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On the k-normality of projected algebraic varieties
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Abstract. We give a necessary and sufficient condition for the isomorphic projection
of a k-normal variety to remain k-normal, k ≥ 2; the condition is based on a scheme Zk

naturally associated to degree k forms vanishing on the variety. We furnish many appli-
cations and examples especially in the case of varieties defined by quadratic equations.
A non-vanishing theorem for the Koszul cohomology of projected varieties allows us to
construct interesting examples in the last sections. All the results are effective and also
interesting from the computational point of view.
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Introduction

LetL be a very ample invertible sheaf on an irreducible algebraic varietyX and let
V ⊆ H0(L) be a vector subspace defining an embeddingφ|V | : X ↪→ P(V ) = Pr .
We say that X ⊂ Pr , or the linear system |V |, is k-normalif the restriction map

Sk(V ) = H0(OPr (k)) → H0(OX(k)) = H0(Lk)

is surjective. We say that the variety X ⊂ Pr , or the linear system |V |, is
projectively normalif X is a normal algebraic variety that is k-normal for every
k ≥ 1.

If n = dim(X) and d = deg(X) = Ln (at least for r ≥ 2n + 1), one could
expect that X ⊂ Pr is k-normal for k ≥ d + n − r (Castelnuovo bound). This
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28 ALBERTO ALZATI AND FRANCESCO RUSSO

statement was proved for (possibly singular) curves in [GLP] and for surfaces
in [L], generalizing the classical results of Castelnuovo [C] for curves in P3, see
also [K].

In this paper, we deal with the following problem: given an algebraic variety
X ⊂ Pr that is k-normal, k ≥ 2, and projecting it from a point p ∈ Pr such
that the projection πp : X → Pr−1 is an isomorphism (i.e., p is neither on
any secant line to X nor on any tangent embedded space to X), when is the
variety Y = πp(X) ⊂ Pr−1 still k-normal? Or, equivalently, do there exist
conditions depending on X and V guaranteeing that a 1-codimensional very
ample subsystem of a k-normal linear system |V | is still k-normal?

If Y is k-normal, then, by Proposition 2.1,

h0(IX(k)) =
(
r + k − 1

r

)
+ h0(IY (k)).

Hence h0(IX(k)) ≥ (
r+k−1
r

)
, or equivalently h0(OX(k)) ≤ (

r+k−1
r−1

)
.

For k ≥ 2, we introduce a determinantal scheme Zk(X) associated to the degree
k forms vanishing on X. We prove that, if X is k-normal and if h0(IX(k)) ≥(
r+k−1
r

)
, then an isomorphic projection of X is k-normal if and only if the center

of projection p does not belong to Zk(X), to any secant line, or to any tangent
embedded space (Theorem 2.6). In this way, we get a criterion that completely
describes the 1-codimensional k-normal subsystems of a k-normal linear system.
This criterion seems to have been unknown even for k = 2.

In Theorem 2.7, we show that, for a smooth algebraic variety with h0(IX(2)) ≥
r+1, we have Sec(X) ⊆ Z2(X)red (the variety of secant lines Sec(X) is a reduced
scheme by definition). Since Z2(X) is a determinantal scheme, this result is
also interesting from a computational point of view in order to find a center of
projection not lying on the secant variety. Moreover, this result gives an easy
way of controlling 2-normality under projections. In particular, we prove that the
projection of a smooth projectively normal variety is k-normal for every k ≥ 2
if and only if the center of projection p does not belong to Z2(X).

In Section 3, we focus on varieties cut out by quadratic equations. We study
these quadratic equations as elements of linear systems on the ambient space
and we look at the conditions assuring that Z2(X)red = Sec(X). For instance we
apply Theorem 2.7 to show that the smooth projections into Pr−1 of a smooth
variety X ⊂ Pr satisfying property N2 are k-normal for every k ≥ 2 (Corollary
3.3).

