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Abstract. A one-dimensional version of the so-called Marguerre-Vlasov system of
equations describing the vibrations of shallow shells is considered. The system depends
onaparametere — Oinasingular way and undergoes the effect of damping mechanisms.
We show that the system converges to a nonlinear beam equation while the energy decays
exponentially uniformly (on € — 0) as time goes to infinity.
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1 Introduction

We consider a one-dimensional version of the so-called dynamical Marguerre-
Vlasov system which describes the vibrations of shallow shells (see [8] and [9]).
The damped one-dimensional system reads as follows

2 ;! 2+ ki(x)
Uypy = — | U — X —
ST LR 1.1)

Wi + Wyyxy — Wyxrr = [f(u7 w)]x - g(”a U)) — Wy Wy

where

S, w)y= ——|wlu,+ -w; + ki (x)w (1.2)
1—u 2
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and

glu,w) = 2k [ux + lwi +k (x)w]. (1.3)
1—n 2

In (1.1), the space variable x runs in the interval 0 < x < L and ¢ denotes the
(positive) time variable. The quantities u = u(x, t) and w = w(x, t) represent,
respectively, the Jongitudinal and transversal displacements of the beam at the
point x at time f. Additionally, p is a constant, 0 < p < 1 and k; = k(x)
represents the curvature of the beam at the point x.

The terms —u, (resp. —w; + w;y,) of the first (resp. second equation) in (1.1)
constitute damping mechanisms that dissipate the energy of solutions as time
increases.

This work is devoted to analyze the following two questions:

a) Under a suitable perturbation of the system above in which the various
constants are conveniently scaled, we investigate the proximity of the com-
ponent w in (1.1) to the solution z = z(x, t) of a scalar beam equation of
Timoshenko’s type.

b) The uniform (with respect to € — 0) rate of decay of the total energy of
the solutions of (1.1) as t — +o0.

To be more precise, given € > 0 and 0 < o < 1 we consider # = u¢, w = w®
the solution of the coupled system of equations

2 1,
= —u, — k _“
€Uy = M[u + 2wx + 1(x)w]x €“u, (L4)
Wi+ Waxxr — W = L (0, W)l — g1, w) — Wy + Wins
where f and g are given as in (1.2) and (1.3).

Once again, in (1.4) the variable x runs in the interval 0 < x < L and # > 0.
We consider (1.4) with Dirichlet boundary conditions on 1 and clamped ends for
w:

u(0,t) =u(lL,t)y=0, Vt>0 (1.5)
w0, ) =w(L,t) =w,0,1) =w,(L,1) =0, V>0

and initial conditions at ¢ = O:

u(0), u;(0), w(0), w;(0)) = (uo, vo, wo, w1) € H, (1.6)
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ONE-DIMENSIONAL VERSION OF THE DYNAMICAL MARGUERRE-VLASOV SYSTEM 305

where H is the energy space

H = Hy(I) x L*(I) x H}(I) x Hy(I),

with I = (0, L).
Problem (1.4)-(1.6) is globally well posed in the above space provided k; €
HY\(ID).

Moreover, the total energy associated with (1.4)-(1.6) is given by

1L 2 1 2
E.(t) = E./o [eu[z+ ] ~N<ux+5w§+k1w) +w?+w§,+w§x}dx, an

and it is dissipated according to the law

d L
EEe(t) = —f {e“u? + w,2 + wzz]d)z‘ (1.8)
0

According to this, in particular, w = w® in uniformly bounded in
L>®(0, o0; HHO, L)).

The first result of this paper guarantees that, as € — 0, the component w€ of
the solution converges in the weak-* topology of that space to the solution z of
the equation

Zir + Zxxxx — Zaxet = h(t)zxx —Zr + Zoexr — klh(t) (19)
where
h(t) = ! l/L(2+2k )dx:| (1.10)
“1-4lL A Z5 1Z .

together with the boundary and initial conditions

{ 72(0,8) = z(L, 1) = 2,0, 1) = z,(L,t) =0 V>0

2(x,0) = wo(x), z(x,0) = wi(x), O0<x <L, (1.11)

In what concerns the second question related to the uniform decay rate of
solutions, we prove that there exist positive constants ¢ > 0 and 8 > 0 such that.

