
Nova S~rie 

BOLETIM 
DA SOCIEDADE BRASILEIRA DE MATEMATICA 

Bol. Soc. Bras. Mat., VoL32, No. 3, 321-342 
�9 2001, Sociedade Brasileira de Matemdtica 

A review of hydrodynamical models for 
semiconductors: asymptotic behavior 

Hailiang Li and Peter Markowich 

- -  Dedica ted  to Constant ine Dafermos  on his 60 th birthday 

Abstract. We review recent results on the hydrodynamical model for semiconductors. 
The derivation of the mathematical model from the semi-classical Boltzmann equation 
in terms of the moment method is performed, and the mathematical analysis of the 
asymptotic behavior of both classical solutions and entropy weak solutions is given on 
spatially bounded domain or whole space. 
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1 Introduction 

The topic of semiconductor device modeling has an important place in research 
areas like solid state physics, applied and computational mathematics. It ranges 
from kinetic transport equations for charge carriers (electrons and holes) to fluid 
dynamical models. The kinetic equations may be quantum mechanical, semiclas- 
sical or classical models. The main principle of classical model in the description 
of the motion of particle ensembles is Newton' s second law applied to ballistic 
transport and scattering events of the charge currencies. As crystal lattice effects 
are taken into consideration, we obtain semiclassical and, on other shorter scales, 
quantum models. The typical semiclassical phase space model is the Boltzmann 
equation. Approximating the solutions of this kinetic transport model by per- 
forming scaling limits, we obtain fluid dynamical models. In particular, the 
Hilbert expansion of the Boltzmann equation leads to the drift-diffusion or Van 
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Roosbroeck model [68, 69, 71] based on the assumptions of low carrier den- 
sities and small fields. To describe high field phenomena, the hydrodynamical 
model of semiconductor was derived from the Boltzmann equation by moment 
method based on the shifted Maxwellian ansatz for the equilibrium phase space 
distribution. 

Here we are interested in the mathematical theory of hydrodynamical equa- 
tions themselves. These equations are typically considered on the whole position 
space or on bounded domains with appropriate boundary conditions [2, 73]. The 
full hydrodynamical model is a quasilinear hyperbolic-parabolic-elliptic system 
of balance laws. This  system for the particle densities, the particle velocities, 
the temperature and the electric potential makes it complicated to understand the 
qualitative behavior of solutions. Recently, many efforts were made to under- 
stand the influence of the coupling effects on the solutions, such as existence and 
regularly, large time behavior and zero relaxation limit, etc. 

The effect of the Poisson (electric) potential coupling is smoothing and, also, it 
decisively affects the stationary states of the hydrodynamical equations. Usually 
the stationary solution, especially the particle density, is not a constant state. In 
fact, it solves a quasilinear second order elliptic equation of divergence form (for 
the particle density) dependent on the current density. Degond and Markowich 
[ 16] first considered the well-posedness of subsonic stationary solutions on one- 
dimensional intervals for small current density and electrostatic potential. The 
key idea of reducing to a second order elliptic equation is applied to establish 
the existence result. The current-voltage relationship was used to obtain the 
uniqueness for given small current density and potential. Afterwards, related 
results on the existence of subsonic stationary solution were obtained in multi- 
dimensional cases [61, 17, 76]. The existence of transonic stationary solutions 
was also proven in one-dimension [26, 25] and in the multi-dimensional case by 
Gamba-Morawetz [27] using the artificial viscosity method; and proven in one 
space dimension in terms of a phase plane analysis [62, 63]. 

Due to the damping (relaxation) dissipations of momentum and heat flux and 
the Poisson potential coupling, we expect to maintain regularity of dynami- 
cal solutions in subsonic regions. The first results on dynamical solutions by 
Luo-Natalini-Xin [55] showed that global classical (subsonic) solutions tend ex- 
ponentially to the stationary equilibrium solution of the drift-diffusion equation 
in one-dimensional case. This is based on the fact that frictional damping causes 
diffusive phenomena [35, 36]. A further study by Marcati-Mei [57] showed 
that general steady-state solutions of hydrodynamical equations are locally ex- 
ponentially stable stationary state. Related results were also established for the 
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one-dimensional full hydrodynamical equations (with the temperature equation) 
[32, 31, 37, 1] and for the multi-dimensional hydrodynamical equations [38]. 