Let us recall the following examples of varieties satisfying property N2 to see
the wide range of possible applications: varieties of minimal degree, smooth
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ON THE k-NORMALITY OF PROJECTED VARIETIES 29

curves embedded by a line bundle of degree at least 2g + 3, canonical curves
whose Clifford index is bigger than 2, Segre varieties, Veronese embedding of
Pn, all embeddings of any projective variety given by a sufficiently ample line
bundle and embeddings given by suitable adjoint line bundles. Applications and
examples follow in abundance in Sections 3 and 4. Moreover, we remark that
if Z2(X)red = Sec(X), then we have an effective method for writing down the
equations of Sec(X).

In Section 4, we use Theorems 2.6, 2.7 and 3.2 to construct some counterex-
amples to Theorem 2.4, Corollary 2.6 and Theorem 3.1 of [B2], see Example 4.3,
Example 4.4 and Example 4.5; these examples show that the “cohomological”
vanishing theorems for Koszul cohomology work essentially only for projec-
tively normal linear systems, where they were extensively used and applied (see
[G], [GL]). In fact, we prove a non-vanishing theorem for the Koszul coho-
mology of a variety that is a smooth projection of a projectively normal variety
defined by quadrics of small rank and of particular types (Theorem 4.2). Using
this theorem, we also give a counterexample (Example 4.5) to Theorem 3.1 of
[B1] by constructing, for every d ≥ 2, an explicit cubic generator of the ideal of
the projection into PN(d)−1, whereN(d) = (

d+2
2

)−1, of the Veronese embedding
X = νd(P2) ⊂ PN(d).

Finally, we relate our results to known results on generic projections of νd(P2)

into Pk where k ≥ 2d, see [BE2]. Theorem 2.6 allows us to describe explic-
itly the k-normal linear subsystems. Furthermore, it yields an efficient way of
constructing examples; in particular, by studying 2-normal projections of the
Veronese surface into P2d for every d ≥ 3, we can construct a prime ideal of
arbitrary codimension having a 3-linear resolution, i.e., generated by cubic forms
and with syzygies generated by linear forms, answering to a question posed in
[EG], p. 92.

1 Notations and definitions

Given an r + 1 dimensional vector space V be over C, let S = ⊕∞
k=0 Sk(V ) and

P(V ) = Proj(S) = Pr . Let X be an algebraic variety, L a very ample invertible
sheaf, and V ⊆ H0(L) a linear subspace. Then V defines an embedding

φ|V | : X ↪→ P(V ) = Pr .

Note that S = ⊕k≥0 H0(OPr (k)) in this case. Abusing notation, we will use the
same letter X also for φ|V |(X). We say that X ⊂ Pr , or the linear system |V |, is
k-normalif the restriction map

Sk(V ) = H0(OPr (k)) → H0(OX(k)) = H0(Lk)
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30 ALBERTO ALZATI AND FRANCESCO RUSSO

is surjective.
We say that the variety X ⊂ Pr , or the system |V |, is projectively normal

if X is a normal algebraic variety that is k-normal for every k ≥ 1. If V is a
proper subspace of H0(L), we call φ|V | a noncomplete embedding, and |V | a
noncomplete very ample linear system. Note that a noncomplete embedding is
the composition of the embedding defined by the complete linear system |L|
with a linear projection.

Given a coherent sheaf F on Pr , set �∗(F) := ⊕t∈Z H0(F(t)). Given a
homogeneous ideal I = ⊕∞

t=0It ⊆ S, call I sat := �∗(Ĩ ) ⊆ �∗(S̃) = S the
saturationof I , where Ĩ and S̃ are the associated sheaves. If I = I sat , call I
saturated. Given any positive integer m, call I m-saturatedif It = I satt for every
t ≥ m.