Bt
E(t) <CE(0) exp(— (1.12)
) 1+ € [Ec(0) + [[i %]
forallr > O where 0 < a < 1.
These problems have been previously considered by the authors in [6] (together
with A. Pazoto) and [7] in the context of the classical von Kdrman system for
the vibrations of a beam. There, it was proved that:
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a) Timoshenko’s beam model may be derived as a singular limit of the Von
Karman beam model,

b) A similar uniform (as € — 0) exponential\decay rate as t — oo of the
energy of solutions holds.

Therefore, in this paper we extend these results to the 1-D model of the so-
called Marguerre-Vlasov system for shallow shells.

As far as we know, model (1.9), which is a *‘perturbed’” Timoshenko’s type
equation, has not been studied before. However, it can be easily handeled by the
by now classical methods, as a perturbation of the classical Timoshenko beam
equation.

Our notations are standard and can be found in the book of J.L.Lions [4]

2 Global well-posedness

In this section, for the sake of completeness we analyse the problem of the
existence and uniqueness of solutions of system (1.4)-(1.6).
Lete > 0,0 < & < | and @ > 0 and consider the Hilbert space

H = H}(I) x L*(I) x HZ(I) x H}(I)

where I = {0 < x < L} endowed with the norm

luel® 4+ ellyll? + Hwe? + 1 pI + lpall?

(e, y, w, p)II3 =
H l_l'l/

for any (u, y, w, p) € H. Here || - || denotes the norm in L*(I).
We write problem (1.4)-(1.6) in the abstract form

DU, = AU + N(U) 2.1
U(O) = UO = (an u, Wy, wl) (S H ’
where
1 00 0 0 1 0 0
2 32
0 0 1 0 ’ 0 0 0 1
2 4

000 1-5%5 0 o0 -% o0
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_ 0 -

(g )
-—_ wx-l—klw — €%y
NWO) = 1— 2 .

0
m(U)

where

2 1 2k 1
m(U) = T |:wx<4 +2w +k1w)] ——l—l/L [ux+§w§+k1w]—w,+w”,

and U = (u, y, w, p)°.

The operator A = D~'A with domain D(A) = (H* N H)(I) x H{(I) x
(H N HZ)(I) x H3(1) is the infinitesimal generator of a semigroup of operators
in H.

A direct calculation shows that, for any U € D(Z) we have that

~

2 2
(AU,U)H = I—‘(yn ux)+ (ume )’)+(Pxx, wxr)

| 32\ ! a4 3 ; 32\ ! g
- —— ) —mwp)-|—lI——) —w, p
dax2 3x4w p 0x dx2 ax4 P

where (-, -) denotes the inner product in L2(I).
Integrating by parts and observing that the term (py, wy,) can be written as

(p. (1 = 52)(1 = &) Zaw) we get
(AU, U)y =0. 2.2)
Now, given G = (g1, 82. 83, 84)° € H, we claim that the system
AU =G 2.3)

admits a unique solution U € D(A). This is equivalent to finding (u, y, w, p) €
H such that
a) y =g,
2 .
b) —————u,y =gy with u(0) =u(L) =0
(1 — e
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c) p=2g8s
and

3\t
d) —(I— 8x2) | a—§w=g4 with w = w, =0 at x=O7L.

Clearly, b) admits a unique solution u € H? N Hy(I) since g, € L*(I).
Problem d) is equivalent to

3 3’
5;w=—(l—@)g4m0<x<L, w:wx=0vatx=O,L
which admits a unique solution w € H® N Hy(I) because (I — %)g4 €
H (D).

Thus, A is indeed the infinitesimal generator of a semigroup of operators in
H.

In order to prove local existence of problem (1.4)-(1.6) it is enough to prove
that D~'N(U) is locally Lipschitz continuous in H.

LetU = (u,y,w,p) and U = (&, y, w, p)° be elements of H. A direct
calculation shows that

DUN@W) - N1 = (0, £,0,8)"

where
_2 1(w2_a}2)+k(w—ﬁ)) +e G-y
(—wel2 >~ 70

X

f:

= (1= 5 (ot~ (v s o)
g= - — — | Uy + zw wywy —{u —w 1w |w
3x? 1—p 27 * T .

