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Abstract. From the observation that self-similar solutions of conservation laws in two 

space dimensions change type, it follows that for systems of more than two equations, 

such as the equations of gas dynamics, the reduced systems will be of mixed hyperbolic- 

elliptic type, in some regions of space. In this paper, we derive mixed systems for the 

isentropic and adiabatic equations of compressible gas dynamics. We show that the 

mixed systems which arise exhibit complicated nonlinear dependence. In a prototype 

system, the nonlinear wave system, this behavior is much simplified, and we outline the 

solution to some typical Riemann problems. 
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1 Background: The Occurrence of Mixed Systems 

For a large class of  equations governing unsteady compressible  flow in two 

space dimensions,  study of  self-similar problems (such as Riemann problems 

Received 27 November 2001. 
*Research supported by the National Science Foundation, grant DMS-9970310. 
**Research supported by the Department of Energy, grant DE-FG-03-94-ER25222 and by the 
National Science Foundation, grant DMS-9973475 (POWRE). 
***Research supported by the Department of Energy, grant DE-FG-03-94-ER25222 and by the 
National Science Foundation, grant DMS-0103823. 



378 S. CANIC, B. KEYFITZ AND E. KIM 

and shock reflection problems) results in boundary value problems for reduced 
systems which are of hyperbolic type far from the origin but change type at a 
sonic line or shock, determination of which is part of the solution. This class, 
consisting of systems with acoustic and linear waves, was characterized in [1]. 
In particular, for the compressible Euler equations of gas dynamics (either isen- 
tropic or adiabatic), and for a simpler nonlinear wave system, there are one or 
more characteristic families which are linearly degenerate and which remain 
real inside the subsonic region determined by the acoustic wave speeds. These 
families govern the evolution of shear and entropy waves; although they are also 
degenerate from the point of view of wave propagation, in that the characteris- 
tic normals form a plane rather than a cone supported in a half-plane, they are 
not trivial. For example, they are responsible for the intricate patterns of swirls 
seen inside the subsonic regions in shock reflection experiments and numerical 
simulations. 

As part of our program to study multidimensional conservation laws by solv- 
ing self-similar problems in two space dimensions, in this paper we formulate 
boundary value problems for some reduced equations of this mixed type. In [ 1 ], 
Canic and Keyfitz demonstrated that if one linearizes such a system at a constant 
state, then a second-order, degenerate elliptic equation can be obtained by taking 
some combination of the variables, while a complementary set forms a hyper- 
bolic system. However, this formal reduction did not show how the nonlinear 
equations could be reduced, nor how to formulate boundary value problems for 

these systems. 
In this paper, we lay out the problem and outline the solution for a simple 

case. We do not tackle the important question of how to solve the free boundary 
problems that couple shock evolution with the flow in the subsonic regime, a 
problem for which we have found solutions in some cases involving the unsteady 
transonic small disturbance (UTSD) equation, [2, 3]. The advantage of the UTSD 
equation is that linear waves have been eliminated, so that the subsonic flow is 
governed by an elliptic equation. The disadvantage of that equation is that the 
subsonic region is typically unbounded; that is one reason we were able to obtain 
only local solutions (near the shock interaction point) where the UTSD equation 
correctly models the flow. To extend the methods we are developing to a full 
flow field, one needs to solve more realistic equations, such as the compressible 
gas dynamics equations for ideal flow. Many obstacles remain before we can 
complete this program. 

In this paper, we apply recent work of Canic and Kim, [6], which solves a 
class of degenerate elliptic problems with fixed boundaries. This work provides 
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existence of a weak solution for domains satisfying a uniform exterior cone 
condition but does not deal with continuity up to the boundary for non-convex 
domains. As we show in the present paper, even for the simplest Riemann 
problems the subsonic regions axe not convex and extension of the results in [6] 
to non-convex domains is needed. This is the subject of a companion paper, [4], 
where continuity up to the sonic boundary of a non-convex domain is proved for 
a set of Riemann problems for the nonlinear wave system. The present paper 
focusses on the complications which are added by coupling linearly degenerate 
hyperbolic with quasilinear elliptic equations. 

To our knowledge, there is no general theory for quasilinear mixed systems. 
Specific problems from gas dynamics can guide our ideas about how to reduce 
the system. In particular, the hyperbolic part of the system, we find, linearly 
convects variables from the sonic boundary toward the origin, and is singular, 
in self-similar coordinates, either at the origin or at points determined by the 
elliptic part of the flow. In the nonlinear wave system, no new singularities are 
introduced into the solution in the interior of the subsonic region. However, the 
quantities convected by the hyperbolic equation are themselves quite singular 
because of the nature of the flow variables in self-similar coordinates. For the 
equations of compressible gas dynamics, which we do not solve in this paper, 
these singularities are the centers of the spirals seen in visualizations of shock 
reflection problems. Serre, [10], has pointed out that, for example, the vorticity 
cannot be in L p for any p. 

The structure of this paper is as follows. Sections 2, 3 and 4 carry out the 
reduction for several conservation law systems: the nonlinear wave system and 
the isentropic and the adiabatic Eulerian gas dynamics equations. In the final 
section, we present a solution for one problem for the nonlinear wave system. 