Given any X ⊂ Pr , set IX := �∗(IX), where IX is the ideal sheaf of X.
Set S(X) := S/IX, which is the homogeneous coordinate ring of X; obviously
S(X) is a graded C-algebra generated by its degree one part. Set R(X) :=
⊕∞
k=0 H0(OX(k)). There is a natural map γ : S(X) ↪→ R(X), which is an injec-

tive homomorphism of graded C-algebras. Observe that, if X ⊂ Pr is k-normal
for every k ≥ 1, then the graded C-algebraR(X) is generated by its homogeneous
degree-one part, since S(X) 
 R(X). That observation has this consequence,
which we need.

Lemma 1.1. LetX ⊂ Pr be an algebraic variety that isk-normal for every
k ≥ 1. LetY ⊂ Pr−1 be an isomorphic projection ofX. If there exists a positive
integerk0 such thatY is k0-normal, thenY is k-normal for everyk ≥ k0.

Proof. Let γ : S(Y ) ↪→ R(Y ) be the natural map. Since R(Y ) 
 R(X) 

S(X), both R(Y ) and S(Y ) are finitely generated graded C-algebras generated
by their degree-one parts. We now use the following general fact: let γ : S ↪→ R

be an injective homomorphism of graded C-algebras generated by their degree-
one parts; if there exists a k0 for which γk0 : Sk0 ↪→ Rk0 is an isomorphism, then
γk : Sk ↪→ Rk is an isomorphism for every k ≥ k0. �

Letm ∈ Z. A coherent sheafF on Pr is called m-regularif Hi(F(m− i)) = 0
for every i > 0, (see [Mu], p. 99). A homogeneous ideal I ⊆ S is called m-
regular if it ism-saturated and if the associated ideal sheaf Ĩ on Pr ism-regular.
Let I ⊆ S be a homogeneous ideal, and let

E• : 0 → En → En−1 → . . . → E0 → I → 0
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be any minimal graded free resolution of I . Recall that the following conditions
are equivalent (see [E], p. 510):

1. I is m-regular;

2. Ei is the direct sum of modules S(−j) with j ≤ m+ i for 0 ≤ i ≤ n.

In particular, a saturated m-regular homogeneous ideal I ⊆ S is generated by
forms of degrees m or less.

Let I ⊆ S be a homogeneous ideal, M a finitely generated S-module. Say
that I , respectively M , has a p-linear resolutionover S if every minimal graded
free resolution E• of I , respectively of M , is such that Ei = S(−p − i)βi for
every 0 ≤ i ≤ n and for suitable integers βi . In other words, I has a p-linear
resolution if It = 0 for t < p, if I is generated by forms of degree p, and if all
the maps of any minimal resolution are represented by matrices of linear forms.
We will construct some examples with p = 3 at the end of the paper.

LetF be a coherent sheaf on Pr . IfF ism-regular, then, by the Castelnuovo–
Mumford lemma (see [Mu], p. 100),

1. F is (m+ 1)-regular, and

2. the map H0(OPr (1))⊗ H0(F(m)) → H0(F(m+ 1)) is surjective.

In the following proposition, we collect some simple consequences, which will
be used below.

Proposition 1.2. LetL be a very ample line bundle on a projective varietyX
such thatHi+1(L1−i) = 0 for 0 ≤ i ≤ dim(X)− 1, and let|V | ⊆ |L| be a very
ample linear system. Setr := dim(V ) − 1 andX := φ|V |(X) ⊂ Pr . If X is
2-normal, thenIX is 3-regular; furthermore, thenX is k-normal for everyk ≥ 2,
and its ideal is generated in degree3 or less.

Proof. To prove IX is 3-regular, we have to show hj (Pr , IX(3 − j)) = 0 for
j ≥ 1. This vanishing results by considering the exact sequence

0 → IX(3 − j) → OPr (3 − j) → OX(3 − j) → 0

with j = i + 2. The last two assertions now follow from the Castelnuovo–
Mumford lemma. �
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32 ALBERTO ALZATI AND FRANCESCO RUSSO

We now want to recall the definition of the Np property of a nondegenerate
closed subvariety X ⊂ Pr . Let E• be a minimal free resolution of the S-module
R(X) = ⊕k≥0 H0(OX(k)),

E• : 0 → ⊕jS(−j)βn,j → . . . → ⊕jS(−j)β0,j → R(X) → 0.