When boundary effects are taken into consideration on bounded position do- 
mains, the dynamics of solutions become more complex. Under the assumption 
of zero-current density on the boundary, Chen-Jerome-Zhang [12] proved the 
convergence of classical solutions to a constant state (as t -+ (x~) based on the 
local existence result [78]; while Hsiao andYang [40] showed the convergence to 
the unique steady-state solution of the drift-diffusion equations. Li-Markowich- 
Mei [50] proved the convergence to subsonic stationary states ofhydrodynamical 
equations with density and potential boundary conditions, which means that in 
the subsonic regime there is a unique classical stationary solution for small cur- 
rent density and potential. This solution is exponentially stable in time for small 
perturbations. 

On the other hand, due to the strong hyperbolicity it was proven [14] that 
smooth solutions may cease to exit in finite time. Even the heat conduction 
can't prevent the formation of singularities (of smooth solutions for initially 
large data). Thus, it is natural to consider the existence and asymptotic of weak 
solutions, too. The global existence of large entropy weak solutions was obtained 
in BV-framework by Poupaud-Rascle-Vila [70]. The global existence of L ~ 
entropy solutions and/or zero relaxation limit were shown by Marcati-Natalini 
[58, 59], Chen-Wang [13], Hsiao-Zhang [41, 42], Jtingel-Peng [47, 48], Zhang 
[80, 81], Gasser-Natalini [30] and [77, 24, 44] in the compensated compactness 
framework developed by DiPerna [21, 22], Ding-Chen-Luo [18, 19, 10, 20], 
and Lions-Perthame-Sougandis-Tadmor [53, 54]. The reader is refered to [65] 
for more references. It is also important to investigate the global existence 
and asymptotic behavior of entropy weak solutions. However, few results are 
known about the influence of the Poisson coupling and damping dissipation on 
the asymptotic behaviors of weak solutions. The only known one is on subsonic 
shock solutions by Li-Markowich-Mei [51] where a detailed investigation on 
shock (rarefaction) discontinuities was made. 

Furthermore, though the mathematical analysis on the existence of global 
solution was considered extensively [67, 65,33, 29], the investigation of the dy- 
namical behavior of solutions of a bipolar hydrodynamical model is far from 
well understood. Up to now, Hattori and Zhu [33] proved the asymptotic con- 
vergence of classical solutions to bipolar hydrodynamical steady state model 
with re-combination. While Gasser-Hsiao-Li [29] observed that the frictional 
damping is strong enough to cause nonlinear diffusive phenomena of the bipolar 
hydrodynamical equations without background ions (C(x) - 0) in the sense that 
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both the electrons and the holes densities tend to the same diffusive wave at an 
algebraic rate, and the electric field decays to zero exponentially. However, few 
results are known on the understanding of boundary effects. 

This paper is arranged as follows. The derivation of hydrodynamical models 
for semiconductors from the semi-classical Boltzmann equation in terms of the 
moment method is performed in section 2. In section 3, we state some results on 
the large time behavior of subsonic solutions (for classical solutions in section 
3.1 and for subsonic shock solutions in section 3.2) of the unipolar isentropic 
hydrodynamical model for semiconductors. In section 4, we review the results 
of subsonic solutions of the bipolar isentropic hydrodynamical model. There a 
nonlinear diffusive wave is the asymptotic state of both densities. 

2 Derivation of hydrodynamieal models (HD) 

The hydrodynamical model for semiconductors can be derived from the Boltz- 
mann equation by applying the moment method. The starting point is the kinetic 
transport equation, the Boltzmann equation, which describes the phase space 
motion of charge carriers (electrons or holes) in semiconductor crystals. Let 
f = f ( x ,  k, t) where x ~ 1t{ 3 denotes the position variable, k 6 N denotes the 
wave vector, and N the Brillouin zone related to the crystal lattice [8]. Here we 
take ~3 = R 3 [64] for the role of simplicity. With t > 0 the time variable, the 
unipolar Boltzmann equation for semiconductors takes the form [64, 45] 

