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O. Introduction 

Consider a complex, smooth vector field 

3 3 
L = 3y + a(x ,  Y)-~x 

defined in a neighborhood of the origin in R 2. We are interested in the following 
uniquenes s question: if  a function u (x, y) defined in a neighborhood of the origin 

satisfies 

L u = O  f o r y  > 0 a n d  (0.1) 

u (x, 0) = 0, 
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360 S. BERHANU AND J. HOUNIE 

can we conclude that u (x, y) vanishes identically in a neighborhood of the origin? 
In 1960 R Cohen [C] (see also [Z] and the references therein) constructed smooth 
functions u(x, y) and a(x, y) defined on the plane such that 

(1) Lu(x, y) = (Uy "~- aUx)(X, y) = O; 

(2) u(x, y) = a(x, y) = 0 for all y < 0; 

(3) supp u = suppa = {(x, y) : y > 0}. 

In particular, u satisfies (0.1) and does not vanish identically in any neighborhood 
of the origin which shows that some additional hypothesis must be made on L 
if one wants to obtain uniqueness. A quite satisfactory answer is known for the 
class of locally integrable vector fields (IT1]): if u(x, y) = 0 satisfies (0.1) and 
L is locally integrable, u must vanish on a small rectangle ( -3 ,  3) x (0, 3). 

In this article we investigate a stronger uniqueness property for locally inte- 
grable vector fields, replacing the condition that u (x, 0) vanish identically by 
the weaker hypothesis that the integral of In ]u (x, 0) I be equal to - e~, and con- 
sider one-sided solutions, i.e., u(x, y) is only assumed to satisfy the equation 
on one side of the initial curve {y = 0}, conditions that are classically known 
to guarantee uniqueness for the Cauchy-Riemann operator ([F], [RR], see also 
[Du] and the references therein). After an appropriate local change of variables 
that preserves the initial curve {y = 0}, any elliptic vector field can be trans- 
formed into a multiple of the Cauchy-Riemann operator and this shows that 
elliptic vector fields share this strong uniqueness property. However, this condi- 
tion is not enough to guarantee uniqueness for the vector field 0y so an additional 
hypothesis has to be made on L if it is to possess the strong uniqueness prop- 
erty under scrutiny. It turns out that a much weaker assumption than ellipticity 
is enough to ensure that L will share with the Cauchy-Riemann operator this 
strong uniqueness property for bounded solutions. All we need to assume is that 
the integral curve of X = Re L through the origin contains a sequence of points 
on which L is elliptic and the sequence converges to the origin (see Theorem 1.2 
below for the precise statement). It is also shown that this geometric condition 
is necessary for the validity of the strong uniqueness property. The work [J] 
and the recent article [Co] contain results on this kind of  uniqueness property. 
In [Co] the author established the strong uniqueness property for approximate 
solutions of a class of planar vector fields. A continuous function u is said to 
be an approximate solution for a vector field L if Lu is locally integrable and 
satisfies the inequality ILul <_ Mlul for some constant M. In [J] the setup in- 
volves a generic CR manifold OV[ in C N and a submanifold E of 3/[ satisfying 
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T3~ + J(T3~) = TE + J(TE)  over the points of  E and where J is the complex 

structure map. It was proved that if u is a continuous CR function in a neigh- 

borhood of  p E E and if  for z ~ E,  ]u(z)l < h ( I z -  P l ) f o r  some continuous, 

increasing h on [0, ~ )  with f01 l n h ( r )  dr = - o o ,  then u vanishes on the Suss- 

mann orbit through p. We emphasize that in the result of  [J], the function u is 

a solution in a full neighborhood of  E while in our result (Theorem 1.2), we 

consider a solution defined only on one side. 

This paper is organized as follows. In sections 1 and 2 the proof  of  the main 

result Theorem 1.2 is presented. Section 3 is devoted to a theorem on pointwise 

convergence to weak boundary values. 

1 A uniqueness criterion for locally integrable vector fields 

We recall that a vector field with smooth complex coefficients 

a 0 
L = 3Y + a(x, Y)-~x 

defined in a neighborhood of  the origin in R 2 is said to be locally integrable at 

the origin if  there exists a smooth function Z(x ,  y) defined in a neighborhood of  

the origin such that 

(1) LZ = 0; and 

(2) dZ(O, O) r O. 

