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A b s t r a c t .  In this paper we consider the Cauchy problem for the hyperbolic system 

2 a u  at + (aU)x + ~ -  = O 

x > 0 ,  t_>0 
Ut q- l (a 2q_uz)x = 0  

with null boundary conditions and we prove a local (in time) existence and uniqueness 
�9 01 theorem In C b' and, for a special class of initial data, a blow-up result. 
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1. I n t r o d u c t i o n  a n d  m a i n  re su l t s  

We consider the Cauchy problem for the quasilinear hyperbolic system 

at + (aU)x + 2au = 0 
x 

l ( a  2 + u 2 ) x = 0  u t + ~  

x > 0 ,  t_>0 (1.1) 

with the initial data 

(a(x, 0), u(x,  0)) = (ao(x), uo(x)), x > 0 
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(1.2) 
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The system (1.1) appears in the study of the radial symetric solutions in R 3 x 
R+ for a conservative system modeling the isentropic flow introduced by G.B. 
Whitham in [7, chap.9] where a is the sound speed and u is the radial velocity. 
If f : 1R 2 > R 2 is defined by f ( a ,  u) = (au, (1/2)(a 2 § u2)), then two 

eingenvalues of V f are 

3 . 1 = u - a ,  ; . 2 = u + a  (1.3) 

and so the strict hyperbolicity fails if a = 0, but the system is genuinely nonlinear 
with Riemann invariants 

l = - u + a ,  r = u + a  (1.4) 

which satisfy the equivalent system (for classical solutions): 

r2_12 
rt + rrx + 2x - - 0  

r 2_l 2 
I t  - -  llx + 2""7-- = 0 

x > 0 ,  t > 0  (1.5) 

with initial data 

(r(x,  0), l (x ,  0)) = (ro(x), lo(x)), x > 0 (1.6) 

with ro = uo + at, lo = -Uo § at. 

In [1] and [2] we have studied, for a special class of initial data, the existence 
and uniqueness of weak entropy solutions of the Cauchy problem for system 
(1.1) verifying, in a certain sense, a null boundary condition. For this we have 
applied the vanishing viscosity method, the compensated compactness method 
of Tartar, Murat and DiPerna (cf. [3]) and, for the uniqueness under stronger 
assumptions, the Kruzkov's technique (cf. [4]). In this paper we deal with local 
(in time) C o, 1 solutions that are null at the boundary (x = 0) and, for commodity, 
we will work with the system (1.5). Let us introduce, for T > 0, the space 

Yr = {v c C~ + t o [ x [ 0 ,  T] I v(0, t) = 0, 0 < t < T} (1.7) 

where C o' 1 denotes the space of bounded Lipschitz continous functions, with the 
usual norm 

Ilvlly~ = IIv[IL~ + IlVxliL~ + IlvtlIL~ 

We will prove, by a standard fixed point method: 

(1.8) 
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T h e o r e m  1. Assume ro, lo c (C ~ ([0, § 2 and such that ro(0) = Io(0) = 
O. Then, there exists T > 0 and a unique pair  (r, l) ~ Yz • Yv such that (r, l) 

is a solution o f  the Cauchy problem (1.5), (1.6). 

For each Xo > 0 and T > 0 let us introduce 

•xo,T = [(X, t) E]0, +OO[X[0, T] [ x > X( t ;  Xo, 0)} (1.9) 

where X(t ;  Xo, 0) is the characteristic defined by 

d X  
- - ( t ;  Xo, 0) = r ( X ( t ;  xo, 0), t), t E [0, T], X(0;  x0, 0) = Xo, 
d r  

where (r, l) is the local solution of  (1.5), (1.6) obtained in Theorem 1. We will 
prove the following regularity result: 

T h e o r e m  2. Assume (ro, Io) E (C~'1([0, +00[))  2, ro and lo null at the origin 
and with compact support in [0, t o o [  and uo(x) >_ ao(x) > O, x E JR+. Then 
there exists a local solution (r, l) E YT x YT o f  (1.5), (1.6) such that (r, l) E 