+ v(k)Vxf  + q v x v .  Vk f  = Q(f, f ) ,  (x, k, t) c IR 3 x R 3 x N+, (2.1) Otf 

f (x ,  k, O) = fo(x, k), (x, k) c I~ 3 x R 3. (2.2) 

Here, q > 0 is the elementary charge and h the reduced Planck constant. 
v(k) = (1/h)VkE(k) is the mean electron velocity and e(k) is the energy-wave 
vector function. The collision operator Q(f ,  f )  is supposed to model the short 
range interactions of the electrons with crystal impurities and photons. Electron 
interaction is neglected here [64]. It takes the form 

Q(f ,  f )  = f , ( x ,  v, v ' ) ( M f  - M' f )dv ' ,  (2.3) 

where O(x, v, v'), a symmetric function in v and v', is the scattering rate, and 

the Maxwellian is given by 

m(v)  = \ 2 ~ T , ]  exp ( 2k~T ] (2.4) 
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Here k~ is the Boltzmann constant. In the parabolic band approximation, the 
energy band function e (k) reads 

h 2 
e(k) = Ec + ~mm Ikl2, (2.5) 

where Ec denotes the conduction band minimum and m the effective masses of 
electrons. In this case, the velocity is given by 

v(k) = h_k. 
m 

The electronic potential V = V (x, t) is coupled self-consistently to the Poisson 
equation 

;v2AV = q(p  - e), (2.6) 

where Z denotes the semiconductor Debye length and E = C(x) is the doping 
profile of the background charge ions. The electron density p = p (x, t) is 
defined by 

p = f f d k .  (2.7) 

To describe high field phenomena and submicronic semiconductor devices, it is 
more efficient to use hydrodynamical models. These models can be obtained by 
approximating the Boltzmann equation (2.1) by the moment method (eliminating 
the wave vector variable). The key idea is to derive equations for the moments 
of the distribution function. The j-th order moment of the distribution function 
f is defined as the tensor Mj of rank j given by 

Mil ..... ij ,  [ k, > 1, 1 < < j [x, t) = vii - .. vii f ( x ,  t )dk,  j _ _ i l ,  . . . ,  i j ,  _ 3; 

Mo(x, t) = f f ( x ,  k, t)dk.  

The relevance of the moments lies in the fact that they are directly related to 
physical quantities. The first three moments corresponding to the multipliers 1, 
k, and �89 2 are, for instance, 

M0 = p position space number density, 

MI = J = pu current density, 
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m 
--trace(M2) = E energy density. 
2 

Here u denotes the electric velocity. The energy density can be written as the 
sum of a kinetic and a thermal contribution 

~ = p - - ~ l u  + tc~3Te.  (2 .8 )  

The displaced (or shifted) Maxwellian ansatz for the distribution funtion reads 

( m  ~3/2 (_m_[k__ul2~ 

f (v) = p \ 27rk-~Te J exp 2k~Te J ' (2.9) 

in analogy to gas dynamics, p, u, and T~ are the free parameters depending on 
position and time. The Maxwellian function (2.9) can be used as an ansatz for 
the moment method with }he three free parameters. 

Multiplying the Boltzmann equation (2.1) with 1, k, and �89 2 respectively, in- 
tegrating over the velocity space and using (2.9), we obtain a system of equations 
for the first three moments of the distribution function: 

Otp + div(pu) = 0, (2.10) 

O,(pu) -~ div(pu | u) + k~3vP(p,  Te) - q V V  = Cu, (2.11) 
m m 

0rE + div (uE + uP(p ,  Te)) - qpu �9 V V  = Ce. (2.12) 

The right hand side terms are the relaxation terms of momentum and temperature, 
respectively, stemming from the collision operator [64] (note that (2.9) does not 
annihilate (2.3)). When they are omitted, the system (2.10)-(2.12) becomes 
the Euler system of compressible charged particle flow in an electrostatic field. 
When applied to the semiconductor problem with a relaxation approximation of 
(2.3), the right hand side terms of (2.11) and (2.12) are given by 

) Cu -- pu C e - -  plu + p k ~ ( T e -  TL) 
-Cu rE 

where r~ > 0 and r ~  > 0 are the momentum and energy relaxation times 
respectively, and TL is the lattice temperature. Moreover, a heat conduction term 

- d i v  (~VTe) 

is often added to the left hand side of the energy equation (2.12). 
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Other approaches for the derivation of the hydrodynamical equations from the 
semiconductor Boltzmann equation were also given [4, 5, 72, 75]. E.g., in terms 
of the maximum entropy principle [66] the related problem of closure conditions 
was investigated [4, 6]. 