A function Z(x, y) satisfying these properties is called a first integral of  L. 
Throughout  this paper we assume that L is locally integrable at the origin. Let  
u(x, t) be a bounded measurable function that satisfies Lu = 0 on ( - a ,  a) • 
( - b ,  b) in the sense of  distributions. For a general L ~ function the restriction to 
a horizontal line t = constant is not defined because lines have measure zero with 
respect to the Lebesgue two dimensional measure. On the other hand, Fubini 's  
theorem implies that there exist a null set E C ( - b ,  b) such that if  to r E the 
function ( -a ,  a) ~ x v-+ u(x, to) is measurable. Since u is assumed to satisfy 
the equation Lu = 0 we may assert more: since the wave front set WF(u) is 
contained in the characteristic set of  L 

{(x,y;~,rl) E ( - a , a ) x ( - b , b ) x I R  z" Ima(x,y)~=O, rl+Rea(x,y)~=O] 

it follows ([Hor, Corollary 8.2.7]) that for all It0l < b there is a well defined 

restriction of  u to the horizontal lines t = to c ( - b ,  b) - called the trace of  

u at t = to - that will be denoted by u(x, to) E �9 a). Furthermore, the 
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distribution u(x, to) depends continuously on to, i.e., if q~(x) r Cc~((-a,  a)) 
the function ( -b ,  b) ~ t ~ (u(x, t), ~b(x)) is continuous, in fact, it is smooth. 
We are here using the same notation, namely u(x, to), to denote two different 
notions: the distribution trace of u and the pointwise restriction; however this 
may not cause confusion as they coincide for almost every t (see for instance 
[HT, Lemma B.2]). 

The most basic and general uniqueness theorem for L is a by-product of the 

Baouendi-Treves approximation formula ([BT], [T3],[T1]): if u(x, 0) = 0 then 
u must vanish in a neighborhood of the origin. This uniqueness result can be 

strengthened as follows for one-sided solutions (cf, e.g., [T2], [HM,p.1313]): 
if u(x, t) is only defined on ( - a ,  a) x (0, b) where it satisfies Lu = 0 and we 
assume that u(x, 0) = 0 in the sense that 

lim(u(x, t) ,  4~(x))  = O, q5 c Cc~((-a, a)), (1 .1)  
txao 

thenu(x, t )must  vanish identically for Ixl < 8 ,0  < t < 8i f8  > Ois sufficiently 
small. For a general distribution that satisfies Lu = 0 on ( - a ,  a) x (0, b) the 
limit on the right hand side of (1.1) may not exist but here it does because u is 

bounded. Indeed 

Lemma 1.1. Let 
0 0 

L = Oy + a(x, Y)-~x' 

a (x, t) ~ C ~ on ( - a ,  a) x ( -b ,  b), be a not necessarily locally integrable vector 
field. Let f be a bounded function on ( - a ,  a) • (0, b) such that L f = O. Then, 
as y ",a O, f (x, y) converges in � 9  a)) to a bounded function b f  (x) "-- 
limy~0 f (x, y) e L ~ ( - a ,  a). 

Remark.  This lemma is a variation of Lemma 1.2 in [BH1]. 
We postpone the proof of the Lemma - to be found in the Appendix - and 

continue our discussion of uniqueness. According to our previous discussion, it 
is known that if u(x, y) is defined and bounded for y > 0, satisfies the equation 
Lu = 0 and its boundary value bu(x) is zero, then u must vanish identically for 
Ix] < 8, 0 < t < 8, if 8 is small. On the other hand, if L is the Cauchy Riemann 
operator o1(o 

oS + i  
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so U(x + iy) = u(x, y) is bounded and holomorphic for y > 0 it is well known 

that it is enough to assume that 

f a In Ibu(x)l = - ~  (1.2) 
a 

to conclude that u must vanish. Note that if 

i) bu(x) vanishes on a set of positive measure, or 

ii) b u (x) has a zero of exponential order, i.e., I b u (x) I _< A exp ( -  B Ix - x01 1 ) 

for some x0 e ( -6 ,  6), 

then (1.2) holds. We wish to extend this finer type of uniqueness property to 
a class of locally integrable vector fields. Of course, the class cannot contain 
the vector field L = Oy which obviously fails to have this type of uniqueness as 
any function u (x) independent of y satisfies the homogeneous equation Oy u = O. 
This strong divergence in behavior between the Cauchy-Riemann operator and Oy 
is explained by the fact that the former is elliptic at every point while the second 
is not elliptic at any point. Loosely speaking, our class must exhibit some degree 
of ellipticity in order to have a chance to share the uniqueness property we are 
interested in with the Cauchy-Riemann operator. A precise geometric property 
that characterizes vector fields L possessing this type of uniqueness is given by 
the theorem below. Let's write L = X + i Y with X and Y real and note that L 
is elliptic precisely at the points where the real vector fields X and Y are linearly 
independent. 

Theorem 1.2. Let 

0 0 
L =  Oy + a(x '  Y) ox = X + iY, 

a(x, t) c C ~ on ( - a ,  a) x ( - b ,  b), be locally integrable. Assume that on the 
integral curve of  X that passes through the origin there is a sequence of  points 
p~ = (xn, yn) such that 

(1) L is elliptic at Pn, i.e., X(p~) and Y(p~) are linearly independent; 

(2) yn > 0 andp~ ~ (0,0). 

