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1 Introduction 

In this survey paper we present and analyze a theory of  divergence-measure fields 

established in Chen-Frid [7, 9] and discuss some of  its applications. Divergence- 

measure fields are extended vector fields, including vector fields in L p and 
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402 GUI-QIANG CHEN AND HERMANO FRID 

vector-valued Radon measures, whose divergences are Radon measures. More 
precisely, we have 

Definition 1.1. Let ~~ C R N be open. For F E LP(~2; RN), 1 ~ p _ ~ ,  or 
F ~ ~(S2; IRN), set 

] d i v F l ( f 2 ) : = s u p { ( F ,  V~0) 6 C ~ ( ~ ) ,  [~0(x)[___ 1, x c S 2 } .  

For 1 _< p < oc, we say that F is an L p divergence-measure field over f2, i.e., 
F 6 �9 p (~), if 

IlFll~'cr~(a) := IIFIIL~(a;~N)+ Idiv Fl(ff2) < ~ .  (t.1) 

We say that F is an extended divergence-measure field over fl, i.e., 
F 6 �9 if 

I I F I l ~ , ( a )  := IFI(D) + Idiv FI(D)  < ~ .  (1.2) 

If F c �9 for any open set f2 with S2 N D C I~ N, then we say F c 
�9 and, if F ~ �9162 for any open set ~2 with ~ G D C IR N, 

ext we say F c �9 ). We denote F c �9 F c � 9  
F 6 ~D3V[ ext (~2). Here, for open sets A, B C R N, the relation A ~ B means that 
the closure of A, A, is a compact subset of B. 

These spaces under the norms (1.1) and (1.2) are Banach spaces, respectively. 
Such fields arise naturally in the study of entropy solutions of nonlinear conser- 

vation laws and other related areas (see w 
These spaces are larger than the space of vector fields of bounded variation. 

The establishment of the Gauss-Green theorem, traces, and other properties of 
B V functions in the middle of last century (see Federer [ 18]) has advanced signif- 
icantly our understanding of solutions of nonlinear partial differential equations 
and nonlinear problems in calculus of variations, differential geometry, and other 
areas. A natural question is whether the �9 have similar properties, es- 
pecially the traces and the Gauss-Green formula as for the BV functions. At a 
first glance, it seems unclear. 

First, observe that one cannot define the traces for each component of a � 9  
field over any Lipschitz boundary in general, as opposed to the case of B V fields. 
This fact can be easily seen through the following example. 
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THEORY OF DIVERGENCE-MEASURE FIELDS AND ITS APPLICATIONS 403 

Example 1.1. The field F(x ,  y) = (sin(~@y), sin(x_-@y)) belongs to �9 ~ (JR2). 
It is impossible to define any reasonable notion of traces over the line x = y for 
the component sin(~_y). 

The following example indicates that the classical Gauss-Green theorem may 
fail. 

Example 1.2. The field F(x ,  y) = (x%y 2 , x2+y2) belongs to �9 As 
remarked in Whitney [48], for S2 = (0, 1) x (0, 1), 

f d i v F d x d y = O # f  F . v d J (  1 :r 
fz 2 '  

if one understands F-  v faa in the classical sense, which implies that the classical 
Gauss-Green theorem fails. 

Example 1.3. For any bounded open interval I C IR, 

F(x ,  y) = (dx x Iz(y),  O) c �9 x JR). 

A non-trivial example of such fields is provided by the Riemann solutions of the 
Euler equations (4.4)-(4.6) for gas dynamics, which contain vacuum states. See 
Section 5. 

Some efforts have been made in generalizing the Gauss-Green theorem. Some 
results for several situations can be found in Anzellotti [1] for an abstract for- 
mulation for F c L ~,  Rodrigues [39] for F c L 2, and Ziemer [50] for a 
related problem for div F c L 1 (see also Baiocchi-Capelo [2], Brezzi-Fortin 
[5], and Ziemer [51]). Also see Harrison [24], Harrison-Norton [23], Jurkat- 
Nonnenmacher [25], Nonnenmacher [36], Pfeffer [38], and Shapiro [43] for 
related problems and references. 

In this paper, we first present and analyze a theory of divergence-measure 
fields established in Chen-Frid [7, 9]. Motivated by various nonlinear problems 
from conservation laws, a natural notion of normal traces is developed by the 
neighborhood infolanation via Lipschitz deformation under which a generalized 
Gauss-Green theorem is shown to hold for F ~ �9 An explicit way is also 
developed to calculate the normal traces over any deformable Lipschitz surface, 
suitable for applications, by using the neighborhood information of the fields 
near the surface and the level set function of the Lipschitz deformation surfaces. 
Some product rules for these extended fields are also shown. 

In Section 2, we show how the normal traces are developed under which a 
generalized Gauss-Green theorem can be established for divergence-measure 
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fields and present several remarks and applications about the generalized Gauss- 
Green theorem. Their proofs require some refined properties of Radon measures 
and the Whitney extension theory, and the notion of the domains with Lipschitz 
deformable boundaries and related properties, among others. 

In Section 3, we analyze some further properties of divergence-measure fields, 
including several product rules. 

Then we discuss some applications of this theory to nonlinear hyperbolic con- 
servation laws and degenerate parabolic equations. We first discuss a connection 
between divergence-measure fields and entropy solutions of hyperbolic conserva- 
tion laws in Section 4. Then we show an application of this theory to the vacuum 
problem for the Euler equations for compressible fluids in Section 5. The initial 
and boundary layer problems for hyperbolic conservation laws are reviewed in 
Section 6. Initial-boundary value problems for hyperbolic conservation laws and 
nonlinear degenerate parabolic-hyperbolic equations are discussed in Sections 7 
and 8, respectively. 

2 Normal traces and the generalized Gauss-Green theorem 

We now discuss the generalized Gauss-Green theorem for �9 over ~2 C 
N N by introducing a suitable definition of normal traces over the boundary 0 f2 
of a bounded open set with Lipschitz deformable boundary, established in Chen- 
Frid [7, 9]. 

Definition 2.1. Let f2 C IR N be an open bounded subset. We say that 0f2 is a 
deformable Lipschitz boundary, provided that 

(i) Vx c 0f2, 3 r > 0 and a Lipschitz map y : ]R N-1 -+ R such that, after 

rotating and relabeling coordinates if necessary, 

~ 2 f - q Q ( x , r ) = { y E l R  N : Y ( y l , " "  ,yN-1) < Y N } f 3 Q ( x , r ) ,  

where Q ( x ,  r )  = {y  c • N  : [xi --  Yi[ < r, i = 1, . . .  , N }; 

(ii) 3 qJ �9 0f2 x [0, 1] ~ K2 such that qJ is a homeomorphism bi-Lipschitz 
over its image and qJ(o), 0) = w for all w 6 Of 2. The map qJ is called a 
Lipschitz deformation of the boundary Of 2. 

Denote 0~s ---- qJ(0S2 x {s}), s E [0, 1], and denote ~2s the open subset of ~2 
whose boundary is 0~2~. We call qJ a Lipschitz deformation of 0~2. 
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THEORY OF DIVERGENCE-MEASURE FIELDS AND ITS APPLICATIONS 405 

Definition 2.2. We say that the Lipschitz deformation is regular if 

lim D * s  o f, = D r , ,  in L~oc(B ), (2.1) 
s--~0+ 

where ?? is a map as in Condition (i) of  Definition 2.1, and ~Ps denotes the map 
of 0f2 into S2, given by ~P~(x) = ~P(x, s). Here B denotes the greatest open set 
such that ;~(B) C 0f2. 

R e m a r k  2.1. It should be recognized that bounded domains with smooth 
boundaries (say, C 2) have always regular deformable Lipschitz boundaries. In- 
deed, since there is an everywhere defined unit outer normal field v (r), one can 
define the deformation ~P(y, s) = y - s sv (y ) ,  which satisfies all the required 
conditions for sufficiently small e > 0. 