Uy +

(P — P +( 50) + —1
p—pr Pxx — Pxx -4

We have to estimate the expression
IDTIN@W) = Nl = el FI? + 1217 + 12:17.
Assuming that k; € H'(I) we can easily prove that
P = S Bl el + el
+ wex — Wk Qs lloo + I102l1)?} + C2 Py — 3112
+

mnklnip llwe — el

(
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Using the embedding H' (I) < L>(I) we deduce from the above estimate that
1Al < CA+ U + 101U - Tlla, 2.4)

where C is a positive constant depending on €, u, o and k1| 51 .
Now, let us estimate || g1l z1(;). First, let

R O S P
g1 = — — u —w 1wilwy — tu —Ww jwjw
1—/,(, 8x2 X 2 X X X 2 X Xx

Taking into account that the operator (1 — £5) - - is bounded from L*(1) into
H; (1) we deduce that

1 - 1. -\ -
gl < C (ux + iwﬁ +k1w)wx — (ux + Ewi +k1w)wxll. (2.5)

Adding and substracting the term (uy + fw? + k;w )1, inside the norm on the
right hand side of (2.5) it is easy to see that

gy < Clu, e kil g)NU e + 101U = Ulig.

Finally, let g, be given by

?\!
82:<1—@) {—(p_p)+pxx_pxx+

2% 1 1
by A = g -y — —w? — K | ).
1—pu 2

A similar discussion allows to show that
lg2llim < Cle, €, kil WU + NTN)IU = Tlis. (2.6)

From (2.4), (2.5) and (2.6) we deduce that
IDINW) -~ Nl < CA+ [Ullg + 1T1m)IU = Tl

where C is a positive constant depending on ¢, i, & and ||k;||;;:. This proves
that D' N(U) is locally Lipschitz continuous in H.

Consequently, one obtains local existence of a unique finite energy solution.

Global existence in our case is consequence of the energy identity (1.8) which
provides a priori bounds in the energy space for all ¢ > 0.

We have shown:
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310 G. PERLA MENZALA AND ENRIQUE ZUAZUA

Theorem 2.1. Let ¢ > 0, 0 <o, 0 < u < 1, ky € HY(I) and
(ug, uy, wo, w1) € H. Then, problem (1.4)—(1.6) has a unique global (weak)
solution

(uf, us, w®, wy) € C([0, +o0); H)

and the total energy E.(t) given by (1.7) satisfies (1.8) for all t > 0.

3 The asymptotic limit

In this section we study the asymptotic limit of the solution {1, w*} of (1.4)-(1.6)
ese — 0F.

ILete >0,0 <eoand 0 < u < 1.

From the energy dissipation law (1.8) that guarantees that £, (t) < E.(0) for
all ¢ > 0 and all €, we deduce that the sequences

(eus), {L st zqwf}, (), () and (wf,)

are bounded in L>(0, +o0; L*(I)) and
{e*uf}, {wf} and {w$,}

are bounded in L2(0, 4+o00; L2(I)).
Extracting subsequences (that we still denote by the index ¢ in order to simplify
notations) we deduce that there exist &(x, £), n(x, t) and z(x, ¢) such that

Jeut —~ g weakly * in L®(0, +00; L*(1)) (3.1
1

2(w;)2 4 hwt —n  weakly * in L®(0, +00; L*(I)) (3.2)

us +
and

&

w® — 7 weakly * in L®(0, +o0; H(1)) N W1(0, +00; Hj (1)) (3.3)

as € — 0.
Clearly, the weak convergence in (3.3) is enough to allow us to pass to the
limit in the linear part of the equation for w* in (1.4) provided, say, k; € L*°(1).
It remains to identify the weak limit of the nonlinear terms {u¢ + %(wj)z} and

ut + 1 we 2—}-klw€ wé| ase — 0.
X 2 X1x
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As we said above, the boundedness of E. (¢) implies that {w*}¢. is uniformly
bounded in L*°(0, oc; Hoz(l)) NWL2(0, +o0; HO1 (1)). Then, we canuse Aubin-
Lions compactness lemma [4] to deduce that

w® — z  strongly in L®(0, T; H*73(I)) 3.4
ase — Oforany § > 0and T < +o0.
Combining (3.2) with (3.4) we deduce that
(ui. + %(wi)z + k1w€> wé — nz, weaklyin L*(I x (0, T))
as€ — OQforany T < +o0.
Let us find out what the value of 7 is. We claim that
a) nis independent of x and
b) nis given by
L