Then there exists 0 < 6 < a such that every function u(x, y) c L~((-~a,  a) x 
(0, b)) that satisfies 
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(3) Lu(x,  y) = O for y > O; 

(4) In Ibu (x)l dx = - e c ;  

must vanish identically on ( -6 ,  6) x (0, 6). 
Conversely, if no sequence p~ = (x~, yn ) on the integral curve of  X that passes 

through the origin satisfies both (1) and (2), there exists a function u(x, y) 
C ~ ( ( - 6 ,  6) x [0, 6)) that satisfies(3) and (4) but does not vanish identically on 
the intersection of  ( -6 ,  6) x (0, 6)) with any neighborhood of  the origin. 

Proof. We may find new local coordinates in a neighborhood of the origin that 
preserve the x-axis and the upper half plane {y > O} in which a first integral 
Z(x,  y) of L has the form 

Z(x,  y) = x + i~o(x, y), ~o(0, 0) = ~0x(0, 0) = 0, 

with ~o(x, y) real. Since L Z  = 0, modulo a nonvanishing factor, the expression 
of L in the new coordinates is 

X _ 

0 iq)y 0 
L = X + i Y - -  

Oy t + i~Ox Ox' 

0 ~Oy~Ox 0 Y = __ (py 0 
Oy 1 + ~0 2 0X' 1 + ~0 2 0X" 

We see that X and Y become linearly dependent precisely at the points where ~0y 
vanishes. Note that y ~+ ~o(0, y) cannot vanish identically on any interval [0, e], 
0 < e < b. Indeed, if it did we would conclude that X = 0y on the segment 
{0} x [0, e) which would then be an integral curve of X on which Y vanishes, 
contradicting hypothesis (1). For 0 < 6 < b to be determined later (we will have 
to shrink 6 several times) set 

M(x) = sup ~o(x, y), m(x) = in f  ~o(x, y ) .  
O_<y_<3 O_<y<3 

Then M(x)  and m(x) are Lipschitz continuous functions, m(x) < M(x)  and 
m(0) < M(0). Assume that u(x, y) ~ L ~ ( ( - a ,  a) x ( - 0 ,  b)) satisfies hy- 
potheses (3) and (4) and we wish to show that u vanishes near the origin. 
Now the Baouendi-Treves approximation formula ([BT], [HM,Cor2.2]) fur- 
nishes a sequence of holomorphic polynomials P~ (~ + i 7) such that the functions 
uk(x, y) = Pk(Z(x, y)) satisfy the following properties for some fixed 6 > 0 
and K > 0: 
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(1) Iuk(x, y ) l  _< K on ( -6 ,  6) x (0, 6); 

(2) u~(x, y) --+ u(x,  y) a.e. on ( -~ ,  6) x (0, 6); 

(3) uk(x, O) --+ bu(x)  a.e. on ( -8 ,  6). 

Let's denote by Q the rectangle ( -6 ,  6) x (0, 6) and by f2 the region of the 
complex plane bounded by the Lipschitz curves M(x)  and m (x), more precisely, 

where we have shrunk 3 > 0 to ensure that m(x)  < M ( x )  for Ix[ < 6. It follows 
from (1) that the sequence Pk(t) is uniformly bounded on g2 and by Montel's 
theorem we may assume, after passing to a subsequence, that Pk (t) converges 
uniformly over compact subsets of f2 to a bounded holomorphic function U(t) .  
Since the functions uk(x, t) = Pk o Z(x ,  t), k = 1, 2 . . . ,  satisfy Luk = O, 
converge pointwise to u* (x, t) = U o Z(x ,  t) on Z 1 (f2) and the uk are uniformly 

bounded, we see that u*(x, t) also satisfies Lu* = 0 on Z-I(f2). Furthermore, 
there is a set E C Q with measure [El = 0 such that uk(x, t) --+ u(x,  t) if 
(x, t) 6 Q \ E so we conclude that u(x,  t) = u*(x, t) a.e. in Q f3 Z 1(f2). This 

shows that u(x, t) can be extended to a solution defined on Q u Z -I (s2). Since 
u*(x, t) is smooth on Z-1(~2) we will as usual modify u(x,  y) in a null set to 
obtain u(x, t) = u*(x, t) everywhere on Z -I (f2) N Q, which means that we are 
picking a representative in the class of u ~ L ~176 which restricted to Z-I(s2) N Q 
is continuous. Assume without loss of generality that m(0) _< 0 < M(0) and 
let' s look at the boundary behavior of the holomorphic function U on f2. Since 
U( t )  is bounded and f2 has a Lipschitz boundary the nontangential limit at a 

boundary point to = Xo + iq)(xo, 0), - 6  < Xo < 6, 

lim U(t )  = bU(to)  ~ C exists for a.e. t0 6 0f2 
F ( ~ o ) ~ ~  ~o 

where F(t0) is a nontangential region with vertex at to. At points t0 where the 
limit does not exist we define bU(to) = 0 so bU is now everywhere defined on 