R e m a r k  2.2. Conditions (i)-(ii) of  Definition 2.1 are also verified for both the 
star-shaped domains and the domains whose boundaries satisfy the cone property. 
For the former, there exists a point Y0 ~ f2 such that, for any y c 0f2, one has 

y + O(yo - y) E S2 for 0 E (0, 1) and can then define ~P(y, s) = y + ~(Y0 - Y). 
For the latter, there exists a vector v0 ~ ]~U such that, for any y E 0 ~2 and any 
0 < s < 1, one has y + SVo ~ S2 and then takes qJ(y, s) = y + SVo. In both 
cases, the deformation is regular. 

R e m a r k  2.3. It is also clear that, if f2 is the image through a bi-Lipschitz map 
of a domain (2 with a (regular) Lipschitz deformable boundary, then f2 itself 
possesses a (regular) Lipschitz deformable boundary. 

We first discuss the Gauss-Green formula for fields in �9162 p with 1 < p ___ 
~ .  It is more delicate for fields in �9 1 and ~D3~ ext, which will be addressed 
subsequently. 

T h e o r e m  2.1. L e t F  E � 9  1 < p _< cx~. LetS2 C R N b e a b o u n d e d  

open set with Lipschitz deformable boundary. Then there exists a continuous 

linear functional F . v la~ over Lip (0 f2) such that, for  any dp E Lip (IRN), 

( F -  vial ,  ~b) = (div F, ~b) + fs? V~b. F d x .  (2.2) 

Moreover, let v �9 ~P ( OS2 x [0, 1]) -+ ]R N be such that v(x  ) is the unit outer normal 

to 3f2s at x E OS2s, defined for  a.e. x E ~(0~2 x [0, 1]). Let h " ]~N __~ ~ be 
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the level set function o f  0 f2s, that is, 

h(x) : =  

O~ 

1, 

S, 

for  x �9 ~N -- f2, 

for  x �9 f2 - *(Of2 x [0, 1]), 

for  x �9 Of2~, O < s < 1. 

Then, for  any 1~ �9 Lip (3f2), 

'L ( F .  vl0a, ~ )  = - lim - ~(ffe) Vh �9 F d x ,  (2.3) 
s--+0 S (Of2x(0,s)) 

where ~ ( ~  ) is any Lipschitz extension o f  ~r to all ~U. 
In the case p = ~ ,  the normal trace F �9 v]oa is a function in L~(Of2) 

satisfying [[ F .  v [] L~ (0 3) < C [[ F[] L~ (a), for  some constant C independent o f  F; 
if  O f2 admits a regular Lipschitz deformation, then C = 1. Furthermore, for  any 

field F �9 � 9  

( F -  v[o~, fit) = ess l im f (~  o qJs 2) F.  vd~(~ N-l, 
s-~o J ~ s  (2.4) 

for  any fit �9 Ll(f2).  

Finally, for  F �9 �9 1 < p < ~x~, F . vl0a can be extended to a 
continuous linear functional over W 1- l/p, p (0 f2 ) f3 C ( O f2 ). 

Proof.  Let F ~ be defined by (3.5) in Section 3. Since we have ~_~N 1 (0 ~"~s) < 

+C~, Federer's extension of  the Gauss-Green formula (see [18]) holds for q~F ~ 
over Of 2s, for any ~b �9 Lip (RN), and hence we have 

f d p F e . v d ~ N - l = ~  q S d S l v F e d x q - ~  V~b. F e d x .  (2.5) 
a s  s s 

Now we integrate (2.5) in s �9 (0, 6), 0 < ~ < 1, and use the coarea formula 
(see, e.g. [18, 17]) in the left-hand side to obtain 

f 
- ] C F  e �9 Vh dx  

d q, (~x(O,,~)) 

=fo {L 
(2.6) 
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Let ~ -+ 0. Observing that, by Proposition 3.3 below, the integrand of  the first 
integral converges for a.e. s ~ (0, 3) to the corresponding integral for F ,  we 
obtain 

f 
- ] O F "  V h  d x  

d .  (S?x(0,~)) 
(2.7) 

We then divide (2.7) by 3, let 3 -+ 0, and observe that both terms in the right- 
hand side converge to the corresponding integrals inside the brackets over f2, by 
the dominated convergence theorem. Hence, the left-hand side also converges, 
which yields 

1L L L - lim - O F �9 V h  d x  = 0 div F + v O  �9 F d x .  
~--+o 3 (f2x(O,~)) 

(2.8) 

Now, for 0 c Lip (3f2), let E (0 )  c Lip ( • N )  be a Lipschitz extension of  0 
preserving the norm II �9 ]]gip :=  I[ " IIoo + Lip (.) (see, e.g., [17, 18]). We then 
define 

1 L ( F .  vloa, 0 )  = - lim - 2o(0)  V h  �9 F d x .  
s--+0 S (0S2 x (0,s)) 

(2.9) 

Because the right-hand side of  (2.8) does not depend on the particular deforma- 
tion qJ for Of 2, we see that the normal trace defined by (2.9) is also independent 
of  the deformation. We still have to prove that the normal trace as defined by 
(2.9) also does not depend on the specific Lipschitz extension ~ ( 0 )  of  0 .  This 
will be accomplished if we prove that the right-hand side of  (2.8) vanishes if 
0Ion = 0. Denote it by [F, 0]as ,  that is, 

[F, 0]as  :=  (div F, 0}a + (F, V S ( 0 ) ) ~ .  

We claim that [F, 0]as  = 0 if 0 los  = 0. In fact, we may approximate such 
a 0 by a sequence 0 j ~ C~~ with II0JlI~ _< II011~, such that 0 j --+ 0 
locally uniformly in S2 and V 0  j --+ V 0  in Lq(~) N, with 2 § _1 = 1. Hence, 

P q 
[F, 0]o~ = l imj_+~[F,  4~ j ] = 0, as asserted. In particular, for 1 < p _< cxD, the 
values of  the normal trace, ( F .  v [ o a, 01 o a), depend only on the values of  0 over 
aS2. 

In the case p = ec, we can go further. Indeed, given 0 c Lip (aS2), we can 
take a particular extension of  0 ,  ~ ( 0 )  c Lip (IRN), satisfying 8 ( 0 ) ( ~ ( c o ,  s)) = 
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~p(w), for (co, s) E 0f2 x [0, 1]. In this case, using the area formula (see, e.g., 

[18, 17]), we easily obtain, from (2.9), 

( F .  vl0a, ~ )  5 CIIFII  ( ) fa I~ld~N 1, 

where C > 0 depends only on the deformation qJ of  O f2, and we can take C = 1 
if ~I' is a regular deformation. Hence, we conclude that F. vloa ~ L~(OS2) and 

II F .  v l0w II L~(Oa> < C II F II L~<a~. The relation (2.4) is obtained in this special case 
by first taking the limit as e -+ 0 in (2.7), observing that the limit of the left-hand 
side exists for a.e. s c (0, 1), by the dominated convergence, and that the limits 
of both integrals on the right-hand side exist by the dominated convergence and 
Proposition 3.3 in Section 3 below. We then consider an extension of 7t as just 
mentioned, and let s -+ 0 with our observation that the right-hand side converges 

to the right-hand side of  (2.8), again by the dominated convergence. 
As for the last assertion, we recall a well-known result of Gagliardo [20] 

which establishes, in particular, that, if 0f2 is Lipschitz (that is, satisfies (i) of  
Definition 2.1) and ~ E W I - 1 / p ' P ( O ~ ' 2 ) ,  then it can be extended into f2 to a 

function s  E wl'p(f2), and 

IIE(~)llw~,.(~) ~ cllgrllwi ~/...(o~), (2.10) 

for some positive constant c independent of 0 .  Moreover, if 7r E C(Of2) g(O) is 
continuous and [[ E (~r)II g~(a> _< II ~ II L~(0a), besides (2.10). Hence, using these 

facts and (2.8), we easily deduce the last assertion. [] 

