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Abstract. A one-dimensional version of the so-called MarguerrezVlasov system of 
equations describing the vibrations of shallow shells is considered. The system depends 
on a parameter E ~ 0 in a singular way and undergoes the effect of damping mechanisms. 
We show that the system converges to a nonlinear beam equation while the energy decays 
exponentially uniformly (on E --+ 0) as time goes to infinity. 
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1 Introduction 

We consider a one-dimensional version of the so-called dynamical Marguerre- 
Vlasov system which describes the vibrations of shallow shells (see [8] and [9]). 

The damped one-dimensional system reads as follows 

- -  Ux q- + k l  ( x ) w  - ut 
Un 1 - # -2Wx x (1.1) 

wtt  + w~xxx - Wxxtt = [ f ( u ,  w ) l x  - g ( u ,  w )  -- w t  + Wxxt 

where 

f ( u ,  w )  --  
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- w x  ux  + + k l ( x ) w  1 # 2 wX (1.2) 
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and 

- -  Ux + w2x + k l ( x ) w  �9 (1.3) g(u ,  w )  - 1 - #  

In (1.1), the space variable x runs in the interval 0 < x < L and t denotes the 

(positive) time variable. The quantities u = u ( x ,  t) and w = w ( x ,  t) represent, 

respectively, the longitudinal and transversal displacements of the beam at the 

point x at time t. Addit ional ly, /z  is a constant, 0 < /z < 1 and kl = kl(X) 

represents the curvature of  the beam at the point x. 

The terms - u t  (re sp. - w t  + Wxxt) of  the first (resp. second equation) in (1.1) 

constitute damping mechanisms that dissipate the energy of solutions as time 

increases. 
This work is devoted to analyze the following two questions: 

a) Under a suitable perturbation of  the system above in which the various 

constants are conveniently scaled, we investigate the proximity of  the com- 

ponent w in (1.1) to the solution z = z ( x ,  t) of  a scalar beam equation of  

Timoshenko'  s type. 

b) The uniform (with respect to s --+ 0) rate of  decay of  the total energy of  

the solutions of  (1.1) as t --+ + o c .  

To be more precise, given E > 0 and 0 < ot < 1 we consider u = u ' ,  w = w ~ 

the solution of  the coupled system of  equations 

2[ 12 1 
Eutt -- 1 - l Z  Ux + ~ W  x + k l ( x ) w  x -  e'~ut 

w t t +  Wxxxx - Wxxtt = I f ( u ,  W)]x - g (u ,  w )  - wt + Wxxt 

(1.4) 

where f and g are given as in (1.2) and (1.3). 
Once again, in (1.4) the variable x runs in the interval 0 < x < L and t > 0. 

We consider (1.4) with Dirichlet boundary conditions on u and clamped ends for 

W; 

u ( 0 ,  t )  = u(L, t )  = 0 ,  Vt > 0 

w(O, t) = w ( L ,  t) = wx(O, t) = w x ( L ,  t)  = O, Vt  > 0 

(1.5) 

and initial conditions at t = 0: 

(u(0),  ut(O), w(O),  wt(O)) = (uo, Vo, Wo, w l )  ~ H ,  (1.6) 
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where H is the energy space 

H = 1tlo(1) x L2(I) x H~(I) x 1-11o(1), 

with I = (0, L). 
Problem (1.4)-(1.6) is globally well posed in the above space provided kl e 

H1(I).  
Moreover, the total energy associated with (1.4)-(1.6) is given by 

1 2 2 wZx]dx, f L 2 u  w +klw) (1.7) Ee(t) 

and it is dissipated according to the law 

fo 
According to this, in particular, w = w ~ in Uniformly bounded in 

L~ oc; Hg(O, L)). 