A 

0f2. We denote by U(t)  the natural extension to f2 of U(r i.e., 

A lU(t) ,  ~ e a ,  
r 

U(t)= i bU(t), t cO~2, (1.3) 

A 

which is measurable and bounded and set fi'(x, y) = U (x +iq)(x, y)) for (x, y) 

Q. The proof of the theorem will rely heavily on the following representation 
formula for u(x, y). 
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A 

L e m m a  1.3. Let u(x, y), U(()  and U(()  be definedas above. Afiermodifica- 
tion of  u(x, y) on a null set, the following identity holds 

u(x, y) = U(x + i~o(x, y)) (x, y) E Q. (1.4) 

Proof.  We wish to prove that u (x, y) = h'(x, y) as distributions on Q. Let 

(x0, Yo) be an arbitrary point in Q. If  xo + ig(xo, yo) E f2 then u(x, y) = 
U o Z(x ,  y) = Uo Z(x,  y) = "~(x, y) on a neighborhood of (x0, Yo). This shows 
that u (x, y ) = h'(x, y ) everywhere on Q n Z -  1 ( f2 ). If  x0 + i q) (x0, Y0 ) E O f2, then 

either ~O(xo, Y0) = m(xo) or q)(x0, Yo) = M(xo). Let 's  assume first that m(xo) = 
q)(Xo, Yo) < M(xo). We consider the maximal vertical interval {Xo} x I (x0) C Q 
that contains (xo, Y0) on which (p(x, y) = m(xo) and distinguish two cases. 

Case 1. I (xo) = [Y0 - t/, Y0 + P]. 
Here p, ~] _> 0 and [Y0 - ~, Y0 + P] C (0, ~). Thus, {Xo} x I(xo) is contained 

in a rectangle R = (x0 - / z ,  x0 + #)  • (Y0 - tT', Y0 + P') C Q, t/' > ~, p' > p, 
such that 

Z(([x0 - N, xo + #] x {Yo - t/'}) U ([Xo - / Z ,  Xo + kt] x {Y0 + J } ) )  C a 

and 
q)(x, y) < M(x)  on R. 

In particular, ~'(x, y) = u (x, y) on a neighborhood of  the horizontal edges of the 

boundary of R. By the basic uniqueness result on the Cauchy problem for locally 
integrable vector fields mentioned at the beginning of  this section, in order to 

conclude that fi" = u as distributions on a neighborhood of  {x0} x I(xo) it will 
be enough to show that Lfi" = 0 on R. For small e > 0 consider the function 

ue(x, y) = U(x + iq)(x, y) + iE), (x, y) E R. 

While U o Z is only defined o n  z-l(~'~), SO it fails to be defined at points 
(x, y) 6 R such that ~o(x, y) = re(x), this is not the case for u~(x, y) because 
the strict inequality q)(x, y ) + e  > m (x) always holds. If  (x, y) ~ QGZ -1 (f2) it is 
clear that lim~__,0 u~(x, y) = U o Z(x ,  y) = u(x, y) = "~(x, y) by the continuity 
of U. Let 's  study the limit at a point (x, y) ~ R, for which ~o(x, y) = m(x). 
Taking account of (1.3) we see that 

lira u~(x, y) = lira U(x + iq)(x, O) + ie) = bU(x + i~o(x, 0)) = fi'(x, y) 
~',~0 E'aO 
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unless x belongs to an exceptional set El of measure [Ell = 0. Since Lue = 0, 

u~ (x, y) --+ ~/(x, y) a.e. and the u~ are uniformly bounded, we conclude that 

Lfi" ---= 0 on R which implies that fi" = u on a neighborhood of (x0, Y0)- 

Case 2. I (xo) = (0, Yo + P]. 
Here p _> 0 and (0, Yo + P] C (0, 6). Now {Xo} x I(xo) is contained in a 

rectangle R = (Xo - / z ,  Xo + #)  x (0, Yo + P') C Q, pt > p, such that 

and 

Z([xo - xo + . ]  x (y0 + #} )  c 

9)(x, y) < M(x) on R. 