Now, rescaling the equations (2.10)-(2.12) and (2.6) and setting coefficients 
equal to one, we obtain the full hydrodynamical equations (FHD) for the electron 
mass, electron velocity and electron energy (p, u, E) 

atp + div(pu) = 0, (2.13) 

O,(pu) + div(pu O u) + V p (p ,  T)  = p V V  - pu,  (2.14) 

Ot~ + div(~u + P ( p ,  T )u  - # V T )  = pu  . V V  - (g - s (2.15) 

AV = p - -  E(x), (2.!6) 

with the rest energy EL "" ~xpTr.  Often the temperature is taken as a con- 
stant (or prescribed function of density) and we obain the so-called isentropic 
hydrodynamical model (HD) 

O~p + div(pu) = 0, 

Ot(pu) + div(pu | u) + Vp = p V V  - pu,  

A v = p - C ( x ) ,  

(2.17) 

(2.18) 

(2.19) 

with the pressure p = p(p) .  A typical example is 

p(p) = - p ~ ,  v _> 1. (2.20) 
g 

Similarly, starting with the bipolar semiconductor Boltzmann equation for 
electrons and holes, and applying the moment  method to the hole distribution 
function, we obtain the bipolar hydrodynamical model (BHD) [64] (here we only 
state the isentropic case) 

OtPc~ + div(p~u) = 0, 
paU 

at(pc~u) + div(pc, u | u) + Vp(p~) = p ~ V V  - ~ ,  
gu 

Otp~ + div(p~u) = 0, 

Ot(p~v) + div(p~v O v) + Vq(p~) = - p ~ V V  p~v 
Tv 

) v 2 A V  : Pc~ - -  ,Off - -  C ( X ) ,  

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 
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where p~, p~, u, v are the densities and velocities for electrons and holes 
respectively, r ,  > 0 and rv > 0 are relaxation times for momentum, and )~ is 
the Debye length. The mass and momentum equations for electrons and holes 
are coupled by the Poisson equation (2.25). 

3 Asymptotic behavior of the unipolar HI) 

3.1 Subsonic classical solutions 

In this subsection, we consider the initial boundary value problems (IVBP) for 
the isentropic hydrodynamical equations (2.17)-(2.19) in the one-dimensional 
x-interval (0, 1) representing the semiconductor. 

The initial data and the density and potential boundary values are given: 

(p, j ) (x ,  0) = (/3, j ) (x) ,  x e (0, 1), (3.1) 

p(0, t) = Pl, p(1, t) = P2, t _> 0, (3.2) 

~b(0, t) = 0, ~b(1, t) = q~l, t >_ 0. (3.3) 

We study the asymptotic behavior of solutions in the sense that we first consider 
the well-posedness of stationary solutions and then investigate their stability. The 
steady-state solutions of the hydrodynamic model for semiconductors satisfies 
the following boundary value problem (BVP): 

j = const, (3.4) 

+ P(P) = POx - j, (3.5) 
X 

~bxx = p - C(x), (3.6) 

(3.2) and (3.3). 

Here we set the current relaxation time to 1. For smooth solutions, the current- 
voltage relationship follows [16] by dividing (3.5) by p, and integrating over 
[0, 1] 

fo I dx (3.7) d?l = F(p2, j )  - F(pl, j)  + j p(x) '  

where 

j2 1 
F(p, j)  = ~2p---- w + h(p), h'(p) = -p'(p).p (3.8) 
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Dividing (3.5) by p, differentiating, and using (3.4), (3.6), we obtain finally 

(P, j )Px + j  - p = - C ( x ) ,  0 < x  < 1. (3.9) 
x x 

Thus, to obtain the existence of regular solutions we require the subsonic condi- 
tion to be satisfied: 

OF j2 j2. 
O~ (p' J) = -p--S + lp,(p)p > 0 r p2p,(p) > (3.10) 

Assuming that pp'(p) is strictly monotonically increasing, we conclude that 
OF there is a unique Pm = Pro(j) such that -yp-p (p, j )  > 0 for p > p,,,. Also, by 

(3.10), we know that the minimal point Pm of fl ~ F (p, j )  is a strictly increasing 
function of j with Pm (j = 0) = 0. These facts imply that the equation (3.9) is 
uniformly elliptic for p > p* > p,,~, which, by (3.10), means a fully subsonic 
flow lu[ < c(p). Here c(p) = ~/p'(p) denotes the sound speed. 