The work of Serre [11] on reformulating the self-similar Euler equations in 
pressure-angle variables has been very useful to us. Serre derived the quasilinear 
equation which governs the elliptic part of the problem, using either the pressure 
or (in the steady case) the flow angle as the state variable. Serre also proved 
some useful maximum principles for this equation. 

The paper of Zhang and Zheng [13], see also earlier work [7], by Chang 
(Zhang) and Chen, performs the service of displaying and reducing the gas dy- 
namics equations, calculating the characteristics and identifying the sonic and 
subsonic states. Zhang and Zheng classify the different types of Riemann prob- 
lems satisfying two conditions: (1) the initial data are constant in quadrants, and 
(2) the discontinuities propagate as single waves (shock, rarefaction or contact) 
at infinity. 
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Following Zhang and Zheng's work, Schultz-Rinne, Collins and Glaz [9], 
performed a series of numerical calculations which offer instructive comparison 
with Zhang and Zheng's conjectures. Later work further refined these conjectures 
[8]. Recent progress in theory and computation of multidimensional problems 
is detailed in the papers of Serre, Zhang and Zheng, and Schultz-Rinne, Collins 
and Glaz cited here. 

2 The Nonlinear Wave System 

The nonlinear wave system (NLWS) is obtained either by starting with the isen- 
tropic gas dynamics equations and neglecting terms which are quadratic in the 
velocity, or by writing the nonlinear wave equation as a first-order system. In 
terms of the conserved quantities (density and momenta) the system is 

p t + m x + n y  = 0 

mt  + px = 0 (2.1) 
nt + py = 0; 

here p = p ( p )  with p' = C2(p), m = up, and n = vp.  Thus (m, n) is the 
momentum vector and (u, v) the velocity vector. 

To change to self-similar coordinates, define (~, 7) : ( x / t ,  y / t ) ,  so 

tot = - ~ 0 ~  - rlO~, tOx = 0~, toy  = O,1. 

The system in self-similar coordinates reads 

- ~ P ~ - 0 P , j + m ~ + n ~ = 0  

-~m~ - 0mn + p~ = 0 (2.2) 

-~n~ - qnn + p~ = 0. 

We obtain a second-order equation which changes type at the sonic line by 
eliminating m and n from (2.2). This equation, the nonlinear wave equation, in 
physical coordinates reads: 

Ptt = - ( r e x  + ny) t  : - ( r n t ) x  - (nt)y = Pxx + Pyy = V .  ( c ~ ( p ) V p ) .  

Then we obtain 

( ( c  2 _ ~2 )p~  _ ~ t / p n )  ~ + ( ( c  2 _ r /2)pn _ ~ r lp~)  n + ~p~ + rip, 7 = 0,  (2.3) 

the self-similar nonlinear wave equation, here written with the principal part in 
divergence form. 
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To find a third equation, which, together with (2.3), will give a system equiv- 

alent to the reduced nonlinear wave system, (2.2), observe that a quantity which 

evolves independently of  p is the specific vorticity, u = nx - my = (pv)x - 

(pu)y, which is time-independent: wt = 0. Working in self-similar coordinates, 
we replace this with a self-similar expression, 

tO : t i t )  : n ~  - -  m~7 , 

which satisfies 

~w~ + ~/w, 7 + w = (~, ~/) �9 Vw + w = 0. (2.4) 

This could be written in divergence form as (~w)r + (~/w)~ - w = 0. Equations 
(2.3) and (2.4) form our prototype system in which (2.3) changes type at ~2+ r/2 = 
c 2 and the system is of mixed type for ~2 + r/2 < c 2. We discuss appropriate 

boundary conditions and the solution of  this problem in Section 5. 
This problem is somewhat artificial, because it came from dropping some 

terms in the Euler equations. Before studying it further, we look at the Euler 
equations to see if  similar systems arise. It appears that they do. 

3 The Isentropic Gas Dynamics Equations 

The equations for isentropic flow again form a system of three equations, con- 

serving the same quantities as in the nonlinear wave system, and respecting the 
same thermodynamic relation p = p(p ) .  The system is 

pt + (pu)x + (pv)y = 0 
(pu)t -t- (pu 2 -}- p)x -~ (pUV)y = 0 

(pv)t  -t- (put~)x -~- (p•2 -t- p)y = 0; 

Reduction to a self-similar system is carried out in [11] and in [13]. 
The self-similar equations, ignoring conservation form, are 

(3.1) 

(u - ~ )& + pu~ + (v - rl)p~ + pv,~ = U&  + pu~ + Vp, 7 + pv,7 = 0 

(u - ~)u~ + p ~ / p  + (v - rl)u ~ = UU~ + p ~ / p  + V u  o = 0 

(u - ~)v~ + (v - rl)v ~ + p , J p  = Uv~ + Vv~ + p , J p  = 0; 

U = u - ~, V = v - ~ are the components of the 'pseudovelocity'.  This term is 
somewhat deceptive, as it buries the fact that, unlike steady transonic flow, and 
like the nonlinear wave system, the distinction between supersonic and subsonic 
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regions depends on position in space as well as on the states. A version that 
refers only to the pseudovelocity is 

Up~ + pU~ + Vp~ + pV~ + 2p = 0 

UU+ + p~/p + VU~ + U = 0 

UV~ + VVn + p~/p + V = O. 