The first result of this paper guarantees that, as r --+ O, the component w ~ of 
the solution converges in the weak-* topology of that space to the solution z of 
the equation 

zt~ + Zxxxx - Zxxtt = h(t)Zxx - zt + Zxxt - klh(t) (1.9) 

where 

1 [ l f o L ( Z 2 x + 2 k l z ) d x  ] (1.10) h ( t ) _  

together with the boundary and initial conditions 

z(0, t ) = z ( L , t ) = z x ( 0 ,  t ) = z x ( L , t ) = 0  V t > 0  
(1.11) 

z(x, O) = wo(x), zt(x, 0) = wl(x), 0 < x < L. 

In what concerns the second question related to the uniform decay rate of 
solutions, we prove that there exist positive constants c > 0 and fl > 0 such that. 

E~(t) < CE~(O) exp ( -  fit ) 
- t + ~ [ E ~ ( 0 )  + IIk~ [[L] (I.12) 

for all t > 0 where 0 < ot < 1. 

These problems have been previously considered by the authors in [6] (together 
with A. Pazoto) and [7] in the context of the classical yon Kfirmfin system for 
the vibrations of a beam. There, it was proved that: 
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a) Timoshenko' s beam model may be derived as a singular limit of  the Von 
K~--rn~a beam model, 

b) A similar uniform (as E --~ 0) exponential  decay rate as t --+ c~ of  the 

energy of solutions holds. 

Therefore, in this paper we extend these results to the 1-D model of  the so- 
called Marguerre-Vlasov system for shallow shells. 

As far as we know, model (1.9), which is a "per turbed"  Timoshenko's type 
equation, has not been studied before. However, it can be easily handeled by the 
by now classical methods, as a perturbation of  the classical Timosbenko beam 

equation. 
Our notations are standard and can be found in the book of  J.L.Lions [4] 

2 Global well-posedness 

In this section, for the sake of  completeness we analyse the problem of  the 

existence and uniqueness of  solutions of  system (1.4)-(1.6). 
Let  E > 0, 0 < tz < 1 and ot > 0 and consider the Hilbert space 

H = H~(I) • L2(I)  x H2(1) • H~(I) 

where I = {0 < x < L} endowed with the norm 

2 tluxll 2 + ellyll 2 -4- ilwxxll2 + IIpH 2 + ]lpxll 2 II(u, y, w, p)ll 2 - 1 - / z  

for any (u, y, w, p) 6 H.  Here [[ �9 [[ denotes the norm in L2(I) .  

We write problem (1.4)-(1.6) in the abstract form 

DUt = AU + N(U) (2.1) 
U ( 0 )  ~-- U0 ~-- (u0, Ul ,  tOo, tOl) E H 

where ElOO o [ o2 2 lOO] 
0 E 0 0 ~--~a3z 0 0 0 

D =  0 0 1 ?_~22 ' A =  0 0 0 l a  4 

0 0 0 1 ~ 0 0 a~4 0 
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N(U) = 

where 

2 
re(U) -- 

1 -  tz 

2 ( ~ w 2 + k l W ) .  - ~ _  ~ ~ Y  

0 

re(U) 

- - I W x ( 4 x + l t o 2 x + k l W ) ]  x 

and U = (u, y, w, p)~. 

2kl [ u x + l  2 1--~t  wx+klw]--wt+Wxxt 

The operator .4 = D-1A with domain D(.4) = (H 2 ["1H~)(I) x Hi(1 ) x 
(H 3 Y~ H 2) (I) x Ho z (I) is the infinitesimal generator of a semigroup of operators 
in H. 

A direct calculation shows that, for any U c D(A) we have that 

2 
( X U ,  U ) H -  2~,(yx, Ux)+ (Uxx, Y ) + ( p = , w = )  

1 - I X  1 - I z  

- ( ( I - 0 2 ~  -1  04 p ) - ( O ( I - 0 2 ~ - 1  04 

4w' 5V) 4w'px) 
where (., .) denotes the inner product in L2(I). 