Assume that there is a function A = A(x)  6 C2(0, 1) such that 

A ( x )  > 0, A ( 0 )  = P l ,  A ( 1 )  = /92, L[ _ ~ G C ( 0 ,  1). (3.11) 

For subsonic state, by the maximum value principle and Schauder' s fixed point 
theorem, using the current-voltage relationship, we can prove the well-posedness 
of stationary solution (see [50] for details) as follows 

Theorem 3.1 Assume that pp'(p) is strictly monotonically increasing, (2.20) 
and (3.11) hold. Let Jo ~ 0 be such that 

PJ, P2, inf C(x) > P,~(Jo), (3.12) 
xc(0,1) 

and a s s u m e  1/92 - P l l  <( 1. Then there is a constant cb o > O, such that for  
all 0 < 4)1 < ~o, the BVP (3.4)-(3.6) and (3.2)-(3.3) has a unique solution 
(P0, j0, qS0), which satisfies [j0[ < [J0t and 

C. ~ min{pl, P2, inf e(x)} < po(x) < max{p1, P2, sup e(x)} ~ C*, 
xc(0,1) xE(0,1) 

I[po-.4112 + IlpoxIl~ _< Co~o, 

114'oxllff _< Co~o, 

where Co is a positive constant dependent on C• and Ijol, and 

~o = max (IA'(x)l + [A'(x)l + I A ( x )  - C(x)l) + ]qS11 --}- [/92 --  /911. [ ]  
xc(0,1) 
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Set 

~t o = 15 - P0, q0 = J -- j0. (3.13) 

Standard local existence theorems for hyperbolic systems [56] and the a-priori 
estimates allow us to obtain the global existence of classical dynamical solutions 
and to study its large time behavior (see [50] for details): 

Theorem 3.2. Let (Po, j0, 4}o) be the regular solution of the BVP (3.4)-(3.6) 
and (3.2)-(3.3) given by Theorem 3.1. Assume 0P0, ~o) c HQ Then, there is 
el > O, such that if II (Tt0, ~/o)112 + ~o <_ 81, the global classical solution (p, j ,  dp ) 
of the IBVP (2.17)-(2.19) and (3.1)-(3.3) exists and satisfies 

[I(P - p 0 ,  j - j0, 4} - 4}0)(', t ) l12 2 
(3.14) 

___ O(1)11(r oo)l122exp{-Aot}, t >__ 0 

with a positive constant A0. [] 

Remark  3.3. The density and potential boundary values are realistic for semi- 
conductor device simulation. Though analogous existence results of stationary 
solution in the multi-dimension compact domain were shown for the multi- 
dimensional isentropic HD [17, 76] and for the one-dimensional full HD [3], 
very few results were obtained on their stability for large time [79]. 

3.2 S u b s o n i c  s h o c k  so lu t ions  

In this subsection we consider the asymptotic behavior of subsonic entropy shock 
solutions of the initial value problem (IVP) for the hydrodynamical model (2.17) 
with the perturbed Riemann initial data: 

(pl, u~)(x), 
( p ,  U)(X, O) = (/0, /g)(X) = I (pr'  Ur)(X), 

where 

and 

lim (/5, f i ) (x)  = ('7:~, 11~_), 
x--+q-oo 

x < O ,  
, (3 .15)  

X > 0 .  