(3.2) 

(3.3) 
(3.4) 

A second-order equation for p, whose coefficients depend on U and V, is 

a ((u 2 -  + uvp  + pu)  + a ((v 2 -   2)p, + uvp+ + pv )  

+ (UV~ - VU~)p~ + (VU~ - UV~)p, 7 + 2(U~V~ - V~U~)p = O. (3.5) 

This equation, which is similar to the equation for steady transonic potential flow, 
was obtained by Serre, [11]. Serre makes the pressure the dependent variable. 
This is the better choice for the adiabatic case. In the isentropic case it makes no 
difference. 

Next, we obtain the analog of the vorticity equation, (2.4); a simpler equation 
results when we use the vorticity itself instead of the specific vorticity (that is, 
modified by the density) as we did for the nonlinear wave system. The procedure 
is to eliminate p from (3.3) and (3.4) by differentiating the first with respect to t/, 
the second with respect to ~ and subtracting. We define the self-similar (pseudo) 
vorticity 

w =  u+ - = .+ - 

and the equation obtained is 

UW~ + VWo + (U~ + V~ + 1)W = (UW)~ + (VW)~ + W = 0. (3.6) 

The first form represents the operator as the directional derivative of W in the 
direction (U, V) of the pseudovelocity. This is a clear analogy to (2.4) for w 
in the nonlinear wave system. The operator in equation (3.6) is also singular, 
now when the pseudovelocity is zero. (But recall, as in our comment on the term 
'pseudovelocity' that (U, V) is alternatively the 'pseudoposition'.) For a constant 
solution, this occurs at the center of the sonic circle, (u - ~)2 + (v - 7) 2 = c 2. 
For a nonconstant subsonic flow, there may be one or several points where the 
pseudovelocity vanishes. 

Now, (3.5) and (3.6) couple an elliptic and a hyperbolic equation in the subsonic 
region. The coupling is through coefficients which depend on U and V and their 
derivatives. This is to be expected: since the type of (3.5) depends on (U, V), 
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these functions must appear as the coefficients of (3.5). In this problem, we 
must solve equations for U and V simultaneously with (3.5) and (3.6), instead 
of afterwards, as in the nonlinear wave system. To recover U and V from the 
conserved quantities p and W, we may use 

U~ - V~ = W (3.7) 

and (3.2) in the form 

1 
u~ + v,7 = - - ( u p ~  + vp,  7) - 2 (3.8) 

P 

and this pair of equations forms a linear elliptic system for U and V with a 
source term determined by W and coefficients depending on p. However, we 
shall see in Section 5 that this may not be the best way to view the problem. 
As an alternative, we may regard (3.3) and (3.4) as transport equations for the 
components U and V. The coupling of (3.5) and (3.6) via U and V does not 
occur in the nonlinear wave system, and we have not yet considered this problem. 
We shall see in Section 5 that finding (u, v) by solving transport equations is an 
effective procedure for the nonlinear wave system. 

The analogy with the nonlinear wave system suggests that the possibly singular 
behavior in (3.6) may be similar to that of w in (2.4). We shall see that (2.4), 
while singular, does not pose any difficulties, and we conjecture that the solutions 
of (3.6) will also be well-behaved. 

We note that the system (3.5), (3.6) does not conserve the same quantities 
as the original system. This does not matter for the solution p of (3.5) in the 
subsonic region, where we expect p to be continuous. It is possible to replace W 
by a specific vorticity, for example ( p v ) ~  - ( p u ) ~ ,  at the cost of obtaining a more 
complicated equation. However, since the only discontinuities in the subsonic 
region are linear, we conjecture that maintaining the correct conservation form 
is unnecessary. 

4 The Adiabatic Gas Dynamics Equations 

We also consider the system of four equations governing the evolution of an ideal 
gas with a polytropic equation of state, p = e ( v  - 1)p, in which an equation 
for conservation of energy is added to those for mass and momentum. In the 
subsonic region, there are two coincident real characteristics. In this situation, 
we supplement the elliptic equation for the density or pressure with a pair of 
equations for the evolution of shear (vorticity) and entropy variables. 
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A standard form of the system is, [13], 

Pt q- (pU)x -~ (pV)y = 0 
(pu)t q- (pu 2 -t- P)x -k (pUV)y = 0 
(P1))t + (pu1))x q- (pv 2 + p)y = 0 

(pE)t + (puH)x + (pvH)s = 0; 

(4.1) 

,) 
with the notation E = e + q2/2, q2 = u 2 ._[_ 1)2, H = e + p/p  + q-/2, and the 

relations 

e - -  m 1 p E - -  1 P_.}_~q2, H _  Y P + I  z 
y - l p '  y - l p  g - l p  2q " 

We work with the variables p, u, v, and p. 
In self-similar coordinates, one can reduce (4.1) to a simplified form, [ 13]: 

(pU)~ + (pV)~ + 2p = 0 

UU~ + VU~ + u + PZ = 0 
p 

u v~ + v v, + v + P ~ = o  
P 

(pl/YU)~ + (pl /yv) ,  + 2p 1/y = O. 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(This reduction does not conserve the correct quantities; however, it is a conve- 
nient way to examine the characteristic structure of  the system.) We have again 
used the pseudovelocities, U = u - ~, V -= v - ~. 