Integrating by parts and observing that the term (Pxx, Wxx) can be written as 
( p , ( I _ ~ ) ( i _  02"~ -1 o 4 ax2) 57w)  we get 

{ AU, U }H = O. (2.2) 

Now, given G = (gl, g2, g3, g4) r E H, we claim that the system 

AU = G (2.3) 

admits a unique solution U c D (A). This is equivalent to finding (u, y, w, p) 
H such that 

a) Y =  gl, 

2 
b) Uxx = g2 with u(0) = u(L) = O, 

(1 - /~)E 
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c) p = g3 

and 

d) - ( I  - 
\ 

- - w = g 4  with W = W x = - 0 " a t  x----0, L. o4 

Clearly, b) admits a unique solution u ~ H 2 A H~(I) since g2 c L 2 ( I ) .  

Problem d) is equivalent to 

o x 4 W = -  I - -  g4 in O < x  < L ,  W = W x = O  at x = O , L  

which admits a unique solution w e H 3 f-) Hi(I)  because (I  - 02 0 ~ ) g  4 E 
H - I ( I ) .  

Thus, A is indeed the infinitesimal generator of a semigroup of operators in 
H. 

In order to prove local existence of problem (1.4)-(1.6) it is enough to prove 
that D-1N(U)  is locally Lipschitz continuous in H. 

Let U -- (u, y, w, p)T and f) = (~, f ,  t~,/3) ~ be elements of H. A direct 
calculation shows that 

where 

D I [ N ( U )  - N(U)] ---- (0, f ,  0, ~)~ 

2112 ] jU _ (1 ---~)E 2 (Lox --  t~)2) -]- k l ( W  --  t~)) -4- ~ee- l (~  _ y )  
x 

and 

~ = ( I  0e~  -1 1 2 ltb2 
- ~x 2 ] { 1 - - ~  [(Ux + ~wx W klW)Wx - ( ~x + q- klff))ffJX]x 

- ( p  - ~) + (pxx - &x)  + 1_--~ [-x + ~Wx + ~1~ - u~ - ~wx - ~1~ �9 

We have to estimate the expression 

I I D - I [ N ( U )  - N(br)] l l~ = ~llfl l  2 + I1~112 + IIsTxll 2. 

Assuming that kl 6 H 1 (I) we can easily prove that 

C {llwx - ~vxll~(llwxxll + II~xxll) 2 Ilfll 2 -- ~-5 

+ Ilwxx - t~ltZ(Hwxll~ + Iltbxtl~) 2} + c~2(c~-l)lly - -  fH 2 

C 
+ (1 --  /.L)2~52 Ilklll~i I lwx - ~xll 2 
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Using the embedding H 1 (I)  ~-+ L ~ (I)  we deduce from the above estimate that 

Ilfll 5_ c ( 1  + I[UI[H + IIOI[H)IIU - /JIIH, (2.4) 

where C is a positive constant depending on e, /z ,  ~ and Ilk1 [IH~ 
Now, let us estimate I1~ II H 1 (1)" First, let 

gl 1 --/* - ~x 

Taking into account that the operator (I  - ~  ax 2 j ~ is bounded from L 2 ( l )  into 
H i (1) we deduce that 

"glllH1 < _ C I l ( u x + ~ w ~ §  (2.5) 

1 2 k l w ) ~ x  inside the norm on the Adding and substracting the term (Ux + ~ w x + 
right hand side of  (2.5) it is easy to see that 

IlglllH1 _ C 0 * , <  Ilklllm)(IIU[l~ + I IUIIH)IIU-  UIIH. 

Finally, let g2 be given by 

( 0,)1{ 
g 2 - =  I - ~x 2 - ( P -  [~) + Pxx - [~xx + 

2kl 
+ - . x -  - k , w  . 

A similar discussion allows to show that 

IlgellH, _< C(t-~, ~, ]Ik~[[H,)(IIUIIH + IIUIIH)IIU - UIIH. (2.6) 

From (2.4), (2.5) and (2.6) we deduce that 

I ID-~[N(U)  - N(U)]IIH ___ C ( l  § IIUIIH + IIUIIH)IIU - UIIn 

where C is a positive constant depending on e, # ,  ol and Ilk1 ][H 1 �9 This proves 
that D -I N ( U )  is locally Lipschitz continuous in H.  