V+2~+ = ?_11_, (3.16) 

(0-,  u_) = x~o-lim (Pl, uz)(x) • xlJl~+(pr, Ur)(X) ----: ( 0+ ,  U+).  (3.17) 
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First, let us recall the basic shock theory of  the compressible isentropic Euler 
equations [34, 15] 

{ p, + (pu)x = o, 
(3.18) 

( p u ) t  -{- ( p u  2 q- P(P))x = O, 

where the pressure p is given by (2.20). The equations (3.18) can be written as 
a system 

vt + f (v )x  = 0, (3.19) 

j2 
where v = (p, j ) r  with j = pu, f ( v )  = (j, 7 + p(p) ) r .  The Jacobi matrix of 

f is (01) 
D f  = j2  2_j_j . (3.20) 

- 7  + P'(P) p 

The eigenvalues of  (3.20) are 

)v I = L __ , v / ~ p ( F - 1 ) / 2 ,  ~'2 = J-" + ~ p ( r  1)/2, (3.2l) 
P P 

o r  

~-1 ----= u - w / - y p  ( y - 1 ) / 2 ,  )~2 = u + v/Vp (y 1)/2. (3.22) 

A / - s h o c k  wave, i = 1, 2, for (3.19) is characterized by the Rankine-Hugoniot 
condition and Lax entropy condition. Namely, along the discontinuity x = xi (t) 
it holds 

21 (t) = - - V / [ p u  2 + p(v)] l / [p] l ,  

[pu]~ = V/[pu 2 + P(P)]I/[P]I " [P]l, (3.23) 

k~(xl(t) -- 0, t) > 2~(t) > kl (x l ( t )  + 0 ,  t), 

o r  

x2(t) = v/[pu 2 + P(P)]z/[P]2, 

[pu]2 = --~f[Pu 2 + P(P)]2/[P]2 " [P]2, (3.24) 

)v2 (X2( t )  - -  0 ,  t) > x 2 ( t )  > ) ~ 2 ( x 2 ( t )  -+- 0 ,  t ) ,  
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where we denote 

[ F ] i = F ( x i ( t ) + O , t ) - F ( x i ( t ) - O , t ) ,  i = 1 , 2 .  

Denote the electric field E = ~bx, then the hydrodynamical equations (2.17)- 
(2.19) can be written as 

Pt + (pu)x = O, 
(pu)t + (pu 2 + p(p))~ = p E  - pu, (3.25) 

Ex = p - C(x), 

For simplicity, we consider the IVP (3.25) and (3.15) in the case that the two 
states (Q_, u_) and (Q+, u+) are connected by two shock curves in phase space, 
i.e., there is a state (Qc, Uc) such that 

U > Uc > U+, 

( vcuc  - v - u - )  2 = (ocU2c - v-u  + p(o ) - p ( o - ) )  

(Qc - Q-), Q- < Q~, (3.26) 

(Q+u+ - QcUc) 2 = (Q+u 2 - QcU~ + p(Q+) - p(Qc)) 

(Q+ - 0~), O+ < Q~ 

We also expect that there exists a stationary solution of (3.25) which is the 
asymptotic state of the dynamical solutions. Let us consider the stationary solu- 

tions (Po, Jo, Eo)(X) of (3.25) with boundary value 

poEo(4-c~) = C--E~ = jo, (3.27) 

where C• = e(q-c~) > 0. We have 

Theorem 3.4 [57]. Assume that (2.20) holds and e c H 1 f3 L 1 f-) W 1'4. Let jo 

be such that 

min C(x) > pm(jo). 
xE• 

Then, there exists a unique (up to a shift) smooth solution (Po, jo, Eo) of  BVP 
(3.25), (3.27) such that 

C, ~ rnin e (x )  <_ po(x) <_ e* ~ max C(x), 
xe• xcR 

[p0(x) -- e• = O(e -C• as x -+ -4-~, 

lip - ell 2 + sup(]p~)(x)l 2 + Ip~'(x)l 2) -< c03a, 
xcR 

sup ]E0(x) ]  2 < Co(31 + ~2), 
xER 
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where 

E L  
c +  - -  > 0 ,  

p,(e~:) - E 2 

61 = I l o g e +  - l o g e _ l  + IldllL, 4-Ildll~, + Iid1144, 

and Co > 0 is a constant only depending on C. 