1 1  2 (Cb' (Exo,~)) , Vxo > 0. Furthermore, i f f o r a c e r t a i n T  > O, (r, l) E YT x Y~- 
is a local solution such that (r, l) E (C~(Exo,T)) 2, then (r, l) ~ (C~'l(Exo,V)) 2. 
Moreover, we have 

l(., t) Leo r(.,  t) ro Leo 0 < - - l < r  <C,  - -  < < - -  , t E[0 ,  T'[  (1.10) 
X X LeO X 

where [0, T'[  is the maximal interval o f  local existence in Theorem 1. 
In the framework of  Theorem 2, let us put (note that ro = u0 § a0 > 0, lo = 

-Uo § ao < 0, ro a > I2): 

r 0  L eO co = - -  �9 (1.11) 
x 

With the technique of  Lax (cf. [5]) we will prove the following blow-up result: 

T h e o r e m  3. Under the hypothesis o f  Theorem 2, assume that Co > 1 and that 

there exists Xo > 0 such that, in the interval [xo, ro(xo)/Co + xo], we have 

5 5 2 
rox < O, lox > O, ~ c o < l r o x l < - ~ C o ,  Iloxl >_ coe. 

Then there exists T'  E]0, 1/co] such that 

lira,-+7-,- (]lrlly~ + [lillY,) = +cx~. (1.12) 
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Remark. The assumptions in Theorem 2 on the support of r0 and l0 can be 
replaced by some weaker hypothesis. 

2. Local existence and smoothness of  the solutions 

We start with the proof of Theorem 1. Let us put 

Mo = II(ro,/0)11~cO,1)2 = IlrollL~ -t-IlroxllL~ -I-II/ollL~ + IlloxllL~ (2.1) 

for two fixed M > M0 and T > 0 letus consider the closed ball B M , r  in Yr x Y r  

centered in (0, 0) and with radious M for the norm 

II(r, 1)11 = Ilrllr~ + Illllr~. 

For (v, w) E BM,r let us consider the linear system 

v2 w 2 
rt + v rx + 2x - -  0 

It - w l x  + v2-w----~2 - 0 
2x  - -  

(2.2) 

with the initial data (1.6). For fixed (x, t) 6 Yr let us consider the characteristic 
X(r ;  x, t) passing in (x, t) defined by 

{ ~ ( r ;  x, t) = v ( x ( r ;  x,  t), r )  

X (t; x ,  t )  = x 

(2.3) 

We can also define the characteristic 

d X ( T .  d~" ' X, t) = --W(;~(r ;  X, t), r )  

~ ( t ;  X, t)  = X 

(2.4) 

Since v(0, t) = w(0, t) = 0 by the hypothesis, the characteristics passing in a 
point (0, t) are defined by the straight line x = 0. Denoting by ? the derivative 
along the characteristic defined by (2.3) we can write the first equation of (2.2) 
as follows 

112 - -  Ii3 2 
r ( X ( r ;  x,  t), r )  -- - - ( X ( r ;  x,  t), r )  

2x 
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and so 

f0  t /)2 _ 1132 
r (x ,  t) = r0(X(0; x, t)) - 2x- (X( r ;  x, t), r )  d r .  (2.5) 

We derive, for t _< T, 

IIr(., t)llL~ _< IIr0llL~ + Tll(v, w)ll 2 

lit(., t)llL~ <_ Mo + T M  2. (2.6) 

and similarly, from the second equation in (2.2) and (2.4), we deduce, for t < T, 

II/(., t)llL~ 5 Mo + T M  2. (2.7) 

Now, if (x, t), (2, {) are two points in [0, + e c [ x  [0, T], { < t, we have 

r(x ,  t) - r (2 ,  t) = r (x ,  t) - r(2,  t) + r(2 ,  t) - r(2,  [) 

and 

r(x ,  t) - r(2,  t) = r ( X  (t; x ,  t), t) - r ( X  (t; 2, t), t) = 

= ro(X(0; x, t)) - ro(X(0; 2, t)) - 

__ f0 t [/)2 __ 1132 /)2 __ /1)2 1 
I 2x- ( X ( r ; x , t ) , r )  2 ~ ( X ( r ; Y , t ) , r )  d r  

By well known properties of ordinary differential equations, we have, with 2* 
between x and 2, 