Consequently, one obtains local existence of  a unique finite energy solution. 
Global existence in our case is consequence of  the energy identity (1.8) which 

provides a priori bounds in the energy space for all t > 0. 
We have shown: 
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Theorem 2.1. Let 
(u0, ul, w0, wl) E H. 
solution 

> O, 0 < o~, 0 < # < 1, kl c Hi ( I )  and 
Then, problem (1.4)-(1.6) has a unique global (weak) 

(u ~, uT, w ~, wT) ~ C([0, +0r H) 

and the total energy Ee (t) given by (1.7) satisfies (1.8)for all t >_ O. 

3 The asymptotic limit 

In this section we study the asymptotic limit of the solution {u ~, w ~ } of (1.4)-(1.6) 

es E --+ 0 +. 
Lete  > 0 ,0  < ce and0 < / z  < 1. 
From the energy dissipation law (1.8) that guarantees that E,(t)  < E,(O) for 

all t > 0 and all E, we deduce that the sequences 

{v'~u~}, u~ + ~(Wx)- + k l w  ~ , {w~}, {w~t} and {w;x} 

are bounded in L~ +ec;  L2(I)) and 

{e~/2u~}, {w~} and {w~t } 

are bounded in L2(O, +co;  L2(I)). 
Extracting subsequences (that we still denote by the index e in order to simplify 

notations) we deduce that there exist ~(x, t), rKx, t) and z(x, t) such that 

~/Tu~ ~ ~ weakly * in L~176 +oo; L2(I)) (3.1) 

1 ; e,~2 u~ + -~[Wx) + klw E ---" ~ weakly * in L~(O, +oo; L2(1)) (3.2) 

and 

w e ~ z weakly * in L~176 + ~ ;  He(I)) A Wl'~~ +oo; H~(I)) (3.3) 

asE --+ 0. 
Clearly, the weak convergence in (3.3) is enough to allow us to pass to the 

limit in the linear part of the equation for w ' in (1.4) provided, say, kl c L~176 
~(w~) }and It remains to identify the weak limit of the nonlinear terms {u~ + 1 ~ 2 

+ + . a s  o .  
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As we said above, the boundedness of  E,  (t) implies that {w ' }~>0 is uniformly 
boundedin  L~c(0, oc; H2(I))NWI,~(O, +oo;  H~ (I)) .  Then, we can use Aubin- 
Lions compacmess lemma [4] to deduce that 

w ~ --+ z strongly in L~176 T; H a - a ( I ) )  (3.4) 

as e --+ 0 for any ~ > 0 and T < + o c .  
Combining (3.2) with (3.4) we deduce that 

u" x + -~(w~) + k l w  ~ w~ ~ rlZx w e a k l y i n L a ( I  x (0, T))  

asE ---> 0 for any T < +~o.  
Let us find out what the value of  tl is. We claim that 

a) ~7 is independent of  x and 

b) q is given by 

,f0 2 klzdx. = z A x + z  

To see this we first observe that {u~x} is bounded in La(I x (0, T)) since 

L ~ 2 L 1 , ~ 2  __ k l / / )e  (Ux) dx = u~x -}- ~llOx) -Jr- kltO" - (toxE) 2 -dx 

[ fo f? ] _ _  ~ 4 < C Er (wx) dx + k2(w~)2dx 

<<_ C[Ee(O) + ( foL (w~xx)2dx)2--k Hkl[12 foL (we)2dx 1 

< CE,(O) 

for some positive constant C depending on the initial energy E~ (0) and kl. 
Obviously, this constant is independent of  e. 