UZZ A

1 L
zidx + —/ kizdx.
L Jo

To see this we first observe that {u¢} is bounded in L*(I x (0, T)) since

L 2 L 1 5 1 ’ 2
f (ug) dx = / [“; + - (wf)” + kw — —(wf)” - klwé] dx
0 0 2 2

L L
< C[Ee(0>+ / (ws) dx + f k%(wf)de}
0
’ L ) 2 L
< C[EE(O)+( / (ws,) dx) + |1k 12, / (we)zdx]
0 0
< CE.(0)

for some positive constant C depending on the initial energy E.(0) and k;.
Obviously, this constant is independent of €.
Thus, there exists a subsequence such that

ul —~ p weakly in L*(J x (0, T)) (3.5)

as € — 0 for some p = p(x, #). Using (3.4) and (3.5) we deduce that

1 i
Ul + E(w;)2 +hiw o+ thz =g (3.6)

Bol. Soc. Bras. Mat., Vol. 32, No. 3, 2001
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as € — 0, weakly in L2(I x (0, T)).
Since o > 0, using Poincaré’s inequality and (1.8) we can bound {u€} in
L*(0, T; H}(I)) to obtain that

€*u¢ —~ 0 weaklyin H™ (0, T; Hy(I)) (3.7)
as € — 0. Now, using (3.1) we also know that
eus, = Jefeus, =~ 0  weakly in H~1(0, T; L*(I)) (3.8)

as € — 0. Thus, from the first equation in (1.4), (3.2) (3.7) and (3.8) we obtain
that

1
Ny = [P+EZ§+k1z] =0

therefore, n = n(¢) which proves claim a).
To prove item b) we integrate the identity n = p + %zi +kizinx fromx =0
up to x = L to obtain

L 1 (L L 1 (L L
Ln(t) =f ,odx+—/ zidx—i—f kizdx = -/ zidx#—/ kizdx
0 2 Jo 0 2 Jo 0

since fOL pdx = lim._q fOL u¢dx = 0, because u¢ vanishes at the boundary
x = 0, L. Consequently,

1 L2 1 L
= — d — kizdx.
n() 2L_/0 zxx+L/0 12dx

The above discussion indicates that

€ 1 €\2 € € 1 k 2 1 .
ux+5(wx) + kjwe wt x—\ 2L, zedx + A kizdx )z.x

as € — 0, weakly in L2(0, T; H~'(I)).

We conclude that the component w€ in systém (1.4)-(1.6) converges to the
solution z = z(x,t) of (1.9) weakly in L*(0, T; H3(I)) as € — O for any
T < +4o0.

Clearly z satisfies the boundary conditions in (1.11).

Finally we want to identify the initial data of the limit system. Since w® — z
in C([0, T]; H*>™%(I)) as € — O for any T < oo then wé(x, 0) — z(x, 0) as
€ — 0in H>~%(I). Hence z(x, 0) = wo(x). Observing that

{wf} is bounded in L*°(0, T; HO1 ()
{w?,} is bounded in L*(0, T; L*(I))
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for any T < -o0 (the last bound is easily obtained using the equation in (1.4)

that w® satisfies and our previous discussion), from (3.9) and using Aubin-Lions

compactness lemma [4] it follows that wf — z; in C([0, T'; L*(I)) as € — 0.

In particular, w; (x,0) — z,(x,0)as e — 01in L?*(I). Hence z,(x, 0) = w;(x).
The above results can be summarized as follows.

Theorem 3.1. Let (uo, uy, wo, w1) € H = Hy (1) x L2(I) x HZ(I) x HL(I),
0 <u<1l,a>0andk € H'(I). Consider the global solution u¢, w¢ of
system (1.4)—(1.6) obtained in Theorem 2.1. Then, as € — 07,

w¢ — z weaklyin L*(0,T; H}(I))

Furﬂ’lelmore,
€ 1 2 1 2

weakly in L*(I1 x (0, T)) as € — 0 forany T < 400, where z = z(x, t) is the
global (weak) solution of problem (1.9)(1.11).