IX(r;  x, t) - X ( r ;  2, t)l _< Ix - 21 (r; 2", t) _< 

f t  ~ 0/) < I x - 2 1  exp  ~ - x ( X ( s ; Y * , t ) , s ) d s  <_ 

< Ix - 2le  rM, 

Ir(x, t) - r (2 ,  t)l ~ (Mo + T M 2 ) e r M I x  - 21. 

and so 

We also have 

(2.8) 

- -  ( X ( r ;  2 ,  t ) ,  r )  d r  + 

r(2 ,  t) - r (2 ,  D = r ( X  (t; 2, t), t) - r ( X  ({; 2, t), t) = 

f 0  t /)2 _ 1132 
= ro(X(0; 2, t)) - ro(X(0; 2, {)) - 2x 

- U2 __ W 2 
+ 2 ~ ( X ( r ;  2, {), r )  d r  
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and, with i _< i* < t, 

Ix( r ;  f ,  t) - X(r ;  2, /)l < I t - i ]  0 ~ t ( r ; 2 , ? )  _< 

f ~ Ov 
< I t - { l l 1 ) ( 2 ,  i*)l exp -~-~x(X(s;2, i * ) , s )ds<_  

<_ It - {]Me rM 

Moreover, we have 

fo 
t i)2 __ 1112 f {  1)2 __ W 2  

2x- (X(r;  2, t), r) d r  - Jo 2x 

f 
t 1)2 _ 102 

= 2x (X(r;  2, t), r)  d r  + 

- [-1)2 _ W2 1)2 _ 102 
+ [ 2~-~- (X(r;  2, t), r) 2x 

Hence, we derive, 

- -  (X(r;  2, h,  r) d r  = 

- -  (X(r;  2, f), r ) ]  dr  

Ir(ff, t) - r(2,  {)L < [(MoM + TM3)e  rM + m 2] It - }-I- (2.9) 

From (2.5), (2.6), (2.8) and (2.9) we deduce that r ~ YT and the same result can 
be proved for I. Moreover, there are M~ and T1 such that, if M0 < M <_ M1 and 
r < T1, then for (v, w) c BM,T we have 

(r, l) ~ BM.r. 

Following the ideas of [6, ch.1], and since BM,r is closed in 

(Cb([0 ,  ~ [ X  [0, T1])) 2, 

J 
to prove that, for fixed (r0, I0), the map (v, w) > (r, l) has a unique fixed point 
in BM,r it is enough to obtain the following estimate 

llJ(v, w) - J(�9 ~)llL~O ~ ~eH(v, w) - (~, ~)IIL~ (2.10) 

for a certain c~ 6]0, 1[ and for all (v, w), (f;, ~v) 6 B,u,r. 

From the first equation in (2.2) for (v, w), (l, r) and (fi, tb), (F, D = J03, if)), 
we derive with 7 = r - F (cf. [6, ch.1] for a similar estimate), 

0 7  07  Of V 2 __ W2 ~2 __ 1~)2 
a-~ 1)~xx + = - ( v  - v)-~xo 2x + 2x 
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and so, with X (r; x, t) defined by (2.3), we obtain, by integrating and estimating, 

( 1 ) 
117i., t)[lz ~o ~ tllv - 0llzoo IITxlIL~ + ~llVxllLoo + ~ll0xllLoo + 

t 
+ ~llw - tbllL~(llwxllt~ + [ItbxllL~), 

117(., t)llLoo < 2 M T ( I I v  - ~IIL~ + IIw -- ~llL~o) 

and analogous estimate for liT(., t)II L~, w i t h T  = 1 - [, and this achieves the proof 
for "small" initial data (r0, 10), say I[ (ro,/o) II (cO,~)2 _< M0. 

Now, for a given initial data (ro, I0) let us choose )~ > 0 such that (?o, [0) = 
X(r0, I0) verify II(?0, [o)ll(co.q2 <_ Mo, and let be (?, [) the unique solution in 

\ ] 

Y:r • Yr of the corresponding Cauchy problem (1.5), (1.6). Let us put 

1 1-  
rix, t) = r e  ix, t / z ) ,  l ix,  t) = H ix, t / x ) .  