Thus, there exists a subsequence such that 

u~ ~ p weakly in L2(I • (0, T)) (3.5) 

as E --+ 0 for some p = p(x, t). Using (3.4) and (3.5) we deduce that 

1 1 2 
(3.6) 
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as E ~ 0, weakly in L2(I x (0, T)). 
Since o~ > 0, using Poincar6's inequality and (1.8) we can bound {u ~} in 

L~(0,  T; H~ (I)) to obtain that 

e~u7 ---" 0 weakly in H- l (0 ,  T; Hi( I ) )  (3.7) 

as e ~ 0. Now, using (3.1) we also know that 

Eu7t = V"~V'-~u~t --~ 0 weaklyin H-X(0, T; L2(I)) (3.8) 

as e --+ 0. Thus, from the first equation in (1.4), (3.2) (3.7) and (3.8) we obtain 
that 

rlx = P + ~Zx + klz = 0  
- I X  

therefore, ~ = tl(t) which proves claim a). 
1 2 To prove item b) we integrate the identity rl = p + gZx + klz in x from x = 0 

up to x = L to obtain 

f0 f0 fo L,7(t) = pdx + ~ z2xdx + ~lzdx = ~ z~cZx + ~izdx 

since f ~  pdx = lim~__,0 f ~  u~xdx = 0, because u ~ vanishes at the boundary 
x = 0, L. Consequently, 

1 foL l foL tl(t) = ~ z2dx + ~ k~zdx. 

The above discussion indicates that 

[ (  l z  e'2 ) ] ( 1 f0L 1 f0L ) .~ + ~t~x) + k ~  ~ ~; ~ ~ z ~ x  + -s ~zd~ zxx 
- I X  

as e --+ 0, weakly in L2(0, T; H - l ( I ) ) .  
We conclude that the component w ~ in system (1.4)-(1.6) converges to the 

solution z = z(x, t) of (1.9) weakly in L2(0, T; Hg(I)) as e --+ 0 for any 
T < + ~ .  

Clearly z satisfies the boundary conditions in (1.11). 
Finally we want to identify the initial data of the limit system. Since w ~ --> z 

in C([0, T]; H2-~(I)) as E --+ 0 for any T < + ~  then w~(x, O) --+ z(x, 0) as 
--> 0 in HZ-a(I).  Hence z(x, O) = Wo(X). Observing that 

{wt} is bounded in L~(0,  T; Hi( I )  ) 

{wtt} is bounded in L~(0,  T; L2(I)) 
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for any T < §  (the last bound is easily obtained using the equation in (1.4) 
that w e satisfies and our previous discussion), from (3.9) and using Aubin-Lions 
compactness lemma [4] it follows that w t --+ zt in C([0, T]; L2(I)) as ~ --+ 0. 
In particular, w~(x, O) --+ zt(x ,  0) as e --+ 0 in L2(I). Hence zt(x,  O) = Wl (x). 

The above results can be summarized as follows. 

Theorem 3.1. Let (Uo, ul,  wo, wl)  ~ H = 11o1(1) x L2(I) • H2(I )  • H~(I) ,  

0 < t z < 1, oe > 0 and kl ~ Hi( I ) .  Consider the global solution u e, w e of  

system (1.4)-(1.6) obtained in Theorem 2.1. Then, as ~ --+ 0 +, 

w e ~ z weakly in L2(0, T; Hg(I ) )  

Furthermore, 

1 foL 12 U~x ~" 2---s (z2 § 2k l z )dx  - ~z  x - k lz  

weakly in L2(I  • (0, T))  as ~ -+ O for  any T < § where z = z(x ,  t) is the 

global (weak) solution of  problem (1.9)-(1.11). 

4 U n i f o r m  s t a b i l i z a t i o n  as  e --~ 0 

The total energy of the limit system (1.9)-(1.11) is given by 

G(t) : + zL + dx + 1 L L k l z d X ) 2  

and it is dissipated according to the law 

dG( t )  

dt  f 0  2 L(z2 + zx,)dx. 