This time we conclude immediately that fi'(x, y) = u(x, y) on a neighborhood 
of the upper horizontal edge of  the boundary of R. But this is enough to repeat 

the argument of  Case 1 and obtain via uniqueness in the Cauchy problem that 

~(x, y) = u(x, y) on a neighborhood of  (x0, Y0)- 
Note that I (x0) cannot be equal to (0, 6) because this would imply that m (x0) = 

M(xo). Hence, we have proved that if  m(xo) = ~0(x0, Yo) then ~" = u on 
a neighborhood of (Xo, Y0)- Similarly, we could prove that the same holds if  
~O(Xo, Yo) = M(xo) by an analogous reasoning. This proves the representation 
formula (1.4). [] 

We continue with the proof of  the theorem assuming that u(x, y) has been 

modified in a null set so (1.4) holds everywhere. As a consequence u(x, y) 
is constant on the fibers F(xo, Yo) = {(x,y)  6 Q �9 x = x0, rp(x0, y) = 

~0(x0, y0)}. In particular, if  ~o(x, y) is constant on some vertical segment of  the 

form {x0} x (0, Y0] C Q, the function u(x, y) will also be constant on that 
segment and it follows that 

lim u(xo, e) = u(xo, Yo) = uA(xo, Yo) = u~'~xo, O) = U(xo + i(p(Xo, 0)) (1.5) 
~',~0 

We wish to see that (1.5) holds for almost all points xo c ( - 6 ,  6) such that 

~O(xo, O) = m(xo). Let 's  assume then that m(xo) = q)(Xo, O) < M(xo). If 
m(xo) = ~O(Xo, y) for all 0 < y < Yo for some 0 < Y0 < 6 we already saw the 
validity of (1.5) so we may assume that there is a sequence Yn "N 0 such that 

q)(Xo, O) < ~O(Xo, Yn) < M(xo) which implies that Xo + i~o(Xo, yn) E S2. In this 
c a s e  w e  h a v e  

lim u (Xo, Yn) = lim U (Xo + i (p (xo, Yn)) 
Yn "~0 Yn "NO 

= bU(xo + iq)(xo, O) = U(xo + iq)(xo, 0)) 
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unless x0 belongs to the exceptional set E1 of  measure I E~ I = 0 introduced in 
the proof  of  Lemma 1.3. 

Shrinking 6 once again we may assume that q)(x, 0) < M(x) for Ix] < 6. 
If m(xo) < q)(x0, 0) < M(xo) and p is small enough, the extension of  u (still 
denoted by u) to Q u Z 1 (~-~) is defined for Ix -- xol < p, --P < y < P, for some 
small p such that (x0 - p,  x0 + p) C ( - 6 ,  6), and given by u(x, y) = U(x + 
i~o(x, y)). In particular, u(x, y) is smooth in a neighborhood of  (x0, 0) and (1.5) 

A 

follows by continuity and the fact that U(xo + i~o(xo, 0)) = U(xo + iq)(xo, 0)) 
because xo + iq)(xo, 0) ~ f2. Summing up, we have proved that 

A 

l imu(x ,  E) = U(x + i~o(x, 0)) a.e. Ixl < 6. (1.6) 
E'~0 

Let gr (x) 6 Cc~( -6 ,  6). The dominated convergence theorem gives 

(bu, ~p) = lim f u(x, e)7~(x)dx = f U(x + i q)(x, O))~(x)dx, 
~'~o j J 

showing that 

bu(x) = U(x + ig(x, 0)) a.e. x ~ ( - 6 ,  6). (1.7) 

Consider now the domain 

f2 + = {~" = ~ + i0"  I~1 < 6, ~o(~, 0) < 0 < M(~)} ,  

and denote by U+ the restriction of  U to S2 +. Then (1.7) may be rephrased as 

bu(x) = bU+(x + i~o(x, 0)) a.e. x E (--6, 6). 

Indeed, it is clear that 

bU+(~) = bU(~) i f~  ~ 0~2 C30S2 + 

and 

bU+(~) = U(ff) if ~" 6 f2 N 0~2 +. 

We now invoke hypothesis (4) made on bu (x). A change of  variables shows that 

In IbU+ (x)l dx = - ~  

and then it is classical that U + must vanish identically, forcing U and therefore 
u to vanish on Q. 

So far we have proved the first half of  the theorem. The second part will be 
given in the next section. 
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2 End of the proof of Theorem 1.2 

We continue to work in the local coordinates (x, y) that were used for the proof 

of the first part, so the first integral has the form Z(x,  y) = x + i~o(x, y) and 

X _ 

3 iCpy 3 
L = X + i Y - -  

3y 1 + i~Ox 3x'  

O ~oy~Ox O Y = ~Oy 0 
- - .  

Oy 1 + ~o 2 0x '  1 + ~o 2 0x 

It is easy to see that the hypothesis implies that ~o(0, y) = 0 for all 0 < y _< S 
for some 8 > 0. Consider the function defined on ( - 8 ,  8) x [0, 8) by 

J 0, for x < 0 
u ( x ,  Y) I exp(Z-~(x,  y)),  f o rx  > 0. 