The equation for p, derived by Serre in [11], with ~ = (U, V), Q2 = U 2 + V 2, 
and c 2 = yp/p ,  is 

Here the principal part, exhibiting change of  type at the sonic circle U 2 + V2 = C 2, 

is the familiar form 

( 1 -  @ ) p ~ r  cS-p~ ~+ 1 - ~ T  P~" 

Rewriting (4.2) and (4.5), we have 

(u, v ) . v p  + p ( V .  (u, v) +2) = o 

(u, v ) .  Vp + • (u, v) + 2) = o, 
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from which we obtain 

(U,  g )  . V p  = y p  (U ,  g )  . V p  = c 2 ( U ,  g )  . VlO.  (4.6) 
P 

Now, (4.6) leads immediately to the first hyperbolic equation: 

(g, v ) .  y p 

This can also be written as an equation for p (as the second-order equation is an 
equation for p): 

/ o \  
(U, V) .  Vlog  ~p~i~- ) = 0 .  (4.7) 

This equation expresses the transport of entropy, S = p •  along streamlines 
(pseudostreamlines in this case). 

Finally, the other hyperbolic equation describes the evolution of the self-similar 
vorticity, as in the previous two examples. Define 

W = U~ - V~, (4.8) 

differentiate (4.3) and (4.4) with respect to t/ and ~ respectively and subtract. 
The result is 

V �9 ( U W ,  V W )  + W --  P~P~ - P,TPr (4.9) 
p 2 

which is now more complicated than before, because it involves p and p, but is, 
as before, a transport equation for W along the vector field (U, V) and is, like 
the equation for the entropy, (4.7), singular at points where (U, V) = 0. 

Using a slightly different form of the second-order equation, also derived by 
Serre, we collect the three equations governing the flow in the subsonic region: 

V .  Vp - ~(~.  Vp) p c a Q  4 {t .  V p  = 0 

( U , V ) - V l O g ( p l @ )  = 0 (4.10) 

V .  ( U W ,  V W )  + W P~P~ - P~P~ - O. 
p2 

This form has some flaws: the first equation, as written, appears singular at 
(U, V) = 0, as observed by Serre, [11]. On the other hand, dividing by Q2 was 
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simply a convenient way to obtain the equation. One could remedy this difficulty 
by multiplying the equation by Q2 or by p Q2. The same difficulty observed at 
the end of the previous section, that this system does not conserve the corrrect 
quantities, occurs in this reduction also. 

As in the previous sections, it is necessary to solve (4.10) along with a pair 
of equations for U and V. We can recover U~ and V~ from (4.2), and the other 
partial derivatives from the definition of W, (4.8): 

P~ U -  P ~ V  - 2  + - 

P P 
= w 

exactly as in the isentropic case. However, as mentioned there and as will be 
discussed in the next section, it may be preferable to recover U and V from the 
transport equations, (4.3) and (4.4). That is, rather than solve (4.10), we couple 
the second-order equation for p with (4.7), (4.3) and (4.4). 

5 The Nature of the Solution of the Nonlinear Wave System 

We examine the mixed type problem formulated in Section 2. In this problem, 
the part that changes type (the second-order equation for p, (2.3)) and the hy- 
perbolic part, (equation (2.4) for w) are uncoupled. Although this problem is 
oversimplified and somewhat artificial, it may serve as a prototype for the mixed 
problems arising from the gas dynamics equations. 

Consider sectorially constant Riemann data for u = (p, m, n). We illustrate 
three-sector data in Figure 5.1(a). Label the sector boundaries x = Kiy, i = 

a, b, c. 
Recall that u = w / t  is constant in time and so the vorticity equation, (2.4), 

has the explicit solution 

w(~,  rl) = t~v(x, y, t) = t~(~, 7, 1) = t~(~, 7, 0) = t~(~ t/). 

For sectorially constant initial data, w is a measure supported on the discontinuity 
set of the data. However, no additional singularity is introduced by the fact that 
the operator in (2.4) is degenerate at the origin. It is possible that the degenerate 
equations (3.6), (4.7) and (4.9) will have solutions of this nature. 

The solution far from the origin is locally one-dimensional. Construction of 
one-dimensional Riemann solutions is standard, see Smoller [12]; we give the 
formulas in Appendix A to fix notation. 