R e m a r k  2.4. As an example, consider the normal trace of F(x, y) in Example 
1.1 over the line x = y where there is no reasonable notion of  traces for the 
component sin(1-!y). Nevertheless, the unit normal v~, to the line x - y = s is 

the vector ( -  1 /,r 1 /~/2) so that the scalar product F (x, x - s). vs is identically 
zero over this line. Hence, we find that F �9 v ---- 0 over the line x = y and the 
Gauss-Green formula implies in this case that, for any ~b c Co 1 (R2), 

0 ---- {div Fix>y, q5) = - fx F .  V49 dxdy. 
>y 

This identity could be also directly obtained by applying the dominated conver- 
gence theorem to the analogous identity obtained from the classical Gauss-Green 
formula for the domain { (x, y) [ x > y + s } when s ~ 0. 
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THEORY OF DIVERGENCE-MEASURE FIELDS AND ITS APPLICATIONS 409 

As anticipated by Whitney 's  example (see Example 2.1 above), it is more 
delicate for fields in 93V[ 1 and �9 ext. Then we have to define the normal traces 

as functionals over the spaces Lip (y, 0S2) with y > 1 (see the definition below). 
For 1 < g _< 2, the elements of Lip (g, 0f2) are (N + 1)-components vectors, 
where the first component is the function itself, and the other N components are its 
"first-order partial derivatives". In particular, as a functional over Lip (Y, 0S2), 

the values of  the normal trace of  a field in �9 1 or �9 ~x' on 0 ~2 will depend not 
only on the values of  the respective functions over 0S2, but also on the values of 
their first-order derivatives over 0S2. To define the normal traces for F �9 �9 1 
or �9 ~x', we resort to the properties of the Whitney extensions of  functions in 
Lip (g, 0S2) to Lip (y, RN); we recall the construction below. We first have the 
following analogue of Theorem 2.1 which covers fields in 93/[ ~ and 93/[  ~x' (see 
[9] for the proof). 

Theorem 2.2. Let F �9 ~)~{[1(~-~) or F �9 93V[ext(~2). Let s C •N be a 

bounded open set with Lipschitz deformable boundary. Then there exists a con- 

tinuous linear functional F �9 v [o~ over Lip (Y, 0 Q ) f o r  any Y > 1 such that, for  
any (o c Lip (g, I~xN), 

(F -  vial ,  ~b> = (div F, q)}e + (F, Vq~}s?. (2.11) 

Moreover, let h : •N ~ ~x be the level set function as in Theorem 2.1. In the 

case that F �9 9Jv[ext(s2), we also assume that Oxih is IFi l-measurable and its 

set of  non-Lebesgue points has I Fi l-measure zero, i = 1, .. �9 , N. Then, for  any 
7, �9 L ip (y ,  Of 2 ), y > 1, 

1 
( F -  vl0a, ~)  = - lim - ( F ,  g(7*) Vh}.(0a• (2.12) 

s--+0 S 

where g ( ~  ) �9 Lip (g, I~ N) is the Whitney extension of  ~ to all ~x N. 

R e m a r k  2.5. In general, for F �9 9 A t ( D ) ,  the normal traces F �9 v ]aa may be 
no longer functions. This can be seen in Example 1.2 for F �9 �9 2) with 
f2 = (0, 1) x (0, 1), for which 

7r 
F . vloe = ~-~(0,0) -- M~clIo~, 

where ~C 1 is the one-dimensional Hausdorff measure on 0f2. 

We now recall the construction of the Whitney extension and some of its 
properties used in Theorem 2.2 and its proof. 
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Whitney extension. Let k be a nonnegative integer and g c (k, k § 1]. We 
say that a function f ,  defined on C, belongs to Lip (g, C) if there exist functions 
f (J) ,  0 <_ IJl -< k, defined on C, with f(0) = f such that, if 

f(J)(x) = E 
Ij+ll<k 

f ( j+ l ) ( y )  

l! 
(x - y)l  + Nj (X, y),  

then 

If(J)(x)l ~ M, 

[Rj (x ,  Y)I ~ M i x  - yly-lJl, for any x ,  y e C, IJl < k .  
(2.13) 

Here j and 1 denote multi-indices j = ( j l ,  " "  , iN)  and l = (11, . . .  , IN) with 
j !  j l !  jN[, [j[ j l  + j 2 +  + j N ,  a n d x  I I1 12 IN = . . .  = . . .  = x  i x  2 . . . x  N . A n e l e m e n t  

of Lip (g, C) means the collection {f(J)(x)}ljl<_k. The norm of an element in 
Lip (g, C) is defined as the smallest M for which the inequalities in (2.13) holds. 
We notice that Lip (y, C) with this norm is a Banach space. For the case C = R N, 
since the functions f(J) are determined by f(0), this collection is then identified 
with f(0). 

The Whitney extension of order k is defined as follows. Let {f(J)}lJb<_~ be 
an element of Lip (g, C). The linear mapping Ek : Lip (y, C) -+ Lip (g, R N) 
assigns to each collection a function Ek ( f (J ) )  defined on IR N which is an extension 
of f(0) = f to IR N. The definition of Ek is the following: 

"E0(f)(x) = f ( x ) ,  x c C, 

E o ( f ) ( x )  = ~-~i f (pi)~oi(x), x c IR N - C, 

and, for k > 1, 

{ r -~ f ( ~  x r C, 
! 

~ k ( f ( J ) ) ( x )  = E i  P ( x ,  p i ) q ) i ( x ) ,  x u=_ ~x N - -  C .  

Here P (x, y) denotes the polynomial in x, which is the Taylor expansion of f 
about the point y 6 C: 

f (1 ) (y ) (x  y)! 
P ( x , y ) =  E - x e R  N, y e C .  

l! 
Ill<_k 

The functions {q)i} form a partition of unity of IR N - C with the following 
properties: 
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(i) spt (~0i) C Qi where Qi is a cube with edges parallel to the coordinate 
axes and 

cl diana (Qi) < dist (Qi, C) < c2 diam (Qi), 

for certain positive constants Cl and c2 independent of C; 

(ii) each point of IR N - C is contained in at most No cubes Qi, for certain 
number No depending only on the dimension N; 

(iii) the derivatives of ~0i satisfy 

10~l 1 ' ' .  O~N@i(X)[ ~ a~(diam Qi)-Icq.  (2.14) 

Here Pi c C is such that dist(C, Qi) :- dist (pi, Qi), [ot[ = ot 1 + . . .  + lYN, 

and the symbol y~1 indicates that the summation is taken only over those cubes 
whose distances to C are not greater than one. The following theorem is due to 
Whitney [49], whose proof can be also found in Stein [44]. 

Theorem 2.3. Suppose that k is a non-negative intege~ 9/ c (k, k + 1], and 
C is a closed set. Then the mapping ~ is a continuous linear mapping from 
Lip (g, C) to Lip (g, RN) which defines an extension o f f  (~ to IR N, and the norm 
of  this mapping has a bound independent of  C. 

The following theorem plays an important role in establishing the generalized 
Gauss-Green theorem for fields in �9 1 and 2)3VEext; Its proof can be found in 
Chen-Frid [9]. 

Theorem 2.4. Let C be a closed set in I~ N and 

C 3 : :  { X C ~U : dist (x, C) < 6 }, for 3 > O. 

Let Ek : Lip (g, C) ---> Lip (?/, R N) with ?/ c (k, k + 1] be the Whitney extension 
of  order k. Then, for any dp c Lip (g, RN) and any 9/I E (k, g), 

I[E~(~btc) - ~[ILip(/,cs) --+ O, as 3 --+ 0. (2.15) 

3 Further properties of divergence-measure fields 

In this section we first discuss some basic properties of divergence-measure fields 
in the spaces �9 p (f2), 1 < p < oc, and �9 ext (f2). Then we discuss some 
product rules for divergence-measure fields. 
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Proposition 3.1. 

