at some speed s. Using the Rankine-Hugoniot condition and the 
generalized Lax shock inequalities (i = 1, 2) 

Xi+(v) < s < )~i (vo), (5.14) 
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and relying on the assumptions (5.2) and (5.5) we easily determine the shock 
curves: 

j 
/ p(v) p(vo) 

s = sl(v; v0) ---= - , /  , (5.15) 
V V --  V 0 

and 

s = Sz(V; Vo) := , /  p(v) - p(vo) (5.16) 
V V --  V 0 

We conclude that: 

Proposition 5.2. For each Uo = (Vo, uo) (with Vo > O) and each i = 1, 2 the 
shock curve v w-~ u (v; Uo) issued from Uo, 8i (Uo), is globally defined by (5.15) 
and (5.16). For i = 1 the mapping u(v; Uo) is increasing and concave in the 
v variable and, for i = 2, is decreasing and convex. Moreover, each mapping 
u(v; Uo) is locally Lipschitz continuous in (v; Uo). For Uofixed it is of  class C 2 
in the variable v ~ v, but its derivative exhibits a jump at v = v,. The shock 
speed is a locally Lipschitz continuous function, which is of  class C 2 at v 7~ v,. 
Finally, we have 

U(V0; U0) = Uo, u'(vo; Uo) = (-1)i+l~l/-P~(vo), 

si (v0; v0) = ( -  1) i ~/-p~(vo) .  

If, in addition to the assumption (5.2), the function p satisfies (for instance) 
f ~  ~Z--p'(v)dv = + e e ,  then the Riemann problem for the p-system admits a 
unique self-similar solution made of  shock and rarefaction waves. 
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