Then, it is not difficult to prove that G (t) decays exponentially as t --, +oo.  
In this Section we prove that the energy Ee(t) associated to problem (1.4)- 

(1.6) also decays exponentially as t --+ c~ and that the decay rate is uniform (as 
e -+ 0) provided 0 < oe < 1, recovering the rate of decay of the limit system. 

More precisely, the following holds: 
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Theorem 4.1. Let u ~, w ~ be the global solution of  system (1.4)-(1.6) obtained 
in Theorem 2.1 with 0 < u <_ 1. Then, there exist positive constants C > 0 and 
fl > 0 such that 

E, ( t )  ~_ CE~(O) exp ( 

for  all t > 0 and all 0 < ~ < 1. 

~t 
1 + c'~[E~(O) --[- Ilk1 II~] ) 

Proof ,  Let  r > 0. In order to simptify notations we write u * = u, w* = w. 

We consider the functional 

f0 f0 F~(t) ~- e uutdx  + (wwt + WxWxt)dx. (4.1) 

Direct calculations using the equations give us that 

d F  e 8 f0L(  1 2 )2 fO L < - U x + - ~ w  x + k t w  d x - g ~  uutdx  
dt  - 1 lz 

+ e uZtdx - w}xdx - w w t d x  + WWxxtdx 

+ + G]dx. 

In the following estimates C denotes a positive constant which may vary from 

line to line but is independent of  e. 

For any t '  > 0 we have 

L L L 1 2 

L L 1 2 
fO w w t d x  < C f o  [ V W : x + - f w t ] d x ,  (4.4) 

since II Wxx II defines a norm in H 2 N H 1 (I)  which is equivalent to the one induced 
by H2( I ) .  

Also 

- ~ Jo u~'dx + --U u2dx" ~4.5~ 
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Moreover 

f0 f0 2 u2dx < C uxdx 

<.< C{foL (Ux-klto2x Jr-klto)2dxq- (foLw2xdx)2-'l-I]kll'2foLw2xdx} 

Consequently, from (4.5) and (4.6) we obtain that 

~c~ fo L e~foL C6C~},fL( 1 2  )2 uutdx < ~ u2dx + ~ - -  Ux -4- ~w x + klw dx 

C(Sa Y fo L Jr- -~-[ge(0 ) q-[Iklll 2] W2xxdx. 

Let ~ > 0 and define G<a(t) given by 

G<s(t) = E~(t) + aFt(t) 

Using (1.8) and (4.2) together with (4.3)-(4.7) we obtain that 

dG~,a(t) { s~-l~ } f0L 

- [m2 + w2 ] x 
>, 

{ 8  CsOeYlfoL ( 1 2  )2 
- a l - I x  2 Ux+~W x + k l w  dx 

Now let us choose ?/ > 0 as 

I ffce 1-1 
g = ), 2 + ~-{E~(0) + Ilk111 2} 

(4.6) 

(4.7) 

(4.8) 

where )~ > 0 is small enough but independent of s and EE (0). Then, (4.8) reads 
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as follows 

[E cr E0~--1~(2 ~.~ - - E ~  ) ~} fo L dG~,a 
< - .  - - -  + -=-[g,(0) q- 1[k1112] - ~ u~ 

dt  - 2,k 

{ 1 - 3 - ~ (2  + -~-[Ee(0) + Ilk1 L w~t]dx 

8 CEC~)v 

f : (12  )2 f: Ux + ~ w  x + k l w  dx  - 3{1 - )~C} W2xxdx. 

(4.9) 

We want to impose suitable conditions on/~ (and)0  so that the coefficients on 
the right hand side of  (4.9) are all strictly less that - g. We will do this in case 
when kl ~ 0 since the situation kl - 0 was already treated in [6]. 

We choose )~ > 0 small so that 

)~ < min { 8 [[klll-----~2~l-/z 'C1]  

which implies that 1 - )~C > 0 and 

8 C ~ X  

1 - / z  ( ) 2 2 +  T[E~(0)  + Ilklll~] 
> 0 .  