Then 

(i) Let {Fj} be a sequence in �9 such that 

Fj ~ F L~oc(Ca; IEN), for  1 < p < ~c, (3.1) 

Fj --" F Lloc(Ca,~ �9 RN), for  p = Oc. (3.2) 

IIFIILp(a) ~ lim inf IlfjllL~(a), 
j -+oc  

Idiv FI(Ca) < lim inf [div Fj I(Ca). 
j--+ ec~ 

(ii) Let {Fj] be a sequence in ~)~[[ext(Ca) such that 

Fj --~ F 5V[loc(Ca; ~xN), 

Then 

IFI(Ca) < l i m  inf IF;I(S2), IdivFl(Ca) _<lim inf IdivFjl(Ca). 
j--+ Oo j--+ oo 

This proposition implies that the spaces �9 p, 1 < p < ~ ,  and �9 ext (f2) 
are Banach spaces under the norms (1.1) and (1.2), respectively. 

Proposition 3.2. Let {Fj} be a sequence in �9 satisfying 

lira [div Fj I(Ca) = Idiv El(ca), 
j-+cxz 

and one of  the following three conditions: 

LPoc(Ca; RN), for  1 < p < oc, 

Lloc(Ca, RN), for  p oc, 

~loc(Ca; ~xN) �9 

F j ~ F  

F ~ F  
Fj---~F 

Then, for  every open set A C Ca, 

(3.3) 

(3.4) 

Idiv Fl(fi~ c3 Ca) >_ lira sup Idiv FjI(A A Ca). 
j--+oo 

In particular, if [div FI(OA N Ca) = O, then 

IdivF[(A) = lira IdivFjl(A).  
j--+oo 
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We will use the so-called positive symmetric mollifiers o) : R N -+ R satisfying 

O)(X) E C~z (~N) ,  O)(X) ~ O, O)(X) = ~ O ( I x l ) ,  fRNco(x)dx = 1, supp co(x) c 
B1 - {x E R N : Ixl < 1}. A standard example of such mollifiers is 

1 , 1  
~o(x) = Cexp  Ixl i - -  1 ' Ixl < 1, 

where C is the constant such that fEN co(x)dx = 1. We denote toe(x) = 
s-N(o(~) and F~ = F �9 toe, that is, 

Fe(x)=e-x s F ( x + s y ) w ( y ) d y .  (3.5) 

Then F ~ E C~(A;  R N) for any A ~ f2 when E is sufficiently small. We will 
use some well-known properties of  the mollifiers. In particular, we recall that, 
for any f ,  g E LI(]~N), 

~ f i g d x = s  ~ (3.6) 

The following fact for �9 fields is analogous to a well-known property of 
B V functions. 

Proposi t ion 3.3. Let F E �9 Let A ~ f2 be open and Idiv FI(OA) = O. 
Then, for  any q) E C(f2; IR), 

lim (div F e, ~oXa) = <  div F, @XA > �9 
e -~0 

Furthermore, if  F E �9 and IFI(OA) = O, then, for  any q) E C(f2; IRN), 

lim < F  ~ , ~ o X A > = < F , q ) X A > .  
e----~ 0 

Now we discuss some product rules for divergence-measure fields. 

Proposi t ion 3.4. Let F = ( F ~ , . . . ,  FN) E �9 Let g E B V  M Lea(f2) 
be such that Oxig(x) is IFj I-integrable, for  each j = 1, . . .  , N, and the set of  
non-Lebesgue points of  Oxj g (x) has I Fj I-measure zero; and g (x) is ] F I § ]div F I- 
integrable and the set of  non-Lebesgue points of  g(x ) has IF[ § Idiv F I-measure 
zero. Then g F  ~ ~DJV[(f2) and 

div (gF) = g div F + Vg �9 F. (3.7) 
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In particular, if F �9 �9 g F  �9 D3V[~(f2) for any g �9 B V  f3 L~( f2) ;  
moreover, if g is also Lipschitz over any compact set in f2, 

div (gF) = g div F + F .  Vg. (3.8) 

In fact, for F �9 �9 one may refine the above result to yield that (3.8) 
holds a.e. in a more general case, not only for local Lipschitz functions. In this 
case, we must take the absolutely continuous part of Vg. For g �9 B V, let (Vg)ac 
and (Vg)sing denote the absolutely continuous part and the singular part of the 
Radon measure Vg, respectively. Then 

Proposition 3.5. Given F �9 DJY[~(~) and g �9 BV(f2)  A L~(~2), the identity 

div (gF) = ~ div F + F .  Vg 

holds in the sense of  Radon measures in S2, where ~ is the limit of  a mollified 
sequence for  g through a positive symmetric mollifier, and F �9 V g is a Radon 
measure absolutely continuous with respect to I Vg[, whose absolutely continuous 

partwith respect to the Lebesgue measure in f2 coincides with F . (V g)ac almost 

everywhere in f2. 
Finally, as a corollary of the generalized Gauss-Green formula in D~V[ ~,  we 

have 

Proposition 3.6. 
and F1 �9 �9 F2 �9 ~)~{[c<~(RN - -  ff~). Then 

F(y)  = ! 
F1 (y), 

/ F2(y), 

belongs to �9 and 

] lVl lg~(au)  _ [ [ F l l l ~ ( a >  + IIFzI[DxC~(aN--~) 

+ liE1 " V - -  f 2 "  vllL~(Oa)srN-I(os2). 

Let f2 C •N be a bounded open set with Lipschitz boundary 

yE~2 ,  
(3.9) 

y E R N - - ( 2  

4 Connection: hyperbolic conservation laws and 
divergence-measure fields 

We now discuss some applications of the theory of � 9  fields to various nonlinear 
problems for hyperbolic conservation laws and degenerate parabolic-hyperbolic 
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equations in Sections 5-7. We first show a connection between �9  and 

hyperbolic conservation laws. 
The �9 arise naturally in the study of entropy solutions of nonlinear 

hyperbolic systems of conservation laws, which take the form 

Otu + Vx �9 f ( u )  = O, u E ~x m, X E ~x n, (4.1) 

where f : R 'n --+ (IR~) n is a nonlinear map. The condition of hyperbolicity 
requires that, for any wave number ~ 6 S n-l, the matrix ~ �9 V f ( u )  have m real 
eigenvalues and left (right) eigenvectors. For the one-dimensional case, system 
(4.1) is called strictly hyperbolic if the Jacobian V f ( u )  of f has m real and 
distinct eigenvalues, Z1 (u) < .  �9 �9 < Zm (U), and thus has m linearly independent 
right and left eigenvectors rj = rj(u) and l j  = l j (U):  

V f ( u ) r j ( u )  = )~j(u)rj(u), I j (u )V  f ( u )  = Zj(u) l j (u) .  (4.2) 

The j th  characteristic field is genuinely nonlinear or linearly degenerate in the 
sense of Lax [29] if 

rj �9 VZj # 0 or rj �9 VZj = 0. (4.3) 

That is, the j th  eigenvalue changes monotonically or remains constant along the 
j th  characteristic field for the genuinely nonlinear case or the linearly degenerate 
case, respectively. 

One of its most important prototypes is the Euler equations for gas dynamics 
in Lagrangian coordinates: 

Otr - 3xV = 0, (4.4) 

Otv + Oxp = 0, (4.5) 

Ot(e + ~ )  + Ox(pv )=O,  (4.6) 

where r = 1/p is the specific volume with the density p, and v, p, e are the 
velocity, the pressure, the internal energy, respectively; the other two gas dy- 
namical variables are the temperature 0 and the entropy S. For ideal polytropic 
gases, system (4.4)-(4.6) is closed by the following constitutive relations: 

p r  = RO, e = cvO, p(r ,  S) = xr - •  e s/c~, (4.7) 

where cv, R, and tc are positive constants, and Y = 1 + c~/R > 1. For isentropic 
gases, the Euler equations become 

Otr - Oxv = 0, (4.8) 

3tv + Oxp(r) = 0, (4.9) 
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where p ( r )  = x r -Y,  ~, > 1. 
The main feature of  nonlinear hyperbolic conservation laws, especially (4.4)-  

(4.6), is that, no matter how smooth the initial data are, solutions may develop 
singularities and form shock waves in finite time. One may expect solutions 
in the space of  functions of  bounded variation. This is indeed the case by the 
Glimm theorem [21] which indicates that, when the initial data have sufficiently 
small total variation and stay away from the vacuum for (4.4)-(4.6), there exists 
a global entropy solution in B V satisfying the Clausius inequality: 

Sz > 0 (4.10) 

in the sense of  distributions. However, when the initial data are large, still away 
from the vacuum, the solutions may develop vacuum states in finite time, even 
instantaneously as t > 0, or approach the vacuum states indefinitely. In this 
case, the specific volume r = 1/p may then become a Radon measure or an L 1 
function, rather than a function of  bounded variation (see Wagner [47] and Liu- 
Smoller [32]). This indicates that solutions of  nonlinear hyperbolic conservation 
laws are generally in 2V[(IR+ x Rn), the space of  signed Radon measures, or in 
LP(IR+ x Rn), 1 < p < oc. On the other hand, the fact that (4.4)-(4.6) and 
(4.10) hold in the sense of  distributions implies, in particular, that the divergences 
of  the fields (r, - v ) ,  (v, p),  (e + v2/2, pv), (S, 0), in the (t, x) variables, are 
also Radon measures, in which the first three are the trivial null measure and 
the last one is a nonnegative measure as a consequence of  the Schwartz Lemma 
[40]. This motivates our study of  the extended divergence-measure fields (see 
Definition 1.1). 