We have 
r(x,  O) = ro(x), l(x, O) = lo(x) 

and (for t < XT): 

r 2 _ 12 
rt(x, t) + rrx(X, t) + (x, t) = 

2x 

1 ( r2--[2(x,t/)v))= 0 
= )--~ ~t(x, t /X) + FFx(x, t /X) + 2x 

and also 
r 2 _ 12 

lt(x, t) + llx(x, t) + - - ( x ,  t) = 0 
2x 

and the theorem is proved. 

To prove Theorem 2 we must introduce the approximate Cauchy problem 

[] 

2 2 r~-t~ -- 0 
rs t  -~ re rex q- 2 (x+e) - -  

2 2 
re - le  0 

I let  - -  le lex + 2 (x+s)  - -  

x > 0 ,  t > 0  (2.11) 

with the same initial data given by (r0, 10). It is easy to see, by inspection of the 
proof of theorem 1, that the same proof applies to this regular case and moreover 
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we can find a common (for 6" > 0) interval [0, T] of local existence of solution 
for the Cauchy problem with T depending only on the norm II (r0, 10)II (cO, i)= of 

the initial data. Furthermore, we have the estimate 

II(r~,l~)llr~xr~ ~ cl, V6" ~ 0 (2.12) 

( ) we with c, only depending on II(ro,/0)ll(co,,)2, Moreover, if (ro, lo) c C~" 2 

also have, for 6" > 0, 

(r~ , l~)6  (C~'1([0, q-OC[X[0, T]) 2 

(cf. theo. 4.3 in ch.2 of [6]). Finally, under the hypothesis of Theorem 2 it can 
be proved, as we have made in [2] for the singular case by applying the vanishing 
viscosity method and an uniqueness theorem of Kruzkov's type, that 

0 _< -l~ _< r~ _< C 1 in [0, +oc[x[0 ,  T], 

(2.13) 

l~(., t) re( . ,  l )  
7-77  -< 777  --- , t e [ 0 ,  r ] .  

If we obtain a proof of the equicontinuity, in Exo,r, for a fixed x0 > 0, of the 
first derivatives of the sequence (r~, l~) we can apply Ascoli's theorem in order 
to obtain a subsequence, yet denoted by (r~,/~), converging in 

(Cb([0 , -{-OO[X [0, T ] ) )  2 0  ( c l ( Z x o , T ) )  2 

for a weak entropy solution (?, D for the Canchy problem (1.5), (1.6) (see [2] 
for the definition) such that 

r(., t) ro 
0 < -1  < r < C 1 a n d  < - -  < (2.14) 

L~O X LOO -- 7 L r 

By the uniqueness theorem proved in [2], we derive (?, D = (r, 1), the solution 
found in Theorem 1, and the estimates (2.14) hold for t ~ [0, T'[, maximal 
interval of local existence in Theorem 1 (cf.[2], theo. 2). 

Now we pass to the proof of the equicontinuity of the first derivatives, p~ = 
r~x, q~ = rEt, "P~ = l~x, ~ = l~t. With the notation introduced in (2.3), (2.4) 
with v = r~ ___ 0, - w  = -1~ > 0 (note that Cl >_ r~(x, t) > - l~ (x ,  t) >__ 0), by 
(1.5) we can write in a point (x, t) ~ Ex0,r (droping the e for simplicity): 

f9  = Pt + rp~ = _ p 2  rp__-- r ~  + r 2 - -  l 2 

x + e 2(x --]- 6") 2 

Bol. Soc. Bras. Mat., Vol. 32, No. 3, 2001 



BLOW-UP OF THE SOLUTIONS OF THE CAUCHY PROBLEM 351 

and so, with po(x) = p(x,  0) = r0x(x), and following the characteristic 

p(x, t) = p ( X ( t ; x ,  t), t) = po(X(O; x, t)) - pZ(X(r ;  x, t), r )  d r  

f o t r p - l P ( x ( r ;  fo t r 2 - 1 2  - x,  t), r) dr + (X(r;  x,  t), r) dr.  
x + ~ 2(x "+" 8)  2 