A one-dimensional Riemann problem at x = K i y gives rise to three waves, at 
= xi rl + Xi , ~ = xi rl, and ~ = xi rl + ;(+. Denote the state adjacent to uj ,  for 
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X=K b Y X=I~ a Y 

U 1 

X=K c Y 

~=~b ~ "x '~~ Ul / ~=~:a~ 

.,4 LS..X,,, 

U x, / / 

Figure 5.1: (a) Sectorially Constant Data and (b) The Far-Field Solution. 

the Riemann problem at Ki, by blj i .  (Rarefaction waves have finite thickness; for 
simplicity, we use the same notation.) Up to six sonic circles are generated by 
the far-field data, corresponding to the three original states and to the three new 
values of p which appear in the solution. These are indicated in Figure 5.1 (b). 

The one-dimensional waves interact near the origin to produce interesting 
subsonic behavior of the solution. Some analysis of these interactions is possible 
by elementary means, [ 1 ]. 

No matter how many sectors we consider, the first set of interactions takes 
place within a single sector, between the incoming waves generated by the two 
sector boundaries. Using the one-dimensional solutions, the interaction points 
in similarity space can be calculated in a straightforward way, as the shocks are 
of the form ~ = tc q + g • and X • is determined from the densities (only) on 
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either side by equation (6.1). Similarly, the leading edge of a rarefaction entering 
a region with density p is ~ = xr/:t= x/i- + trZc(p), where c(p) is the local sound 
speed. We denote by Ei the intersection point of the waves in sector i. Each 
wave is either a shock or a rarefaction, so there are three kinds of interactions; 
we discuss each in turn. 

Shock-Shock Interactions 

The interaction of two one-dimensional shocks produces a quasi-one-dimen- 
sional Riemann problem, as described in [1]. For the NLWS, the fact that w, 
the vorticity, is constant in time means that no linear waves are generated, and a 
solution of the quasi-one-dimensional Riemann problem, when it exists, consists 
of two Waves, each of which may be a shock or a rarefaction centered at the 
interaction point, Ei. However, hyperbolic theory does not predict a solution if 
one or both states are subsonic at El. In addition, not all hyperbolic quasi-one- 
dimensional Riemann problems have solutions. Explicit conditions can be given 
for both of these obstructions. In either case, the solution may not be a pair of 
waves from Ei but may be qualitatively different. Nonexistence of solutions to 
this type of quasi-one dimensional Riemann problem is the genesis of the 'von 
Neumann paradox' in weak shock reflection. 

Rarefaction-Rarefaction Interactions 

The interaction begins where the leading edges of the two waves intersect; if it 
were localized at a point, it would give a quasi-one-dimensional Riemann prob- 
lem consisting of hyperbolic data (since rarefactions exist only in the supersonic 
region), and the solution would typically consist of two centered quasi-one- 
dimensional rarefaction waves, with a new state between them. We conjecture 
that this describes the qualitative behavior. The outgoing waves are approxi- 
mately centered. They emerge from the interaction zone as simple waves, since 
they are adjacent to the same constant states that lie behind the trailing edges 
of the incoming rarefactions. (Theorem 3.2 of [1] does not apply here, as we 
are dealing with more than two equations; however, it can be extended to this 
case, since there are no linear waves in this open sector.) Furthermore, since both 
outgoing waves are expanding (rarefaction) waves, the solution in the hyperbolic 
region is continuous up to the sonic line. Thus, one can estimate the value of the 
new approximately constant intermediate state, the shape of the sonic boundary 
and the data on that boundary. 
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Shock-Rarefaction Interactions 

The third type of interaction is also nonlocal, since it begins at Ei where the shock 
intersects the leading edge of the rarefaction, but is not centered there. At this 
point the state behind the shock may be subsonic, so that even if the problem were 
approximated by a quasi-one-dimensional Riemann problem, a solution might 
not exist. Finally, unlike the previous case the solution will not be continuous 
beyond the interaction point. We conjecture that in the case of supersonic states 
the solution will be similar to a quasi-one-dimensional Riemann problem at Ei, 
and will typically give rise to a shock, a rarefaction, and a new intermediate 
state. However, in the case that one state is subsonic, then, as in the case of 
shock-shock interactions with a subsonic state, qualitatively different behavior 
may occur. 

Examples 

We expect each wave interaction in the hyperbolic region to produce a pair of 
waves, simple or shock. The flow in the hyperbolic region could then be tracked, 
by an adaptation of front-tracking (on a discrete scale), until the flow becomes 
sonic. Beyond that point, transonic shocks, which correspond to free boundary 
problems, will occur. To prove existence of a solution in the subsonic region, 
then, would require extensions of the method we used in solving free boundary 
problems for the transonic small disturbance equation, [2, 3] (extensions are 
needed because uniform obliqueness typically fails at points on the shock); we 
have yet to tackle this problem. 

We illustrate one case with a finite-difference simulation; contours of p and 
n are shown in Figure 5.2. For this set of data, there are two rarefactions (in 
the southeast comer) and four shocks. Two shocks entering the picture from 
the top have intersected in the hyperbolic region, producing a reflected shock 
(traveling southwest) and a rarefaction. (We know there is a rarefaction by 
explicitly solving the quasi-one-dimensional Riemann problem here.) The two 
shocks which enter from the south and west sides and intersect also produce a 
reflected shock, traveling northeast. These two reflected shocks merge to form a 
transonic shock; proving the existence of this free boundary poses an interesting 
challenge. 