For general hyperbolic conservation laws, we  have 

Definition 4.1. A function q : •m ___> I[~ is called an entropy of  (4.1) if there 
exists q : ~ m  ...+ ~ n  s u c h  tha t  

Vq~(u) = Vr / (u)Vfk(u) ,  k = 1, 2 , - . .  , n. (4.11) 

The function q(u) is called the entropy flux associated with the entropy 0(u), 
and the pair (t/(u), q (u)) is called an entropy pair. The entropy pair (t/(u), q (u)) 
is called a convex entropy pair on the domain K C N m if the Hessian matrix 
vzt l (u)  > 0, for u 6 K. The entropy pair (O(u), q(u)) is called a strictly convex 
entropy pair on the domain K if Vao(u)  > 0, for u e K. 

Consider a 2 x 2 strictly hyperbolic system with globally defined Riemann 
invariants w j, j = 1, 2. The Riemann invariants wj : 1~2 __~ ~ sa t i s fy  

Vwj(u)V f (u)  = ,kj(u)Vwj(u), j = 1, 2, 
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and hence diagonalize system (2.1), for smooth solutions, into 

Otwj + ZjOxwj = 0 ,  j =  1,2. 

Lax's theorem [30] indicates for such a system that, given any bounded domain 
K G R 2, there exists a strictly convex entropy pair (tl(U), q(u)) on the domain 
K. That is, 

V2~(u) > cx > O, u c K. 

For m > 3, system (4.11) is overdetermined, thereby generally preventing the 
existence of nontrivial entropies. Friedrichs-Lax [19] observed that most of the 
systems of conservation laws that result from continuum mechanics are endowed 
with a globally defined, strictly convex entropy. Systems endowed with a rich 
family of entropies were described by Serre [42]. 

Available existence theories show that the solutions u(t, x) of (4.1) are in the 
following class of entropy solutions: 

i) u(t, x) c 3V[(R+ • R'*), or LP(R+ x IR'~), 1 < p ~ ~ ;  

ii) u(t, x) satisfies the Lax entropy inequality: 

OtO(u(t,x)) + Vx . q(u(t, x)) < 0 (4.12) 

in the sense of distributions, for any entropy pair (7, q) : IRm ~ R • 1~ ~ 
with convex 7, V2rl(u) > 0, so that (O(u(t, x)) and q(u(t, x)) are distributional 
functions. If we take I / =  -t-u, we see that any entropy solution is a weak solution. 

One of the main issues in conservation laws is to study the behavior of solutions 
in this class to explore all possible information of solutions, including large- 
time behavior, uniqueness, stability, and traces of solutions, among others. The 
Schwartz lemma indicates from (4.12) that the distribution 

OtO(u(t, x)) + Vx �9 q(u(t, x)) 

is in fact a Radon measure, that is, 

div(t,x)(O(u(t, x)), q(u(t, x))) c 5Y[(IR+ x R~). (4.13) 

In particular, for u e L ~,  (4.13) is also true for any C 2 entropy pair (r/, q) 
(tl not necessarily convex) if system (4.1) has a strictly convex entropy, which 
implies that, for any C 2 entropy pair (7, q), the field O(u(t, x)), q(u(t, x))) is a 
�9 
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Divergence-measure fields also arise in various nonlinear problems involving 
some extended vector fields whose divergences are Radon measures. For exam- 
ple, see Bouchitt6-Buttazzo [4] for such fields in the characterization of optimal 
shapes and masses through the Monge-Kantorovich equation. 

From the previous discussion, it is clear that understanding more properties of 
�9 can advance our understanding of the behavior of entropy solutions 
for hyperbolic conservation laws and other related nonlinear equations. 

In Sections 5-8, we discuss some applications of the theory of 9Jr,-fields 
described in Sections 2-3 to several nonlinear problems for conservation laws 
and related nonlinear equations. 

5 Stability of  Riemann solutions in a class of entropy solutions with the 
vacuum for the Euler equations 

In this section, we show how the theory of � 9  fields can be applied to establish 
the uniqueness and stability of Riemann solutions that may contain the vacuum 
for the Euler equations for gas dynamics in Lagrangian coordinates. 

Denote R2+ = (0, cx~) x • and Ra+ = [0, cx)) x N. We consider r ~ ~+(N~_) 
satisfying r > c L2 for some c > 0, where L k is the k-dimensional Lebesgue 
measure. Let v c L~(R2+) and T0 E 2V[+(IR) with T0 __ c L  1. We assume that 

r, v, and r0 satisfy 

f s v xa, dx) + f ep(O,x)To(x) =O, (5.1) 

for any q5 c Co 1 (R2). 

Definition 5.1. Let r and T0 be as above. We say that a function q5 (t, x) defined 

on IRa+ is a r-test function if it satisfies the following: 

(1) spt (r is a compact subset of R 2 and q~ is continuous on IR2; 

(2) ~bt and Cx are r-measurable; and ~p, is r-integrable over R 2, that is, the 
integrals ff•2 (~bt)• exist and at least one of them is finite; 

(3) lim qS(t, x) = qS(0, a) for ro-a.e, a c R. 
t--+0 
X - - > a  

Theorem 5.1. Let r, v, and r0 be as above. Then 
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(1) the nonnegative measure r admits a slicing of the form r = dt | lzt(x) 
with lzt c 3~+ (R) for L l-a.e, t > O. More precisely, for any cb c C0(R2),  

(2) the points (t, x) E IRe+ such that/zt(x) > 0, with the exception of  a set of  
9s 1 -measure zero, form a countable union of  vertical line segments, called 
vacuum lines. In particular, r (I) = 0 for  any non-vertical straight line 
segment l. 

(3) the identity (5.1) holds for any r-test function cb(t, x). 

As a corollary, we have 

Corollary 5.1. Let T, v, and ro be as above. Let ~(t, x) be a nonnegative 

function over IR2+, continuous on Re+, such that 49 P is a T-test function for any 
1 2 ~b ~ CI(]R;), fit <- O, r-a.e., and Px ~ Ltoc(IR+). Then, for any nonnegative 

function ( c C~(IR), 

lim sup f ~-(x)/5(t, x)/~,(x) < f ~(x)~(o, x)~o(x) 
t--~ 0+ , J  

(5.2) 

We now consider the solutions of  the Euler equations (4.4)-(4.6) for gas dy- 
namics in the sense of  distributions such that r is a nonnegative Radon measure, 
with r _> cL 2 for some c > 0, and v(t, x) and S(t, x) are bounded T-measurable 

functions, along with our understanding that the constitutive relations (4.7) for 
(r, p, e, O, S)(t, x) hold L2-almost everywhere out of  the vacuum lines, in the 
set where r is absolutely continuous with respect to 15 ~, and both p(t, x) and 
e(t, x) are defined as zero on the remaining set with measure zero in I~ 2, includ- 
ing the vacuum lines. 