Since Z ( x , y )  ~ O f o r x  r 0 it is clear that u(x, y) is smooth f o r x  r 0. 
Furthermore, as x "-~ 0 we easily see that 

[u(x, y)[ = exp x2 + ~p2(x, Y) > 0 

because ~p(x, y) = O(x) for any 0 < y < 8. The same conclusion is valid 
for any derivative DjD~u(x,  y) in place of u(x, y). This proves that u c 

C a ( ( -8 ,  8) x [0, 8)). Furthermore, Lu = 0 for x r 0 because u is constant 
for x < 0 whereas u is a holomorphic function of Z defined on a neighborhood 
of Z((0, 8) x (0, 6)) for x > 0. Since Lu(x,  y) is continuous, it follows that 

Lu = 0 on ( - 8 ,  8) x (0, 8). Also, since u is continuous up to y = 0 itis apparent 
that bu(x) = u(x, 0). In particular, bu(x, 0) = 0 for x < 0 and 

f ~ Ibu(x)l = - ~ c  In dx 
- - 6  

for any ~ > 0. Finally, u(x, y) ~: 0 for any x > 0. [] 

3 Pointwise convergence to the initial data 

Always using the special coordinates (x, y) defined in a neighborhood of 
[ - a ,  a] • [ - b ,  b] where the first integral is given by Z = x + i~o(x, y), consider 
a function u(x, y) defined on ( - a ,  a) • (0, b) that is measurable, bounded and 
satisfies the equation Lu = 0. Keeping the notation of Section 1, we set 

M(x) = sup 9(x, y), re(x) = inf ~p(x, y), 
O<_y<_b O<y<b 

Bol. Soc. Bras. Mat., Vol. 32, No. 3, 2001 



370 S. BERHANU AND J. HOUNIE 

and define 
F = {x E ( - a ,  a) �9 m(x) = M(x)}. 

Then F is closed and its complement may be written as a union of open intervals 

( x )  

( - a ,  a) \ F = U ( a j ,  fij). 
j : l  

For any j = 1, 2, . . .  the set (c~j, fij) x (0, b) is mapped by Z into the domain 

f2j = {( = ~ + i~7" c~j < ~ < fij, m(~) < t/ < M(~)} .  (3.1) 

Since re(x) < M(x)  for ogj < x < /~j the proof of Theorem 1.2 shows that there 
A 

is a holomorphic function Uj defined on f2j having an extension Uj to f2 such 
that u(x, y) = Uj o Z(x,  y) for a j  < x < fij. Furthermore, (1.6) holds, i.e., 

l imu(x ,  ~) = Uj(x+i~o(x,O)) a.e. olj < x  < flj. 
~',~0 

In particular, the limit l im,~0 u(x, ~) exists for almost every x e ( - a ,  a) \ F.  On 

the other hand, it is easy to see that the same limit exists for almost every x �9 F.  
Since this is a local property, it will be enough to prove it in a neighborhood of  a 

given point x0 �9 F.  To simplify the notation let's assume that x0 = 0. I f x  �9 F,  
~0(x, 0) = ~0(x, y) for any 0 < y < b, so Z(x,  y) is constant on {x} x (0, b), 
x �9 F,  and so is u~(x, y) = Pk(Z(x, y)), where Pk(~) is the sequence of 
polynomials obtained from the Baouendi-Treves approximation scheme used at 
the beginning of the proof of Theorem 1.2. Since uk(x, y) --+ u(x, y) a.e., for 
Ixl < 8, 0 < y < 8 for some 8 > 0, there is a set G of 2-dimensional measure 
zero such that uk(x, y) --+ u(x, y) for (x, y) r G. By Fubini 's theorem the 1- 
dimensional measure of Gx = ({x} x (0, 8)) A G is zero for a.e. Ix[ < 8, i.e., for 

x r H C ( - 8 ,  3), IGxl = 0, with IHI -- 0. I f x  �9 F \ H, u~(x, y) -+ u(x, y) 
for a.e. y and we see that y w-~ u(x, y) is constant almost everywhere. Thus, 
modifying u (x, y) in a set of  2-dimensional measure zero, we obtain that y --+ 
u(x, y) is constant forx �9 F \ H  and lim~_+0 u(x, ~) exist forx  �9 F \ H .  Observe 
that this limit has to equal bu(x) a.e. since we can find a sequence yj ~ 0 such 
that the traces u(., yj) converge to bu weakly in L ~ ( - a ,  a). Hence, we have 
proved the existence of the limit lim~ ~ 0 u (x, e) for a.e. x �9 ( - 8 ,  8 ) and therefore 
for a.e. x �9 ( - a ,  a). In particular, this gives an alternative proof of Lemma 1.1 
when L is locally integrable. 

In the convergence result just proved, the boundary point (x0, 0) is approached 
vertically to the initial curve {y = 0} (in the special coordinates we are using). 
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Since in the classical case where L is the Cauchy-Riemann operator and u is 

holomorphic the limit is still valid on nontangential regions of approach, it is 

natural to try to replace the normal set of approach {(x0, e)} by a larger set. 
Keeping in mind that L is elliptic exactly at the points where ~Oy r 0, we 
distinguish two types of  points x0 c ( - a ,  a): 

(I) there exists ~/= ~/(x0) > 0 such that ~Oy(Xo, y) = 0 for 0 < y < O; 

(II) there exists a sequence of points Yn > 0 such that yn "x 0 and r Yn) 

#0.  