Hence, a.e. on (x, t) e Exo,7", 

OX 
px(x, t) = pox(X(0; x, t)) 7-- (0;  x, t) - 

Ox 

fot OX - 2 p p x ( X ( r ; x , t ) , r ) f f - x ( r ; x , t ) d r  - 

fot O X _ P 2 + r p x - ' f i 2 - 1 p x ( x ( r ; x , t ) , r ) ~ x ( r ; x , t ) d  r + 
x T e  

fo t rp - I P ( x ( r ;  x, t), r )  OX 
+ ( x +e )2  O--x ( r ; x ' t ) d r  + 

f t rp - I P ( x ( r ;  x, t), r )  OX 
+ (x -~- E) 2 ~-x (z'; x, t) d r  - 

fot r 2 -- 12 3 X 
-- (x + e ) 3 ( X ( r ; x , t ) , r ) ~ x ( Z ; x , t ) d r .  

We point out that x > Xo in Exo,r and, by (2.12), 

OX(r;x ,  < exp I p (X ( s ; x , t ) l d s  < e clt <_ e ~ 
,172 

with cl not depending on ~. Hence, by (2.12), we derive, with 

f e ( r )  = sup Ip~x(x, r)l and f e ( r )  = sup Iffex(X, r) l ,  
x x 

Ip~(X(t;  x, t), t)l < (c~ + ClT)e cJr + cle <r ( f~(r )  + ~ ( r ) )  d r .  
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Similarly, we get, following the characteristic ig(r; x, t): 

fo Ig~(x(t; x, t), t)l <_ (cl + cir)e clr + cle clr (L(r) + ~(r)) dr. 

Hence, 

f0 ' L(t) + ~(t) 5_ (c~ + c~r)e clr + cle c~r (fAr) + ~( r ) )  dr. 

By Gronwall's inequality we derive 

f e ( t )  + ~ ( t )  < (Cl ~- C l T )  e c lT( l+eclr)  = c2.  (2.15) 

For Pet and Pet we can derive a similar estimate. 
Now, for q = re, we derive from (1.5) (always droping the e for simplicity): 

r q  - r ~  
cl = qt + rqx = - q P  

x + e  

r 2 12 
o -  o (x~ and so with qo(x)  = q ( x ,  O) = - rorox (X)  2 ~  +--e-)" "' 

( r~-_!a_ ~ (x(o;x,t))- 
q ( x ,  t) = q ( X ( t ;  x ,  t) ,  t) = -rorox  2(x + e ) ]  

for f ' r q - l g ( x ( r ;  - q p ( X ( r ;  x ,  t ) ,  r)  d r  - x, t), r )  dr .  
x + g  

Hence ,  a.e. on  (x,  t) 6 Ex0,r, 

qx (x,  t) = 

2x rorox - lolox 
= - r  - roroxx 

x + 8  
rg--l~ ] (x(o;x,O)). ax 

+ 2(x  + e) 2 J ~ (0; x ,  t) - 

fo  ~ 3 X  - ( q x p + q p x ) ( X ( r ; x , t ) , r ) ~ x ( r ; x , t ) d r  - 

fo 
t p q  + rq~ - ~ ' ~  - l~x OX 

- x 7 7  ( X ( r ; x ' t ) ' z ) ~ x ( r ; x ' t ) d z  + 

fo 
t rq  - f ~  

+ ~_Tj(x(r;x,t),T)aXax(r;x,t)dr. 
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With g , ( r )  = sup Iq,x(x, r)l and ~ ( r )  = sup Iq, x(x,  r)l ,  we derive 
x y 

Iq~x(x, t)l < [Cl + (cl + c2)r] e Clr + cle Clr (g , ( r )  + ~ , (z) )  d r  

and a similar estimate for Iq, x (x, t)[. Hence, by (2.15), 

f0 g,(t)  + ~,(t) <_ ]cl + (cl + c2)T] e ~r  + c~e ~lr (g , ( r )  + ~ , ( r ) )  dr .  