Set 

2 ~ 2 
62 = ProP (pm)/C,, 

[] 

{fo fo ~"l (x) = + (fi(Y) -- Po (y ) )dy ,  
~o + 

Denote  

63 = Ioc - o+I + Io- - oct, 

/z~ = ll(so, eOx, eOxx, eOx~x) +F 
2 

/Z 2 Z s u p {  i - i = I O ~ ( p  - Po) l - I -  I O x ( F t  - .o)1} < + ~ ,  
i =0 x #0 

/z3 = sup {10~(,5 - m)(x ) l  + la2(~ - u o ) ( x ) l }  < + o c ,  
xr 

where 

ql (x) = riFt(x) -- jo- 

/d, 0 = 61 q - 6 2 ,  

+ 1 1 ( < ,  <x, 81xx )@ < -~-00, 

jo Ilfq+ = ] f (x ) l  2dx + I f (x)12dx,  
+ 

pouo(x) = jo. We have the fol lowing main  result 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

T h e o r e m 3 . 5 .  Let (Po, uo) e C3(R-{0}), ~1 E L2(R) ,  and(Tg,  el) E H 3 ( R  - 

{0}) x H2( R - {0}). Let (3.26) and (3.28)-(3.30) hold. Then there exists s2 > 0 

such that if63 + lZo + tzl + tz2 < s2, the global entropy weak solution (p, u, E)  

o f  the IVP (3.25) and (3.15) exists. It is piecewise continuous and piecewise 

smooth with two shock discontinuities - a forward shock curve x = x2(t) and a 

backwardshock curve x = xz (t) satisfying xz (0) = x2(O) = 0 a n d x l  (t) < x2 (t) 

for  t > O. Away from the discontinuities, (p,  u, Ex)(. ,  t) e C 3. In addition, as 

t tends to infinity, 

(3.32) 

2 

(110/(/9, u)]~)t + I[0~(p, u)EI)  - O(1)e  -A ' '  ~ 0, 
i=0 
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and  

2 

Z []O/(P - Po, pu  - jo, E - Eo)(. ,  t)-H ~ O(1)e -AJ --> O, 
i=0 

with two posi t ive constants  A1 and  A2. 

(3.33) 

[] 

Key point of proof. One construct the piecewise smooth solution based on the 
local geometric structure of solutions of the Riemann problem for inhomoge- 
neous hyperbolic equations [52] which says that the discontinuous initial value 
problem (3.25) and (3.15) admits a unique discontinuous solution in short time in 
the class ofpiecewise continuous and piecewise smooth functions with a forward 
shock x = x2(/)  and a backward shock x = xl (t) both passing through (0, 0). 

To extend the local structure globally in time, we need to study the geometry of 
shock structure and show that the shock strength decays as time grows up but the 
shocks never disappear in finite time. Moreover, away from the discontinuities 
we have to control the oscillations of solutions so as to prevent new singularities 
from formation. This can be done by solving the three independent free boundary 
value problems for (3.25) separated by the boundary x = xl (t) and x = x2(t)  

in terms of the characteristic methods and the (relaxation) damping dissipations. 
The Lax-entropy conditions guarantee the well-posedness of the corresponding 
free boundary value problems. The large time behavior is then obtained in terms 
of energy methods, which basically is similar to that for the classical solutions 
except that one uses the piecewise energy estimates here. The reader is refered 
to [51] for details. 

4 Dynamic behavior of the bipolar HD 

The Cauchy problem for one-dimensional bipolar HD model without doping 
reads: 

Otp~ + (p~u)x = O, 

Ot(p~u) + (p~u 2 + P(P~))x = p~E  - p~u ,  
Tu 

Otp~ + (p~v)~ = O, 

Ot(p~v) § (p~v 2 + q(p~) )x  = - p ~ E  p~v 
72 v 

) ~ 2 E  x -= p ~  - -  p ~ .  

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 
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with initial data: 

(p~, u, p~, v)(x,  O) = ( ~ ,  ~, ~ ,  O)(x) 

> (p+, O, p• O) as x --+ -t-eo. 
(4.6) 

Here E_(t) ,  the electric filed at x = - o c ,  is assumed to be given and set to zero 
without the loss of generality. 