We note that the primary intel:section of the two shocks in the southwest comer 
is already a situation which cannot be resolved using only hyperbolic techniques. 
This is because the shock entering from the south is transonic before the inter- 
section takes place, and thus a quasi-one-dimensional Riemann problem at this 
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C o n t o u r  P lo t  o f  p: U o = ( 2 5 , - 1 0 , 0 ) ;  U 1 = (8 ,15,5) ;  U 2 = (4 ,20 ,30 )  

-6 -4 -2 0 2 4 6 
ax is ;  K a = 1, ~b = - 1 ,  ~:c = 0 

C o n t o u r  P lo t  o f  n:  U o = ( 2 5 , - 1 0 , 0 ) ;  U 1 = (8 ,15 ,5) ;  U 2 = (4 ,20 ,30 )  

-6 4 -2 0 2 4 6 
ax is ;  ~:a = 1, ~% = - 1 ,  ~c = 0 

Figure 5.2: Contour Plots of p and n. 

point does not have a solution unless the state behind the transonic shock is ex- 
actly sonic, In that case there may be a solution, consisting of a rarefaction and 
a shock, which does not violate the triple point paradox. This situation is similar 
to the scenario suggested for the UTSD equation in our earlier paper, [5]. To 
complete the solution, one needs to prove that an elliptic free boundary problem 

has a global solution. 
Finally, the contour plot for n shows clearly the linear waves along the original 

sector boundaries, and shows that they appear to interact with the nonlinear waves 
via linear superposition. 

In one case we have been able to establish existence of a weak solution to the 
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nonlinear wave system in the entire plane, [4]. This case is given by a three- 

parameter family ofRiemann data, U0 = U2 = (P0, mo, no); U1 = (Pl, m0, nl), 
tea = -xb,  tCc = 0, with Pl < P0; P0, m0 and no are free parameters and nl is 
chosen so that the far-field solution consists of two outgoing rarefaction waves 
(the X +a and Xb- waves) and two linear waves along tea and tcb. There are no 
supersonic wave interactions in this case: Each one-dimensional rarefaction fills 
a half-strip in similarity space, terminating where it becomes sonic. Thus the 
sonic boundary consists of sectors of the sonic circles corresponding to Pl and 
P0, and the ends of the strips, as pictured in Figure 5.3. 

According to the calculation in Appendix C we expect the solution near the 
smaller circle to exhibit a square-root singularity in p, while near the maximum 
PI the density should decrease linearly with slope given by equation (6.4). The 
theory in [6], which provides existence of a weak solution but does not yield 
continuity of the solution up to the boundary, is extended in [4] to prove that a 
solution p to this subsonic problem exists, is continuous up to the boundary of 
the subsonic region, except possibly at the inner comers, and lies in a Sobolev 
space consistent with these estimates. 

The Linear Waves 

Once the solution component p has been determined, the solution can be com- 
pleted by finding the momentum vector (m, n). The most straightforward way 
to do this is to note that the original self-similar system, (2.2), gives transport 
equations for m and n: 

Om On 
a s  = p~; as - p~; (5.1) 

where s = (~2 _~_ ,12)/2 is a radial variable and a/as  is differentiation in the 
radial direction. In problems like the two examples above, the subsonic region is 
(weakly) starshaped with respect to the origin. In the supersonic region, m and n 
are found by solving quasi-one-dimensional problems (in the second example) 
or by other hyperbolic techniques such as front-tracking (we conjecture). Then 
(m, n) is known at the sonic line: by continuity where the flow is continuous 
and from the Ranldne-Hugoniot relation where the sonic boundary is a shock. 
We show in Appendix C that if p is continuous at the sonic line, then so are 
m and n. Thus, since p is known in the subsonic region and is continuous up 
to the boundary, [4], m and n can be recovered by integrating (5.1) from the 
sonic line inward to the origin. Since p is smooth in the interior of the subsonic 
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region, the values of m and n obtained this way are consistent with the vorticity 

w(~, 7) = w(~ 7)- 

\ \ \ L i n e a r  W a v e ~ , .  . .  . . ~ - L i n e a r  W , a v e .  . . 

\\\ \\ \\ \\ \\ ~..~'~./ / /  / /  / /  / /  / /  
, NaroNcr~oh\ \ / ~  / '~  , .RareNcOo6 , "  

\ \  \ \  \ \  ~~V~//iiii\\ \\\ 7 /  / / / /  / /  / /  / /  
\ X X \ / / / / 

\ \ \ \ I I I I 
\ \ \  \ \ \  \ \  / /  / / /  / / /  

\ \ / \  f ~ / / 

Figure 5.3: Subsonic Region for Outgoing Rarefaction Data 

The form of the problem suggests the alternative of recovering (m, n) from 
p and w by the following procedure. From the first equation of (2.2) and the 
definition of w we have 

m s + n n  = ~P~+7P~ 

m~ --/ ' /~ = to. 

Decoupling m and n results in Poisson problems: 

A m  = ( ~ h  + 7P~)~ + w~ 

A n  = (~P~ + 7Po)~ - w~. 