By Gronwall 's  inequality we deduce 

g,(t)  + ~,(t) < [cl + (cl + c2)r] e clT(l+eClr) 

For q,t and q,t we can derive a similar estimate. Hence, we have obtained a 

( uniform (in e > 0) estimate in C~'l(N~0,r) for (r,, 1,). We derive (r, I) e 

(C~(N~0.r)) 2 but we even obtain (r, l) c c l ' l (N~o,r )  since the previous 

estimates are uniform. More generally, under the assumptions of  theorem 2, if 
1 2 (r, l) e (Yr x Yr) Cl (Cb (~x0,r)) , for a fixed x0 > 0, is a local solution of  

(1.5), (1.6), we can prove, by estimating 

p(x ,  t) - p(s  {), q(x,  t) - q(2, {), ~(x ,  t) - ~(2,  {), ~(x,  t) - ~(#, {), 

( 1,1 )2 
w h e r e p  = r x ,  q = r t ,  ~ = l ~ ,  ~ = l t ,  that (r , l )  e Cb (I]xo,r) (cf. theo. 

3.1 in Ch.1 of  [6]). [] 

3. Blow-up of some solutions 

In this section we will prove Theorem 3. Under the hypothesis of  this theorem 
let [0, T'[ be the maximal interval of  existence of  a local solution (r, l) c (Yr x 
Yr) A (C~(Zx0.r)) 2 , V T < T/, for a fixed x0 > 0. By Theorem 2 we have 

( 1,i )2 r f . T' l/co. For (r , l)  ~ ( Y r x Y r )  A C b (2x0,r) , VT < Let us suppose > 

p = - l x  we derive from (1.5), if p~(r) is the derivative (which exists a.e. on r)  
along the characteristic defined by 

~ ' ( r ;  Yo, o) = - l  (s  Yo, o), r), 

~(o; Yo, o) = ~o = ro(xo)/co + xo, 

0 < r < 1~Co (3.1) 
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r 2 _ 12 
p ' (3 )  + p2(3) l (3 )p (3)  - rrx (3) + O, 

- x x ~ T - x  2 ( r )  = 

with p (3)  = p(_~'(3; T0, 0), 3). Hence, assuming q = rx _< 0 along the characte- 

ristic for 3 _< 1~Co, we derive since r > 0, r 2 - l ~ > 0, 

p ' ( 3 )  + p2 (3 )  - ~ ( 3 ) p ( 3 )  _< o, 

p(O) = -10x(Yo) < o. 

0 < 3 < l /co (3.2) 

Putting v(3) = eh(r)p(3), h ( z )  = fo  [ - ( l / x )  (s)] ds (recall that - l / x  > 0 

and so h ' (3)  > 0 ), we deduce 

V'(3) ~- e-h(r)v2(r) < O, 

v(0) = p(0)  < 0. 

0 < 3 < 1~Co 

Now, following an idea of  Lax (cf. [5]), we compare v with 0 solution of  the 

Cauchy problem 

0 ' ( 3 )  -]- e - h ( r ) 0 2 ( 3 )  = 0,  

o ( o ) = v ( O ) = p ( O )  < o. 

0 < r < 1~Co 

We derive 

v(3) < 0 ( r )  = p(0)  1 + p(0)  e-h(S)ds . 

But we have f o  e-h(S)ds > 3e-h(r) and 

Le o L ee 

r0 
I h ( r ) l _ < v  sup _<3 - -  = 3 c o  

0<s<v X 

and so fo  e-h(S)ds >>- re  cor. The function re  -c~ 

p (0) < 0, ]Po I > Co e, we derive 

increases till r = 1/Co. Since 

f 
T 

1 + p(O) e-h(S~ds < 1 + p(O)re -c~ = 0 
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for a certain T1 <_ 1~co. Hence, lira v ( r )  < lira O(r) = - e c .  We conclude 
~-+r 1- ~ r s  

lira [ - lx (X(r ;  ~o, 0), r)] = - o z  
r--+T I- 

and the solution blows-up in [0, +o r  [0, l/c0] which is absurd. 
Now we need to prove that q = rx < 0 on the considered characteristic (see 

fig. 1) for r _< 1/Co (remember that we have assumed T' > i/c0). Let us consider 
the family of characteristics defined by 

d x ( r ;  x0, 0) = r (X(r ;  xo, 0), r), 

X(O; 2o, O) = 2 o  c [xo, Yo] 

0 < r < 1~Co (3.3) 

such that they cross the characteristic defined by (3.1). For each P belonging to 
the characteristic defined by (3.1) (r 5 l/c0), there is one characteristic of type 
(3.3) passing in P. 