For any integer p ≥ 0, we say X satisfies propertyNp if β0,0 = 1, if β0,j = 0
for j > 0 and if βi,j = 0 for 1 ≤ i ≤ p and j > i + 1. Property N0 means
that X is k-normal for every k ≥ 1. Property N1 means that furthermore the
homogeneous ideal of X is generated by quadratic forms. Property N2 means
that furthermore the syzygies among the quadratic generators are generated by
linear forms, etc.

2 The main results

In this section X ⊂ Pr is a nondegenerate subvariety, πp is the projection from
a suitable point p ∈ Pr to a hyperplane avoiding p, and Y := πp(X) ⊂ Pr−1 is
an isomorphic projection of X.

Assuming X is k-normal for some k ≥ 2, we want to give a necessary and
sufficient condition forY to be k-normal. Let us begin with a necessary condition.

Proposition 2.1. LetX ⊂ Pr be ak-normal variety,k ≥ 2. If Y is k-normal
in Pr−1, thenh0(IX(k)) = (

r+k−1
r

) + h0(IY (k)). Henceh0(IX(k)) ≥ (
r+k−1
r

)
,

or equivalently h0(OX(k)) ≤ (
r+k−1
r−1

)
, and equality holds if and only if

h0(IY (k)) = 0.

Proof. Since X is k-normal in Pr , then

h0(IX(k)) = h0(OPr (k))− h0(OX(k))
= h0(OPr−1(k))+ h0(OPr−1(k − 1))+ · · · + h0(OPr−1)− h0(OY (k))
= (

r+k−1
r

) + h0(OPr−1(k))− h0(OY (k))
= (

r+k−1
r

) + h0(IY (k)),

where the last equality follows from the k-normality of Y . �
We need the following definitions.
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Definition 2.2. Let X ⊂ Pr be a variety with h0(IX(k)) =: α ≥ (
r+k−1
r

)
, and

let f1, . . . , fα be a basis of H0(IX(k)). Denote by Mk(X) the matrix of linear
forms obtained by taking the (k−1)th partial derivatives of the fi with respect to
the coordinate functions. For any point p ∈ Pr , denote by Mk(X)(p) the matrix
obtained by evaluating Mk(X) atp. Finally, denote by Zk(X) the (determinantal)
scheme defined by the vanishing of the minors of maximal orders of Mk(X).

Remark 2.3. Obviously the definition of Zk(X) does not depend on the choice
of the base of H0(IX(k)). For k = 2, the scheme Z2(X) was classically called
the Jacobian schemeof the linear system | H0(IX(2))|. The Jacobian scheme of
a linear system |V | of hypersurfaces of degree k on Pr is defined by the vanishing
of the minors of maximal order of the matrix of (k−1) forms obtained by taking
the first partial derivatives of the elements of a base of V .

If h0(IX(k)) ≤ (
r+k−1
r

)
, the scheme Zk(X) can also be defined in the same

way. In this case Zk(X) was studied classically, and its support is the locus of
vertices of cones of degree k containingX. In our situation, the support of Zk(X)

is the locus of points p at which the space of these cones, passing through p,
has dimension greater than expected; moreover, Zk(X) is closely related to the
k-normality of projections ofX from these points, as we will see in Theorem 2.6.

Note that M2(X) is the (homogeneous) Jacobian matrix of the rational map
associated to the linear system of quadrics | H0(IX(2))|. This fact will allow us to
deduce some interesting relations between Sec(X) and Z2(X), see for example
Theorem 2.7 and 3.2 below.

Remark 2.4. A point p ∈ Pr does not belong to Zk(X) if and only if
rk(Mk(X)(p)) is maximal, i.e., rk(Mk(X)(p)) = (

r+k−1
r

)
.

We have the following result.