Each problem comes with Dirichlet data: the values of m and n at the sonic line. 
Regularity of solutions found this way is low, since the terms on the right hand 
side are derivatives of measures. In particular, this approach suggests possibIe 
singularities in (m, n) which, on the basis of the transport equation approach, are 
not realized. In principle, this approach is effective if the subsonic region is not 
starshaped with respect to the origin; however, if the functions found this way 
are not compatible with the original transport equations, then it is not at clear 
how to interpret them as solutions. 

As a variant of this approach, one may note that w - 0 in the interior of each 
sector, and so (m, n) = VVti in the i-th sector; then the first equation of (2.2) 
implies 
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in sector i. Now, the value of V~r i is given on the sonic line, and the jump in w 
across the sector boundary j is equal to its initial value: 

[n + Kjm] = [n (~ + tel ~ 

o n  L j .  That is, 

(to j, 1) - (V~i  - V ~ r i _ l )  : [/,/(0) ..~ K~O)]. 

Since this is a tangential derivative, we can integrate to obtain 

~ i ( K j t ] ,  ~]) --  1]ri_l(Kj~], r]) = ~](nlO) __ rli-l(O) .~_ Kj(lyt~O) __ mi-1))- (0) ,~ 

where we adopt the convention 1~i (0, O) ~- 0 for each potential. This formu- 
lation has the disadvantage that the boundary conditions do not immediately 
lead to a solution, as the problem is overspecified on the sonic boundary, and 
underspecified on the radial lines. 

We conclude that coupling the elliptic equation for p in the subsonic region 
with transport equations for the conserved quantities m and n is an effective 
method for this problem, when the subsonic region is starshaped with respect 
to the origin. However, in examples (which are easy to construct) where the 
subsonic region is not starshaped, some compatibility must be demonstrated. 
The pair of equations (5.1) is overdetermined, but can be seen to be consistent 
because the evolution equation for w, (2.4), is linear. 

We conclude with a comment on the relevance of this simplified problem to the 
gas dynamics equations. In the case of the gas dynamics equations, the transport 
equations are also linear in the characteristic variables, and the discontinuities 
in the subsonic region are also linear. We conjecture that our conclusions on 
transport in the nonlinear wave system will be relevant there. That is, we expect 
to see low regularity, essentially linear behavior, and no additional complications 
due to the singularities in the coefficients of the hyperbolic equations. 

6 Appendices 

A: One-Dimensional Riemann Problems: Nonlinear Wave System 

One-dimensional waves solve Riemann problems along lines transverse to x = 
Ky; self-similar solutions U ( x  - Ky,  t)  = U ( ( x  - x y ) / t )  = U ( X )  to Ut + Fx + 

Gy = 0 satisfy the Rankine-Hugoniot relation (the notation [.] refers to the jump 
in a quantity) x [ U ]  = [F  - x G ]  at discontinuities. For our problem, this leads 
to the equations 

X[P] - - - - [m-xn] ,  x [ m ] = [ P ] ,  x [n] = - x  [P]. 
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In the standard way, [ 12], we have 

/c7L-5 [~P] x+ /cTL~ [~P] z - = - ~ / ~ + , ~ / ~ p ~ ,  or = q '+ '~V~-I  (6.1) 

along shock curves S and S +, and 

X 
[ m ] -  1 + t o  ~ [p] and [ n ] = - K [ m ] .  

These are curves in U-space; we can parameterize them by p for fixed U0. The 
shock admissibility conditions apply: ;~r > X > ;~R where )~ is the characteristic 
speed, ~• = i v / i  - + x :c (p ) ,  c 2 = d p / d p .  We have PL > PR for a +-shock and 

PL < PR for a - -shock.  The backward portions of the curves, S f ,  correspond 

to choosing U0 to be the right state, UR. 
The continuous solutions are rarefaction waves; for fixed U0 these can also be 

parameterized by p; the curves are 

c(r) dr. m = m o q - ~ - -  o c(r) dr, n = no :F ~ o 

We have PR > Pr for R + and PR < PL for R- .  Figure 6.1(a) shows projections 
of  these curves in the (m, p) plane. 

The linear waves are simply contact discontinuities at X = 0; they also form 

a one-parameter family with [p] = 0 and [m] = rein]. 
For some data, even the one-dimensional problem will not have a solution, as 

a vacuum state will arise. The condition for this can be given explicitly. Define 

 (f0 f0 ) G(O) - - - -  c (r )dr  + c(r )dr  + 
R r 

1 
+ ( m R  - m L  - K ( " R  - n L ) ) .  

Then we have 

Proposition 6.1. For a pair  o f  states {UL, UR} and a given slope to, there is a 

unique self-similar solution U(X) to the Riemann problem if  G(O) < 0 and no 

solution otherwise. 
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$,+ 

�9 $ ~  m 
m L 

c 

Downstream Locus for U o, Z o 

. . . .  r n  

Figure 6.1: (a) Shock and Rarefaction Curves and (b) The Downstream Locus 

B: The Quasi-One-Dimensional Problem 

We solve the Riemann problems generated by two states UL and UR and a point 
E0 in the forward timelike dhection: a sector pointing toward the origin in the 
(~, ~) plane. The orientations 'left' and 'right' refer to an observer at E0 facing 
the origin. The new middle state, UM, is separated from UL and UR by ' - '  or 
'+ '  waves (shocks or rarefactions) respectively. 