We consider the Cauchy problem for (4.4)-(4.6): 

(r ,  v, S)l,=o = (To, vo, So)(x), (5.3) 

where r0(x) is a nonnegative Radon measure over R, T0 _> CL 1 for some 
c > O, vo(x) and So(x) are bounded v0-measurable functions, and eo(x) = 
e(T0(x), So(x)) a.e. out of  the countable points {xk} such that T0(xk) > 0, the 
initial vacuum set. 
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Set f i r  = (0, T) x IR and l-I) = ( - o c ,  T) x IR for T > 0. Let D and F be 

functions or measures over H r .  Let Do be a function or a measure over R. By 
weak  formula t ion  on Fir for the Cauchy problem: 

Ot q- Fx = 0, (5.4) 

Dlt=0 = Do, (5.5) 

we mean that, for a suitable set of test functions q~ (t, x) defined on FI), 

f i n  (qbtD-k~bxF)-b~ qb(O'x)D~ 
T 

(5.6) 

Analogously, if  the identity " = " in (5.4) is replaced by " > " or " < " ,  

the weak formulation of the corresponding problem (5.4) and (5.5) is (5.6) with 
" = " rep laced  b y "  _< " o r "  >_ " ,  respectively, for a suitable set ofnonnega t ive  

test functions defined on l-I). 
~)2 

Denote W = (r, v, S) ,  f ( W )  = ( - v ,  p(r ,  S), 0), 0(W) = e(r ,  S) + T ,  
q ( W )  = v p ( r ,  S) ,  and 

~ ( w ,  w )  = ~ ( w )  - ~ ( w )  - v ~ ( w )  �9 ( w  - w ) ,  

f i (W,  W )  = q ( W )  - q ( W )  - Vo(W) �9 ( f ( W )  - f ( W ) ) .  

Observe that V~7(W) = (- /5,  - ~ ,  0). 

Definition 5.2. We say that W ( t ,  x )  is a distributional entropy solution of (4.4)- 

(4.6), and (5.3) in Fir if  z is a Radon measure on Fir with r > cL 2 for some c > 
0, v and S are bounded r-measurable functions such that the weak formulations 
of  (4.4)-(4.6), (4.10), and (5.3) are satisfied for all test func t ions  1 �9 i n  C O (FIT),  a n d  

S( t ,  �9 ) --~ So(" ), as t --+ 0, in the weak-star topology of L ~ ( R ) .  
Observe that the weak formulation implies that /xt -~ v0 in ~J~(IR), and 

v( t ,  �9 ) -~  Vo(" ), and E( t ,  �9 ) --" Eo( .  ) in the weak-star topology of  L~(IR), 
as t -+ 0, where E = e + v2/2 .  We also remark that these convergences can 
be strengthened to the convergences in L~oo(R ) in the case that r is a bounded 
measurable function, as an easy consequence of the �9 ~ theory in Sections 2 

and 3. 
As shown by Wagner [47], by means of the transformation from Eulerian 

to Lagrangian coordinates, bounded measurable entropy solutions of the Euler 
equations in Eulerian coordinates transform into distributional entropy solutions 
of (4.4)-(4.6) and (5.3), satisfying the additional restriction that the weak for- 
mulation of (4.4)-(4.6), and (4.10) holds for test functions with compact support 
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in 1-It such that q~ = g, qSx = h r ,  where g, h c L ~ ( F I r ,  r) .  It is also shown 

through an example in [47] that distributional entropy solutions without the ad- 

ditional restriction may have no physical meaning. 

Now we consider the Riemann solution W (t, x) associated with the Riemann 
problem for (4.4)-(4.6) with initial condition 

WL, x < 0 ,  

W~ = WR, X > O, 
(5.7) 

where WL and WR are two constant states in the physical domain {W = (r, v, S) �9 
r > 0}. First, we address the case where W(t,  x) is a bounded self-similar 
entropy solution of (4.4)-(4.6) which consists of at most two rarefaction waves, 
one corresponding to the first characteristic family and the other corresponding 

to the third one, and possibly one contact discontinuity on the line x = 0. Then, 
W(t,  x) has the following general form: 

WL• 

1~1 ( x / t ) ,  

~ ( x ,  t) = WM, 
WN, 

R3(x/ t ) ,  

WR, 

x / t  < ~1, 

~1 < x / t  < ~2, 

~2 ~ x / t  < O, 

0 < x / t  < ~3, 

~3 <-- x / t  < ~4, 

x / t  ~ ~4. 

(5.8) 

Theorem 5.2. Let W(t ,  x) be the shock-free Riemann solution (5.8) and 
W(t ,  x) be any distributional entropy solution of  (4.4)-(4.6) and (5.3) with 
Wo c L~(IR; 1I{3). Then there exist positive constants C and Ko, and a function 
co E L~(l-Ir) ,  positive a.e. in Fir, such that, for any X > 0 and a.e. t > O, 

f lwa.~.(t,x) - W(t , x ) lZco ( t , x )dx  

)l_<X 

IxlSX+got 

I W0(x) -- W-0(x)J2o-~(0, x) dx.  

(5.9) 

Sketch of proof. Given any X > 0 and t > 0, let to ~ (0, t) and 

~,o., = {(~,x)  " Ixl < X + K o ( t  - a ) ,  to < a < t}, 
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with K0 > 0 to be suitably chosen later. We consider the measure 

iz := o~(w, w) ,  + r w)x. 

Using the product rules (Proposition 3.4) and the Gauss-Green theorem (Theorem 
2.2), we have 

p.(S%o,t ) = ((o~, r vl~a,o.,, 1) 

We can show that, for a.e. t and to as above, 

((e~,/~). vloa,0.,, 1) >_ [ [Wa.c.(t, x )  - ~ ( t ,  X)12~O(t, X) d x  

Ixl<_X 

f {~(w) - ~(W) - ~(v - ~) +/3(m0 - ~) - O ( s  - X)}, 
J 

Ixr < X + Ko(t- to)  
o-=to 

where we have also used that,#~ -~/zto as cr --+ to § O, for a.e. to > O, and that 
/3 is continuous on [to, t] x R. 

On the other hand, 

4 

.(a,0,,) = ~ / z ( ~  n a,0,,) + ~(I n a,0,,) + . ( a i  n a,0t) 
i=1 

+ ,~(a3 n a,o,t) + .(ato,, - (uL ,~  u t u n t  u a3)), 

where ~ and ~23 are the left and right rarefaction regions, / / ,  1 < i < 4, are 
the lines bounding the rarefaction regions ~1 and g23, and I is the line {x = 0} 
where W ( t ,  x )  has a contact discontinuity. 

We first observe that, on f2t0,t - (U4 1//U l U fal U fa3), the measure/z  reduces 
to -Oat  S which is nonpositive. Now, we  have 

# = - d i v  (F1 + F2 + F3), 

where 

F1 = ~5(v - ~, p - / 3 ) ,  F2 = - / 3 ( r  - r ,  v - v), F3 = 0(S - S, 0), 

and div :=  div t.x. Applying the product rule (Proposition 3.4), we get 

div  F1 = fh (v  - f)) + f~x(P - P ) ,  div F2 = - / 3 t ( r  - f )  + p x ( V  - fJ). 
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Hence, 

div FI([j A f2to,t) = d i v  Fl(1Af2to,t)  = 0 ,  j = 1 , - . .  ,4 ,  

since div F1 is absolutely continuous with respect to 22. Also, 

div F3([j fq f2to,t) > O, j = 1 , . . .  , 4. 

On the other hand, since/73 ~ �9 and vii = (0, 1), we have 

div F3(l (q f2to,t) = [(F3 �9 vii, 1)] = 0, 

where the square-bracket denotes the difference between the normal traces from 
the right and the left, which make sense for F3 c �9 ~ because the normal 
traces of  I/)2V~ ~ fields are functions in L ~ over the boundaries. 

Concerning F2, we have 

div Fe([j f3 ato.t) = O, j = 1 , . . .  , 4, 

since/3t is r-integrable and r ( / j )  = 0, j = 1, -.- , 4. On the other hand, fit 
vanishes on I so that 

div F2(l f3 f2t,to) = O. 