Since the Poisson coupling (4.5) is somewhat weaker without the background 
ions, the expected asymptotic state of the classical solutions (p~, ups, v, E) may 
be different from those in the previous section due to the (relaxation) damping 
dissipations. In fact, since it is known that solutions of the damped Euler equa- 
tions behave like nonlinear diffusive waves in large time [35, 36], we may expect 
that both the electrons and holes density will tend to nonlinear diffusive waves. 
Let us understand roughly this phenomena by applying the quasi-neutral limit 
[28]. Set ru = r~ = r in (4.1)-(4.5) for simplicity and re-scale 

/- --+ Z'/', ) 2  ~ T l + s ,  - - 1  < S, 

1 t 
p~ = ~ ( L ,  x), u~ = - u ( - , x ) ,  

T T T 

t 1 t 
p;  = p ; ( ; ,  x) ,  v ~ = - v ( - ,  x) ,  

T T 

we obtain the scaled equations: 

(p~u )x O, (4.7) 
2 r r r r r O,(p~u ) + (r2p~(u~): + P(P~))x = P~E ~ - p~u , (4.8) 

Otp~ + (p}v~)x = O, (4.9) 

rzot(P~ v~) + (rzP~(v~) 2 + q(P~))x = - P ~ E  ~ - P~v ~, (4.10) 

rl+~ ~,~ ~ ~ (4.11) r, x = p~ - p~. 

Let r -+ 0 in (4.7)-(4.11), we obtain the equation for the limiting densities of 

Pc~ and p}: 

1 
wt = -x(p(w) + q(W))xx, (4.12) 

z 

with p~ = p~ = w. In the following analysis, we just take 

1 y 
p(p)  = q(p)  = --p , y > 1. (4.13) 

V 
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As shown in [23] the nonlinear equation (4.12) admits a unique self-similar 
solution w(x ,  t) = W(~), ~ - , / ~ ,  satisfying 

W(-l-cx~) = p• (4.14) 

Finally, we prove rigorously [29] that the dynamical solutions of the 
IVP (4.1)-(4.6) convergence to this self-similar solution W (~) as time tends to 
infinity. For the role of simplicity we set the Debye length and both the relaxation 
times to 1. 

Set 

~2 = ( ~ ( y )  - W(y + xo))dy, 02 = ~ ( t ( x )  + p (W(x  + xo))x, (4.15) 
oo 

gr3 = ~(y) - W(y  + yo))dy, 03 = ~f~(x) + p (W(x  + YO))x, (4.16) 
oo 

with xo and Yb' chosen such that 

l~ r2( -~-O0 ) = O,  ~ / r3( -~-O0 ) ~--- O.  

Then we obtain 

Theorem4.1.  Assume that(4.13) holds. Suppose that (gr2, 02, ~3, ~73) E H 3 • 
H 2 x H 3 • H 2 with Xo = Yo. Then, there is e3 > 0 such that i f  11(7~2, ~3)113 + 
11(,72, ~3)112 _ ~3, the global classical solution (p~, u, p~, v, E)  o f  lVP  (4.1)- 
(4.5) and (4.6) exists and satisfies 

I[(P~ - W, p~ - W)(., t)l12 < C(1 + t) -U2, (4.17) 

II(p~ - p~, E)(., t)l[2 < Ce -a3',  (4.18) 

with A3 > 0 a constant. 
Furthermore, i f  we assume in addition (~2, ~3) E L 1, we have the fol lowing 

(optimal) Lp (2 < p < oc) decay rates: 

1 t, 1 i ~ k+l  
II0xk(p= - W,p~ - W)(.,t)llLp < Clp+ -p_[ (1  + t )  -7" -~ '  2 , (4.19) 

1 {1 1 ~ k+2 
II0~(u + p(W)x,  v + p(W)x)(.,/)llLp -- CIp+ -- p-I(1 + t) -~'l ~'--~-, (4.20) 

f o r k  <_ 2 if  p = 2 and k < 1 i f  p E (2, oc]. [] 

Key point of proof. The results are proven by using energy estimates for the 
damped wave equations obtained from the perturbations of the equations for 
electrons and holes, and for the damped Klein-Gordon equation for electric field. 
The reader is refered to [29] for details. 
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Remark 4.2, The above time-asymptotic behavior of the bipolar HD model 
(4.10-(4.5) is not surprising. In fact, such diffusive phenomena also occur in 
the quasineutrual limit of the bipolar HD model [28] even in dimension larger 

than 1. [] 
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