Once this choice of  )~ is done we need 3 > 0 to satisfy 

6a-1 
_ (4.1o) 

- Z -  2 +  ~-[E,(0)  + Ilklll~] 

and 

8 < ~ 1 + 2 +  -f{E~(0) + Ilklll~} �9 (4.11) 

We observe that (4.10) and (4.11) will be satisfied if we choose 3 > 0 of  the form 

= C1{1 + e" [E , (0 )  + Ilklll2]} -1 
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for some positive constant C1 (that may depend of )~) but is independent of 
0 < e < 1. With this choice, the coefficients of e f ~  u2dx  and f ~ [ w  2 + w2t]dx  

on the right hand side of (4.9) are, respectively, less than or equal than - 8 / 2  and 
-V2.  

In conclusion, with the above choice of )v and 8 > O, (4.9) implies that 

dG~,~ <_min{1 6} 
d--7- - ~ , -~  Ee( t ) .  (4.12) 

Finally, we compare Ee (t) with G~,.8 (t). Using (4.1) together with (4.3), (4.4) 
and (4.7) we obtain that 

If~(t)l _ ~ u~dx + T Ux + ~w x +haw dx 

f0 L C6 E 0 f0 L 2 w~x)dx -T{ ~ ( ) +  + c (w~ + Wx~ + + ILkl[l~] w~xdx 

_ (Ce + C + C ~ [ G ( 0 )  + I I K x l l 2 ] ) G ( t )  

< C(1 + E[E,(O) + Ilkall2])E~(t) 

where C is a positive constant independent of 0 < e < 1. Thus, 

[G~,~(t) - E~(t) l  = 61G( t ) l  < 80[1 + E,(O) + IIk~ll2lG(t) 
<_ ~dE,(t)  

(4.13) 

for some positive constant C depending only on the initial data and Ilka II 2 (since 
E~(0) is bounded in e). 

Then, (4.13) together with (4.12) and our choice of 8 implies ,the conclusion 
of Theorem 2. 

5 Final remarks and comments 
When ~ = 0 the global well-posedness of (1.4)-(1.6) is still valid for each ~ > 0 
but, in this case, the asymptotic limit as e -+ 0 is of a different nature. In fact, 
when o~ = 0 the limit system is of the form 

2 [  1 2  ] -  
--  - -  Vx + + k l z  vt 1 - I z 2 zx 

X 

0 
z .  + Zxxxx - Zxxtt = -2- f (v, z)  - g ( v ,  z)  - zr + Zx~t 

Ox 

(5.1) 
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for 0 < x < L, t > 0. System (5.1) has initial conditions 

V(X, O) ~- Uo(X), Z(X, O) = Wo(X), Zt(X, O) = Wl(X) ,  0 < X < L (5.2) 

and boundary conditions 

v(O, t) : v ( L ,  t) : z(O, t) : z ( L ,  t) = zx(O, t) ---- z x ( L ,  t) ---- O. (5.3) 

System (5.1)-(5.3) is the coupling between a parabolic equation and a fourth 
order hyperbolic equation, thus it has a similar structure to a system of thermoe- 
lasticity. The total energy associated with (4.1) is given by 

E(t) = ~ z~ + Z~x + Zx, + vx + ~Zx + klz dx 

and satisfies 

d E  
rjoL(V~ + z ~' + z~t~dx. dt  

According to the discussion of Theorem 4.1 we can pass to the limit as e --+ 0 
to obtain the following decay property for the solution of (4.1)-(4.3) 

E ( t ) < _ C E ( O )  exp - I + E ( 0 ) + I l k l H ~  

for all t > 0. 
We refer to [6] for further developments of this issue in the case of the classical 

von Kfirrnfin and Timoshenko equations. 
The analysis developed in this paper can be adapted to a variety of situations, 

including different boundary conditions. The interested reader is referred to 
[6] and [7] for the discussion of these issues in the case of von K~rm~n and 
Timoshenko equations. 
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