Finally, we have 

f 
Ixj<_X 

tz(s21) _< 0, iz(s23) _< 0, 

since vx(t, x) > 0 everywhere over 21 and f23. 
Putting all these estimates together, we have 

]Wa.c.(t, x )  - W ( t ,  x) lZo) ( t ,  x )  d x  

<~ / 
[xl~X+Ko(t-to) 

~tO 

[ ~ ( w )  - o (w-- )  - 0 ( v  - 0)  + P ( m 0  - f )  - ~ ( s  - 3 ) } .  

Now, applying Corollary 5.1, we finally arrive at (5.9). 

Coro l la ry  5.2. Let W (t, x)  and W (t, x)  satisfy the conditions o f  Theorem 5.2 
and Wo(x) = Wo(x) .  Then r ( t ,  x)  is absolutely continuous with respect to 2o 2 
in 1-I7- and W( t ,  x)  = W( t ,  x)  a.e. in I77-. 
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We now consider the case that the Riemann solution, with the initial condition 
(5.7), has a vacuum line at x = 0. In this case, the Riemann solution ~V(t, x) 
has the following form: 

I 
'WL, x/t < ~L, 
R 1 (x/ t ) ,  ~L < x / t  < O, 

W(t, x) = (@l + ~2)/2, (~2 - ~l)tdt  | 3o(x), (-SL +SR)/2) ,  x = 0, (5.10) 

I R3(x / t ) '  0 < x / t  < r 

I WR, x / t  > ~R" 

Here R1 ( x / t )  and R3(x / t )  are as above the rarefaction waves of  the first and 
third characteristic families, respectively, 

~ = lim ~(~), ~2 = lim ~(~), 
r ~-+0+ 

and 80(x) is the Dirac measure over I~ concentrated at 0. It is easy to check that 
W(t,  x) is a distributional solution of  (4.4)-(4.6) and (5.3). The values of  ~ and 

on the line x = 0 could be taken as any other constants instead of  

Vl "-~ V2 SL "q- SR 
and 

2 2 

respectively, while the formula of  ~" at x = 0, (~2 - ~l)tdt | 8o(x)| is dictated 
by the fact that (4.4) must hold in the sense of  distributions. 

Using the theory of  �9 fields and following similar line of  arguments as in 

the proof  of  Theorem 5.2, we can show 

T h e o r e m  5.3. Let W (t, x) be a Riemann solution containing the vacu~n as 

described in (5.10). Let W (t, x) be a distributional entropy solution of  (4.4)-  
(4.6) and (5.3) in H T with Wo ~ L ~ (R; ]~3). Then there exist positive constants 

C and Ko, and a function 02 ~ L~ positive a.e. in l-IT, such that, f o ra l l  

X > Oanda.e. t > O, 

f 
Ixq~X 

< C  

] Wa.c. (t, x) - W~.c.(t, x)I~o)(t, x ) d x  

f IW0(x) - Wo(x)[2w(o, x ) d x .  

[xl<X+Kot 

(5..,11) 

Coro l la ry  5.3. Let W( t ,  x) and W(t ,  x) satisfy the hypotheses of  Theorem 5.3 
and Wo(x) = Wo(x).  Then (v, S)(t,  x) --- (fi, S)( t ,  x), L 2-a.e. in FIT, and r = 

in ~(FIT) .  

Bol. Soc. Bras. Mat., Vol. 32 No. 3, 2001 



THEORY OF DIVERGENCE-MEASURE FIELDS AND ITS APPLICATIONS 425 

6 Initial layers and boundary layers 

We are first concerned with initial layers and uniqueness of weak entropy solu- 
tions for the Canchy problem of scalar hyperbolic conservation laws: 

Otu + O x f ( u ) =  O, (6.1) 

u(x, O) = uo(x). (6.2) 

The weak entropy solutions we address are defined in the following sense. 

Definition 6.1. (1) A function u ( t , x) E L ~176 is called a weak entropy solution 
of (6.1)-(6.2) if u : (t, x) --+ u(t, x) satisfies the following. 

oo 2 (a) u is a weak solution: For any function ~b E C o (IR+), IR2+ -- [0, oc) x IR, 

f0 f (u Otd? + f (u) Ox4))dxdt + u0(x)q~(0, x)dx  = 0. (6.3) 
(2<3 O0 

O0 2 (b) For any nonnegative function ~b E C o (IR+ - {t = 0}) and any convex 
entropy pair (O(u), q(u)), rf'(u) > O, q'(u) = O'(u)f'(u), 

fo ~ f~(~l(u)OtO + q(u) OSp)dx > (6.4) dt O. 
d -  

(2) In contrast, a function u(t, x) ~ L ~ is called a Kruzkov solution if u(t, x) 
satisfies, besides (6.3)-(6.4), the following property of (weak) L l-continuity in 
time: For any R > 0, 

1j0  L -- l u ( t , x ) -  u0(x)] d x d t  -+ 0, when T--+ 0. (6.5) 
T I_<R 

(3) We say that a function u(t, x) satisfies the strong entropy inequality if, for 
any convex entropy pair (O(u), q(u)) and any q~ E C~(R2) ,  q~ >_ 0, 

f0 F F (tl(u)Otc) + q(u) Oxqb)dx d t +  ~l(uo)(x)dp(x, O)dx > O. (6.6) 
oo oo 

It is easy to check that any function u(t, x) satisfying the strong entropy in- 
equality (6.6) is a Kruzkov solution. This fact can be easily achieved with the aid 
of basic properties of divergence-measure fields, especially the normal traces. 
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First, we pick a trivial entropy O(u) = +u  in (6.6) to conclude that u satis- 
fies (6.3) and has a trace u(0+, -) = u0 on the set t = 0, defined at least in the 
weak-star sense in L ~.  Then, using the Gauss-Green formula (Theorem 2.1), we 
conclude from (6.6) that, for any strictly convex entropy 7, the trace ~ (u)(0+, .) 
of t/(u) at t = 0+ satisfies 

~(u)(0+, . ) _  u ( u 0 ) =  ~(u(0+, .)). 

Then the strict convexity of ~7 implies that the trace of u on the set t = 0 is in 
fact defined in the strong sense in L 1, which immediately implies (6.5). 

The main objective here is to establish the uniqueness and L 1 strong continuity 
in time of solutions satisfying only (6.3)-(6.4), provided that equation (6.1) has 
weakly genuine nonlinearity, that is, 

There exists no nontrivial interval on which f is anne.  (6.7) 

Observe that the solutions defined in (6.3)-(6.4) are in general weaker than the 
Kruzkov solutions. It has been proved ([27, 15], see also [41] for the extension 
to the L p case) that the Kruzkov solutions are uniquely defined. 

For approximate solutions generated by either the vanishing viscosity method 
or a total variation diminishing (TVD) numerical scheme, e.g. a monotone 
conservative scheme, one can easily show that the limit function u (t, x) satisfies 
(6.6), even if the initial data uo(x) are only in L ~.  Then, by the above arguments, 
there is no initial layer, which implies that the solution u (t, x) is unique and stable 

in L ~ . 
However, when we consider the limit behavior of other physical regularizing 

effects, especially the zero relaxation limit, there is definitely an initial layer, 
unless the initial data are already at the equilibrium; see [11]. Therefore, the 
uniqueness of limit functions becomes a crucial problem, as observed in [33] 
(also see [26]). In this connection, we recall the following result of Chen-Rascle 
[12], to which we refer for the proof. 

Theorem 6.1. Assume that (6. 7) is satisfied. Let u ( t, x) be an L ~ weak entropy 
solution of  the Cauchy problem (6.1)-(6.2). Then u (t, x) satisfies (6.6), which 
implies that u (t, x) is the unique Kruzkov solution. 

Remark.  An interesting observation is that, under condition (6.7), even a weak 
solution which is not an entropy solution, but whose entropy production is con- 
trolled, is also strongly continuous in L 1 at time t = 0. Indeed, if one replaces 
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the entropy condition (6.4) in Theorem 6.1 by 

(O(u(t, x), q(u(t, x))) 6 �9 ec) x R), (6.8) 

for any C 2 entropy pair (77, q), then (6.5) still holds, but of course that does not 
imply that u is the Kruzkov solution, if u does not satisfy (6.4) ! 