We will attach to every point x0 a set of approach F(x0). In case (I) we keep the 
normal set of approach and simply define F(xo) = {x0} x (0, b) .  In case (II) we 
proceed as follows: since the hypothesis impliesthat  m(xo) < M(xo)  it follows 
that x0 E ( ~ j ,  f i j )  for some j and u(x,  y) = Uj o Z (x ,  y) for olj ( x < f l j  

with Uj holomorphic and bounded in the open set ~2j given by (3.1). Since 
U ( ( )  -+ bu (x0 + i ~o (x0, 0)) nontangentially unless x0 belongs to an exceptional 
set of measure zero, we define F (x0) as the interior of  

z-~({&+i~ �9 l~-x0l_<l~-~o(x0,O)lI)n{y>O} 

which is an open set that contains {x0} x (0, b) and for almost every Xo ~ (c~j, flj) 

satisfies 
lira u(x,  y) = bU(Xo), 

F(xo)~(x,y)-+(xo,O) 

as follow from the convergence of Uj ( ( )  -+ (o = Xo + i q) (Xo, O) as ( = ~ + i 8 --~ 
xo+i~o(xo, 0), when [~ - ~o(xo, 0)[ > [~ -xo] .  Note t h a t i f L  is elliptic at (xo, 0), 
i.e., ~Oy (x0, 0) r 0, then F (x0) contains a cone y > #[x - Xo [, with # > 0, so we 
recover the classical nontangential convergence valid for elliptic vector fields. 

On the other hand, if  ~o s (xo, 0) = 0 and xo is of type (II)) then F (Xo) is still an 
open neighborhood of {xo} • (0, b) which cannot contain any cone y > # Ix -Xo[, 
# > 0, because its width at height y is O([y] 2) and it is contained in a cuspoidal 

region y > /z[x - Xol 1/2 with vertex x0. We summarize these facts in a more 
invariant way as 

Theorem 3.1. Let 

0 0 
L = Oy + a(x ,  Y )~x  = X + iY, 

a(x ,  t) c C ~ on ( - a ,  a) • ( - b ,  b), be a locally integrable vectorfield. Denote 
by Yx the integral curve o f  X = R e L  that sterns f rom {x} and enters {y > 0}. 
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Then to each (x, 0) we may associate a set of  convergence I ~ (x ), which is an open 
neighborhood of  g.~ if (x, O) is of  type (II) and reduces to Yx if (x, O) is of  type 
(I) so that for any u(x, y) ~ L ~ ( ( - a ,  a) x (0, b)) that satisfies Lu(x,  y) = 0 
for y > 0 we have 

lim u(x, y) = bu(xo), a.e. x0 6 ( - a ,  a). 
F (xo)~(x, y)--~ (xo,O) 

In the example below there are points (x0, 0) of type (I) and type (II). The points 
of type (II) are all elliptic points and the solution u (x, y) converges nontangen- 
fially to its boundary values bu (x) at those points while the convergence occurs 
strictly along Yx at points (x, 0) of type (I). The example shows that in general 
we cannot hope to enlarge F(x) to an open neighborhood of Yx at points of type 
(I). We refer the reader to [BH2] for related results on pointwise convergence to 
the boundary value. 

Example. Let K C ( -  1, 1) C IR be a Cantor set with positive measure I K I > 0 
and denote by (olj, fij), j = 1, 2 , . . . ,  its complementary intervals in ( -1 ,  1). 
Let b(x) c C ~ ( - 1 ,  1) such that 

b(x) = 0 i f x  c K and 

b(x) > 0 ,  i f x ~ ( - 1 , 1 ) \ K .  

Define 

Z(x,  y) = x + iyb(x); L -- 
0 ib(x) 0 

Oy 1 + iyb'(x) Ox' 

where b'(x) denotes the derivative ofb(x).  It is readily checked that L Z  = 0 and 
Zx does not vanish so L is locally integrable. Note that L is nonelliptic exactly 
at the points (x, y) 6 ( -1 ,  1) x IR where b(x) = 0, i.e., at the points of K x R. 
Thus, the points of K are of type (I) and those of ( -1 ,  1) \ K are elliptic points 
of type (II). 