1~Co 
. . . . . . . . . . . . . . . . . . . . . .  r . . . . . . . . . . . . . . . .  

XO ~0 20 z 

Figure 1 

I f  q = rx we denote by c~ (r) the derivative of q along this characteristic (0 exists 
a.e. on r). We derive from (1.5) 

Ice(r) + q2(r) + ~ ( r )  - r2-12 (r)  = 0 

/ q ( 0 )  = ~o c [xo, Yo]. 
(3.4) 
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If we suppose p = - l x  < 0 on the characteristic defined by (3.3) till its intersec- 
tion (at the time T% <_ l/c0) with the characteristic defined by (3.1) we derive 
from (3.2) and for each 8 El0, 1[ (recall that r 2 - 12 > 0): 

c)(r) < ( - 1  + 8)q2(r) + c(8), r c [0, T~o], 

1 5 5 c2). Since (1 - 8)q 2 - c(8) < 0, we where c(8) = ~ ~ c~ (note that [q(0)l < 

derive 
dq 

> -d t ,  
(1 - -  8 ) q  2 - -  c ( 8 )  - -  

that is, with 

K1(8) = 2V/(1 - 8)c(8), K(8) = v/C(8)/(1 - 8) , 

and by integration between 0 and r < T~ 0' 

We deduce 

and so 

1 [log q ( r ) - K ( 8 )  lq(~) >>_ - r. 
x1(8) + x(8)  qo 

K(8) - q ( r )  K(8) - qo 

q ( r )  + K(8) - qo + K(8) 
e = f a ( r )  

1 - fa ( r )  
q(8) < K(8) 1 + fa(~r)" (3.5) 

We want to choose 8 6]0, 1[ such that for r < l /c0,  f a ( r )  _ f~(1/co) > 1. We 

have 

f (1/co) > < > q 2 ( 1 - 8 )  ~ l ~e~2/co  ~ c ~  

1 5  
where c(8) = 8 4 c~ When 8 --+ 1-, the right hand side of the previous 

inequality converges to - 2  and the left hand side to - 5 / 2  co Iqo [ -1. Hence, we 
can choose a 8 if  Iqol > 5/4  co as in the hypothesis of the theorem 3. From 
(3.5) we derive q( r )  < 0 till the characteristic cross the characteristic defined 

by (3.1). Now, since q0 = rox < 0, Po = -10x < 0 in [xo, Yo], there exists a 
closed "triangle" Ao with one vertex in (Yo, 0), one side [2o, Yo] x {0}, where 
20 ~]xo, Yo[, the second side being the part of  the characteristic defined by (3.1) 
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between (To, 0) and the intersection P0 of the characteristic of type (3.3) starting 
in (20, 0) and the third side being the part of this characteristic between (2o, 0) 
and P0 (cf. fig.I), such that q = rx < 0 and p = - lx  < 0 in A0. Let A be 
the maximal of the triangles of this type and suppose that A does not contains 
the characteristic defined by (3.1) (for 0 < r < l/c0). Since p < 0 in the side 
of ~x being a part of a characteristic of type (3.3), we deduce, as in the second 
part of the proof, that q < 0 on this characteristic. Finally, for a point P (not on 
the x-axis) on this side, let us consider the backward characteristic of type (3.1) 
passing in the point P: this characteristic lies in/~. Since q < 0, we can apply 
the first part of the proof and we derive p ( P )  < 0. Hence A is not maximal. 
Therefore q _< 0 in the characteristic defined by (3.1) (for 0 _< r _< 1/Co) and 
the blow-up result follows. [] 
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