Theorem 6.1 can be applied to clarify the initial layers and uniqueness of zero 
relaxation limits for various physical relaxation systems whose initial data are 
not at the equilibrium. 

Theorem 6.1 was generalized with slightly strong nonlinearity condition by 
Vasseur [45], with the aid of the generalized Gauss-Green theorem and normal 
traces (Theorem 2.1) combined with the kinetic formulation of Lions-Perthame- 
Tadmor [31]. 

Theorem 6.2. Let f2 C IR ~+1 have a regular deformable Lipschitz boundary. 
Assume that f E C3(IR; ]R n) satisfies 

I{~ I r + ~ �9 f ' (~)  = 0)l = 0, 

for every (r, ~) c IR x IR n and (r, ~) 7& (0, 0). Then, for every weak solution 
u ~ L~(s thatsatisfies the entropy inequality in the sense of  distributions in f2, 
there exists u ~ c L ~ (  O f2 ) such that, for every O f2-regular Lipschitz deformation 
gr and every compact set K ~ 392: 

ess s-+olim fK l u (~ ( s ,  z)) - u~ (z)ld~Cn(z) : O, 

In particular, for every smooth function G, we have 

[G(u)y = G(u~).  

7 Initial-boundary value problems for conservation laws 

The existence of normal traces for divergence-measure fields is a crucial property 
which makes �9 a natural class in connection to entropy solutions in 
L ~ of initial-boundary value problems for conservation laws and has greatly 
motivated its study. The basic question of the formulation of the way in which 
the boundary conditions should be interpreted is the key point in this analysis. 
For example, given a bounded open set f2 c IR n, we consider the following 
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initial-boundary value problem in Q r  = (0, T) x f2: 

Otu + div f ( u )  = 0, (7.1) 

uit=0 = Uo(X), (7.2) 

u( t ,  x )  = ub(t ,  x), (t, x) E F r  :=  (0, T) x 0f2, (7.3) 

where u �9 Q r  --+ Rm, f = ( f l ,  " '" , fn )  with fi- " I~ m --+ •m, for u0 E L~( f2 )  
and ub ~ L ~ (F). Although the formulation of  the concept of  entropy solutions 
of  (7.1)-(7.3) may be given in a general setting, an existence theory is currently 
available only for the cases m = 1 and general n (multi-D scalar conservation 
laws), and n = 1 and general m for special systems, however, the results for 
m = 2 cover almost all models of  interest in applications. Here, for simplicity, 
we consider mainly the cylindrical case, in which the space-time domain is a 
Cartesian product; but the concepts and results also extend to more general non- 
cylindrical space-time domains in [7]. We refer to [7, 8] and the references cited 
therein for a more general and detailed discussion of  the topic in this section. 

Let f2 be a bounded open domain in IR n with Lipschitz deformable boundary, 
and let qb �9 0~2 x [0, 1] ~ ~2 be a regular Lipschitz deformation for 0~ .  We 
consider the deformations qJ of  0 Q r which, for any 6 > 0, over F r M {t E (6, T - 
6)}, are given by qJ((t, o)); s) = qb(o), s) for (w, s) 6 ~2 x [0, 11. Clearly, one 
can define the deformations of  0 Q r  with this property. The weak formulation of  
the boundary condition (7.3) is prescribed with the help of  parametrized entropy 
pairs (oe(u, v), r v)) such that, for each fixed v E R m, (or(., v) ,  ~ ( . ,  v) )  is a 
convex entropy pair satisfying 

ol(v, v) = ~ (v ,  v) = Ouo~(v, v),  (7.4) 

or which are uniform limits on compact sets of  C 2 pairs satisfying (7.4). We call 
these pairs, boundary-entropy pairs, following a denomination proposed in [37]. 
Examples of  such pairs are the Kruzkov entropy pairs for scalar conservation 

laws 

~ ( u ,  v )  = lu - v l ,  

and the Dafermos 
( t l(u) ,  q ( u ) )  by 

f l i (U ,  1)) = sign (u - v)( f i  (u) - fi (v)), i = 1 , . - .  , n, 

entropy pairs, obtained from a C 2 convex entropy pair 

o~(u,  v )  = 0 ( u )  - u ( v )  - v 0 ( v ) ( u  - v ) ,  

f l i (u,  v)  = q i (u)  -- q i (v )  -- Vr l ( v ) ( f i . ( u )  - f i ( v ) ) ,  i = l , - - - , n ,  
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among others. Denoting I', = qJ(F x {s}), vs the unit outer normal to f2~, the 
weak formulation of the boundary condition (7.3) is translated by the imposition 
that 

lim [ /3(u o qJs(r), ub(r)) �9 (v, o ops(r)) ~(r) d~Cn(r) > O, (7.5) e s s  
s-->0 J F  T 

for all nonnegative ~ ~ L I(I?). Observe that the limit on the left-hand side of 
(7.5) exists due to the properties of �9 ~ fields (see (2.4) above). Using a weak 
formulation of (7.3) of form (7.5), the existence and uniqueness of L ~ solutions 
of (7.1)-(7.3) was proved by Otto [37] (see also [34]) for scalar conservation laws. 
In [8], many existence results are given for systems in the one-dimensional case. 
We refer to [7, 8] for other references on this problem. 

8 Nonlinear degenerate parabolic-hyperbolic equations 

Here we briefly mention some applications of the theory of ~2M fields to initial- 
boundary value problems for nonlinear degenerate parabolic-hyperbolic scalar 
equations. In [35], Mascia, Porretta, and Terracina used the properties of �9 2 
fields to study the initial-boundary value problem 

Otu 4- div f ( u )  = Aa(u),  (8.1) 

u I,-0 = u0 (x ) ,  (8 .2 )  

u(t, x)  = ub(t, x), (t, x) 6 I ' r  := (0, T) x 0f2, (8.3) 

where a(u) is assumed to be continuous and nondecreasing, possibly 
assuming a constant value over a non-trivial interval. The definition of 
entropy solutions of (8.1)-(8.3) requires that, for each fixed v 6 R, the 
field (A(u(t ,  x), v), B(u(t ,  x),  v)) defined by 

A ( u ( t , x ) ,  v) = ]u(t ,x)  - vl, (8.4) 

B(u(t ,  x), v) = sign (u(t, x) - v ) ( f ( u ( t ,  x)) - f ( v ) )  

- Vxla(u(t ,  x)) - a(v)[, (8.5) 

belongs to ~)~/I~2(QT) and satisfies 

fQ (A(u(t ,  x), v)q5~ 4- B(u(t ,  x), v) �9 Vx~b) dx dt  O, (8.6) >_ 
T 

for any nonnegative ~b E C ~ ( Q r ) .  Now, setting 

H (u(t, x ), v, ul,(t, x)  ) := B(u(t ,  x) ,  v) 4- B(u(t ,  x) ,  ub(t, x)  ) - B(ub(t, x),  v), 
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the weak formulation of the boundary condition (8.3) is then given by 

lira - H (u o ~s(r), v, ub(r)) �9 (v~ o CPs(r)) ((r) d~U(r) ds > O, (8.7) 
~-->0 ~ T 

for any v c IR and all nonnegative ~ 6 LI(F).  Again, observe that the limit 
in the left-hand side of (8.7) exists by the properties of 93/[  2 fields. The initial 
condition (8.2) is required to be attained in the standard L 1 sense. The uniqueness 
of entropy solutions of (8.1)-(8.3) was proved in [35]; the existence of entropy 
solutions for general L ~ initial and boundary data is still open. 

As another example, we mention an application of the properties of ~D~i/[ 2 fields 
in the study of a free-boundary problem for a degenerate parabolic-hyperbolic 
equation arising as a model of pressure filtration in [6]. In this case, the boundary 
conditions are of the Neumann type that are imposed on the normal traces of the 
field (u, f ( u )  - Vxa(u)). We refer to [6] for the details. 
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