A useful approach, developed in [1], is to construct the downstream locus of 
a state U0: this locus consists of all the states that could serve as UM whether 
U0 is on the left or the right at E0. See Figure 6.1(b). The Riemann problem 
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has a solution if the downstream loci of  Uc and UR intersect at a point which is 
a ' - '  wave from UL and a ' + '  wave from UR. Parameterizing the points on the 
downstream locus of  Uo by p, we have p > P0 for shocks and 

[P] ( ~(sa~ + 112)[P] 1 )  
Ira] -- sa 2 + 1]------~ sao • IrM [p] , 

[ p ]  sao - x 
K - - - ,  I n ]  = - K L m ]  

X -  [m]'  110 

where [ f ]  = f - fo and the shock equation is sa = x1] + X; the - sign goes 
with the - - shock .  The points on the downstream locus with p < P0 are centered 
rarefactions. Along a line sa = x 1] § X in the rarefaction, the states are 

! ) m = mo + c(r )  ~,,~__- 2sao -I1]O[vsa ~ + 112 _ c2(r) dr, 
o 

[p] - sa0[m]. 

110 
rt : nO ~- 

here X and x are 

saoc 2 + 1]o]c2(sag + 1]~o- c2) sao- x 
){ = C 2 1} 2 , Ir - -  

- -  110 

C: Weak Solutions at the Sonic Line 

In our earlier paper about self-similar solutions, [1], we noted that the nonlinear 
wave equation appears to have both regular (Lipschitz continuous) and singular 
(H61der continuous) solutions at the sonic circle. We amplify on that here. The 
wave system (linear or nonlinear) in matrix form is 

c 2 -sa 0 m~ + 0 -1] 0 m,  = 0 ;  
0 0 -sa nr C 2 0 -1] n,  

the sonic line is given by sa2 4-112 = c 2. We examine the solution on the subsonic 
side of  a sonic line at which U is constant on the supersonic side. Introducing 
polar coordinates sa = r cos 0, 1] = r sin 0 to straighten the sonic line, we obtain 

( r cos0 sin0) 0 in0 cos0) 
c 2 cos 0 - r  0 Ur + - - c  2 sin 0 0 0 Uo = O, 

c 2 sin 0 0 - r  r c 2 cos 0 0 0 
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for U = (p, m, n). The second-order equation for p(r, O) is 

c2 
( (  c2 - -  r 2 ) p r ) r  if- - - P r  q- 

r 7 ~ p o  = O. 
o 

(6.2) 

In [1] we showed that if c'(p)  # 0 then this equation has a solution with finite 

slope at the sonic line. We also expect  to see a solution with a square root singu- 

larity; in the case of  a linear equation, this behavior characterizes the fundamental 

solution. For the linear equation, c 2 is constant and if we seek a solution p (r), 

then (6.2) becomes a first-order linear equation for Pr whose general solution is 

p = a1 log + a2. 

Since we are interested in solutions near the sonic line, r = c, these solutions 

all have square-root (not logarithmic) singularities. If  we seek a solution of  the 
form 

P = Pm Jr ol(rm --  r) ~, (6.3) 

inside the sonic line (circle) r = r,,, = Cm for a general nonlinearity with c a = 

d p / d p  (ignoring the 0 dependence of  the solution, which will not influence the 

leading term), then the equation becomes, to leading order, 

p '  _ 2r 2 
2 Pr~ _+_ _ _  __ O. 

P'(P)Pr  q- [P'(Pm)(P -- Pro) + rm -- r 2] Pr r 

(We have written C 2 ~ p ' (p )  for convenience and used Taylor's theorem to 
e x p a n d  c 2 r 2 c 2 2 2 

- = - cm + r m - r 2 near rm.) Now using (6.3) we have 

-(213 - 1)[(r,, - r) ~ lo~p " (pm) + rm] = O. 

If  P'(Pm) = 0 (the linear case) then we must have fl = 1/2 and we obtain a 

square root singularity, exactly as in the linear solution given above; the value of  

oe is undetermined. On the other hand, if  P'(Pm) 7 k 0 there is still a solution of  

this form, but now there is a second solution with fl = 1. This solution, whose 

first derivative will be Lipschitz continuous at the sonic line, has slope ee there, 
with 

rl~z 

ot = P "  "Pm " ) (6 .4 )  
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the value found in [ 1]. 
To determine the complete solution U from the solution for p, we write the 

system in conservation form as 

g+ 0=s 

Then the condition for a weak solution is dr~dO [G] = [,~]. At the sonic line 

r = const, then, F is continuous; now 

= ( - r p  + cosOm + sin On, p(p) c o s O -  rm, p(p)  s i n O -  rn) 

and so this means that all three components of  U are continuous across the sonic 

line. 
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