4 Uniform stabilization as ¢ — 0

The total energy of the limit system (1.9)—(1.11) is given by

G@) I/L 2422 422 ydx+ ! I/L 2d +/Lk d i
= - x —_— —
2 Jy \& T T o A —L\2J, &™), e

and it is dissipated according to the law

dG(t) Lo,
o0 [ g

Then, it is not difficult to prove that G (¢) decays exponentially as r — --co.
In this Section we prove that the energy E.(7) associated to problem (1.4)—
(1.6) also decays exponentially as 1 — oo and that the decay rate is uniform (as
¢ — 0) provided 0 < « < 1, recovering the rate of decay of the limit system.
More precisely, the following holds:
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Theorem 4.1. Let u®, w* be the global solution of system (1.4)—(1.6) obtained
in Theorem 2.1 with 0 < o« < 1. Then, there exist positive constants C > 0 and
B > 0 such that

Bt

E0) = CEO) exp (e F TR

)
forallt > 0and all0 < € < L.

Proof. Let ¢ > 0. In order to simplify notations we write u® = u, w* = w.
We consider the functional

L L
F.(t) = 6/ uu,dx + / (ww; 4+ Wy Wy )dx. “.1)
0 0

Direct calculations using the equations give us that

dF, 8 [t 1 ’ L
dts < — ﬁ | (ux + EU)% —I—kl‘lU) dx — Sa/O uutdx
L L L L
4+ ef utzdx —/ wixdx —/ ww,dx-}—/ WWyr dX
0 0 0 0
L
+ / [w? + w2, ]dx. 4.2)
0

In the following estimates C denotes a positive constant which may vary from
line to line but is independent of €.
For any y > Q we have

L L
f WWyrdx / W, Wy dx
0 0

L L 1
/ ww,dx| < C / [ywﬁx + —w?]dx, 4.4)
0 0 14

since || wy, || defines anormin H2N HO1 (1) which 1s equivalent to the one induced
by H?(I).
Also

<C L 2 15
< yw;, +—wy, [dx 4.3)
0 14

EG!

o L o L
€ 5 ey )
< widx + / u’dx. 4.5
2y A ! 2 Jo

L
/ un,dx
0
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Moreover

L L
/ widx < C/ uldx
0 0

L 1 2 L 2 , [t

< C{/ (ux + Ewi—kklw) dx + (/ w;%xdx> + IIkllloo/ w,%xdx} (4.6)
0 0 A
L 1 3 ,
< C{/O (ux+5w§+k1w) dx+C[Ee(0)+||k1||go][) w}gxdx}.

Consequently, from (4.5) and (4.6) we obtain that

L o L o L 1 2
/ uu,dx| < E—f utzdx+ ce J// <ux+—w)2[+k1w> dx
0 2y Jo 2 Jo 2

“.7

ce® L

+ ZV[E€(0)+|U<1H§O]/ w}, dx.
0

Let § > 0 and define G, ;(t) given by

ed

Ges(t) = Ec(t) +0F(1)

Using (1.8) and (4.2) together with (4.3)-(4.7) we obtain that

dGes() _ {8a_1 e

L
-8 24
di 2y }8/0 i
5C L
—_ {1—8——}/ [wtz—{—wi,]dx
14 0
. , (4.8)
8 Ce®y L,
—s{— e+ -wtkw)d
{l—u 2 }/0 (u'+2w"+ 1w> ¥

o L
- 8{1—yc[2+52—{E8(0)+ IIklllﬁo}}}f w?,dx.
0

Now let us choose y > 0 as

60{

-1
v = A[2+ S {E0) + nklnio}}

where A > 0 is small enough but independent of ¢ and E,(0). Then, (4.8) reads
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as follows
dGes a1 e 1g P ) L 5
’ < — _ 2 - _
o = {6 R + 2 LEc(Q) + ltk1ligo] 3 6/0 u;dx

I

5 o L
{1_5_ —C(2+E—[Ee<0)+||k1||§o])}f [w} + w?, ldx
A 2 0

4.9

ce* )

8
1-— o
H 2(2+ CIE(0) + Ik u%o])

L 1 2 L
./0 (ux + Ew% +k1w) dx —8{1 — AC}/O w? dx.