Consider the characteristic function of the set K, X (x) = 1 if x ~ K and 
X(x) = 0 otherwise and set u(x, y) = X(x). Clearly, u c LeC(I~ 2) and since 
u(x, y) is independent of y it follows that 8yU = 0. Furthermore, )((x)  is a 
distribution supported in K and since b(x) vanishes to infinite order on K it 
follows that bx '  = 0. This shows that Lu = 0. Finally, we point out that if 
x0 c K, any neighborhood of {x0 } x (0, 1) in {y > 0} contains a sequence (xn, yn) 
of points converging to (x0, 0) such that u(xn, y,) = 0 while bu(xo) = 1. 
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4 Appendix 

P r o o f  of  L e m m a  1.1. Since f is bounded, we need only show that f ( x ,  y) 
converges in D'  ( - a ,  a) to a distribution b f  (x) as y "N 0 as the weak compactness 
of  the unit ball of  Loo(-a,  a) will then show that b f  c L ~ ( - a ,  a). We will 
proceed as in [BH1] with minor modifications. Let q5 6 C ~ ( - a ,  a). For e >_ 0 
sufficiently small, set 

0 0 
L ~ = - - + a ( x , y +  ay e)Tx 

We will choose qS~ and q~ ~ C~~ a) x [0, b)) such that if 

�9 ~(x, y) = ~ ( x ,  y) + yO~(x, y), 

then 

(1) (D~(x,0) = 4~(x), and (2) I ( L ~ ) * ~ (  x , y ) l  -- Cy, 

where (L~) * denotes the formal transpose of  L ~ and C depends only on the 
derivatives of  q5 up to order 2. In particular, C will be independent of  e. Define 
~b~ (x, y) = q5 (x) and write 

= Oy + x, Y, -~-- x , 

and define 
0 

x,  qS~(x, y) = y) + (Q~)*q~; 

One easily checks that (1) and (2) above hold with these choices of  the qS~. We 
will next use the integration by parts formula of  the form 

f f u(x, T)w(x,  T) dx - u(x, O)w(x, O) dx = ,, (wPu - uP*w) dxdy  

which is valid for P a vector field, u and w in C ~ (R x [0, T]) and the x - s u p p o r t  
of  w contained in a compact  set in R. Note that the x-support  of  qb ~ (x, y) is 
contained in the support of  qS(x). Let gz ~ C~~ where Bl(0)  denotes 
the ball of  radius 1 centered at the origin in IR 2, be of  the form ~ ( x ,  y) = 

oe(x)fi(y). Assume foe(x) dx = f fi(y) dy = 1, and for 3 > 0, let ~s(x,  y) = 
~-21/-r(X/~), yffi) = oe~(x)fl~(y). Fore  > 0, set f~(x, y) = f (x, y+e).  Observe 
that if 6 < e, then the convolution f ,  �9 gra(x, y) is C ~ in the region y _> 0, In 
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the integration by parts formula above set u(x, y) = f~ �9 ~8(x, y), w(x ,  y) = 
�9 ~ (x, y) and P = L ~. We get 

fo fa f~ * ~ ( x ,  0)~b(x) dx = f~ * ~ ( x ,  T ) ~ ( x ,  T) dx  
a a 

foL a _ r L ~ (f~ * 7t6) c~ ~ dxdy  (a.1) 
a 

f0 f + f~ * ~s(L~)*~ ~ dxdy.  
a 

We have chosen 0 < T < b such that x ~-+ f ( x ,  T)  is bounded and measurable. 
Fix e > 0. Let 8 --+ 0 +. Note that {f~ �9 7t~(x, y)} is uniformly bounded and 
converges almost everywhere to f~ (x, y) on a neighborhood W of supp ~b x 
[0, T]. Hence, 

L ~ (f~ * 0~) -+ LEf~ 

in �9 as 8 -+ 0 +. Moreover, L~ f~(x, y) = L f ( x ,  y + ~) E L ~.  Hence, by 
Friederichs' Lemma, 

in L2(W) as 8 -+ 0 +. Furthermore, using that the trace map (0, b) ~ y ~+ 
f ( x ,  y) E �9 a)) is continuous, we also see that the first integral on the 
fight hand side of  (a. 1) converges to 

We thus get 

a_ f ( x ,  T + ~ ) ~ ( x ,  T) dx.  
a 

f F f ( x ,  e )~(x)  dx = f ( x ,  T § ~ ) ~  (x, T)  dx 
a a 

fo f -- L~ f~(x, y ) ~ ( x ,  y) dxdy  
a 

fo f + f~(x, y ) ( L ~ ) * ~ ( x ,  y) dxdy  
a 

In the third integral on the right, we have 

lf~(x, y ) ( L ~ ) * ~ ( x ,  Y)I <- Cy, 
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where C depends only on the derivatives of 4b upto order 2. By the dominated 
convergence theorem, as e -+ 0, this third integral converges to 

for  f _  a fL*cI '~  

In the second integral on the right, note that since L f  ~ L2(X x (0, T)), as e -+ 

0, the translates L~f~ = (Lf)~ --+ L f  in L 2. We thus get 

f~ {bf, cb) = f ( x ,  T ) ~ ( x ,  T) d s -  Lfc~ d x d y +  fL*c~ dxdy,  
a a - a  

where qb = ~0. [] 
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