We want to impose suitable conditions on é (and A) so that the coefficients on
the right hand side of (4.9) are all strictly less that —%. We will do this in case
when k; # 0 since the situation k; = 0 was already treated in [6].

We choose A > 0 small so that

o = i | BRI 1
<mny———. 5
11— C

which implies that 1 — AC > 0 and
8 Ce“A

t-n 2(2 + SE0) + ||k1|1§o])

> 0.

Once this choice of A is done we need § > 0 to satisfy

ea—l

5 < (4.10)
6&—1 Pl
34 <2+7[E5(0)+ ||k1!|%o])

and

1 C €” 5 -
§ < §|:1+x(2+ -—2—{E5(0)—|—|[k1||00})] ~ (4.11)

We observe that (4.10) and (4.11) will be satisfied if we choose § > 0 of the form

5= Ci{1 + € [E.0) + k121"
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for some positive constant C; (that may depend of A) but is independent of
0 < ¢ < 1. With this choice, the coefficients of ¢ [ u>dx and [ [w? + w?ldx
on the right hand side of (4.9) are, respectively, less than or equal than —§/2 and
—-1/2.

In conclusion, with the above choice of A and § > 0, (4.9) implies that

dG. (18
dt"s < —~mln{§, E}Eg(t). (4.12)

Finally, we compare E (1) with G, 5(¢). Using (4.1) together with (4.3), (4.4)
and (4.7) we obtain that

L C L 1 2
|F.(t)| < %A u,zdx+—2£/0 (ux—i—zwi-l-klw) dx

L C6 L

+ C / (w? + w?, + w? )dx + - [E0) + ey |12 ] / w? dx
0 0

< (Ce+ C + Ce[E.(0) + | K, |2 D E. (1)

< C(1 + €[E0) + ki |2 D Ec(2)

where C is a positive constant independent of 0 < € < 1. Thus,

(Ges(t) = Ec(®)] = 8|F.(1)] < 8C11 + E.(0) + k11121 Ec ()

~ 4.13
SCE1) 13

A

for some positive constant C depending only on the initial data and ||k, ||%, (since
E.(0) is bounded in ¢).

Then, (4.13) together with (4.12) and our choice of § implies the conclusion
of Theorem 2.

5 Final remarks and comments

When o = 0 the global well-posedness of (1.4)—(1.6) is still valid for each ¢ > 0
but, in this case, the asymptotic limit as € — 0 is of a different nature. In fact,
when o = 0 the limit system is of the form

2 1,
ve=T vx+§zx+k1z
K x (5.1

Zir + Zaxxx — Zaxer = af(v’ Z) - g(v, Z) — Zr + Zuxs
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for0 < x < L, t > 0. System (5.1) has initial conditions

v(x,0) = up(x), 2(x,0) = wo(x), z;(x,0) = wi(x), O<x<L (5.2)
and boundary conditions

v(0,0) =v(L,t) =z(0,1) =z(L,t) = z,(0,t) = z,(L,t) = 0. (5.3)

System (5.1)—(5.3) is the coupling between a parabolic equation and a fourth
order hyperbolic equation, thus it has a similar structure to a system of thermoe-
lasticity. The total energy associated with (4.1) is given by

1 (f 1 2
E(t):—f zf+z,2cx+z,2c,+ vx+—z§+k1z dx
2 Jo 2
and satisfies

dE L
- = —/(; (W7 + 2} +22,)dx.

According to the discussion of Theorem 4.1 we can pass to the limit as ¢ — 0
to obtain the following decay property for the solution of (4.1)—(4.3)

Pt
< —
E(@®) <CE) exp ( [T EQ) + Ilkll!%o>
forall t > 0.

We refer to [6] for further developments of this issue in the case of the classical
von Karmén and Timoshenko equations.

The analysis developed in this paper can be adapted to a variety of situations,
including different boundary conditions. The interested reader is referred to
[6] and [7] for the discussion of these issues in the case of von Kdrmdn and
Timoshenko equations.
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