Proposition 2.5. LetX ⊂ Pr be a variety withh0(IX(k)) =: α ≥ (
r+k−1
r

)
.

Form the vector space of homogeneous polynomials of degreek defining cones
containingX ⊂ Pr and having given vertexp ∈ Pr . Then this vector space is of
dimensionh0(IX(k)) − rk(Mk(X)(p)); moreover, ifY := πp(X) ⊂ Pr−1 is an
isomorphic projection ofX, thenh0(IY (k)) = h0(IX(k))− rk(Mk(X)(p)).

Proof. LetHk be a hypersurface of degree k in Pr . Then πp(Hk) is a hypersur-
face of degree k in Pr−1 if and only if Hk is a cone with vertex passing through
p, i.e., if and only if p is a point of multiplicity k onHk. Hence h0(IY (k)) is the
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34 ALBERTO ALZATI AND FRANCESCO RUSSO

dimension of the vector space of polynomials of degree k defining cones with
vertex through p and containing X.

We can calculate this dimension as follows: we have to determine
the a1, . . . , aα such that f = ∑α

i=1 aifi defines a hypersurface with a point of
multiplicity k at p; i.e., the (k − 1)th partial derivatives of f must vanish at p.
Let

∂k−1f

(∂x0)i0 . . . (∂xr)ir
= 0,

be the corresponding system of
(
r+k−1
r

)
equations in the unknowns a1, . . . , aα,

with i0 + . . .+ ir = k− 1. Set a := (a1, . . . , aα). We seek for the dimension of
the space of solutions of the linear system of homogeneous equations given by

a · Mk(X)(p) = 0.

The result now follows via elementary linear algebra. �
Now we can prove a criterion of k-normality for the isomorphic projections

of a k-normal variety.

Theorem 2.6. Let X ⊂ Pr be a k-normal variety such thath0(IX(k)) ≥(
r+k−1
r

)
, or equivalently,h0(OX(k)) ≤ (

r+k−1
r−1

)
, and letp ∈ Pr be such that the

projectionπp : X → Y ⊂ Pr−1 is an isomorphism. Thenπp(X) = Y ⊂ Pr−1 is
a k-normal variety if and only ifp �∈ Zk(X).

In particular, if |V | defines the embedding of a smoothk-normal varietyX
into Pr , then every codimension-1 very ample subsystem of|V | is k-normal if
and only ifZk(X)red ⊆ Sec(X).

Proof. Proposition 2.5 says that the space of polynomials defining cones of
degree k containingX, with vertex passing through p, has dimension h0(IY (k)),
which is equal to h0(IX(k))− rk(Mk(X)(p)). Moreover, we obviously have

rk(Mk(X)(p)) ≤ (
r+k−1
r

)
.

Therefore, we have

h0(OPr−1(k))− h0(IY (k)) = (
r+k−1
r−1

) − h0(IX(k))+ rk(Mk(p))

≤ (
r+k−1
r−1

) − h0(IX(k))+ (
r+k−1
r

)
= (

r+k
r

) − h0(IX(k))
= h0(OPr (k))− h0(IX(k)) = h0(OY (k)),
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where the last equality holds because πp : X → Y ⊂ Pr−1 is an isomorphism.
We conclude that Y is k-normal, i.e., that

h0(OPr−1(k))− h0(IY (k)) = h0(OY (k)),

if and only if
rk(Mk(X)(p)) = (

r+k−1
r

)
,

i.e., if and only if p �∈ Zk(X) by Remark 2.4. �
Theorem 2.6 completely and explicitly describes the condition under which a

very ample codimension-1 (or more) linear subsystem of a k-normal subsystem
remains k-normal. In the literature, there are many results of this sort—for
example, see [Me], [BE1], [BE2], [B1], [B2]. The difference in our result is
that, with precision, we determine the open subset describing the k-normal very
ample subsystems in the corresponding Grassmannian of subspaces of fixed
codimension. Furthermore, our method is computational.

We now give a version of Theorem 2.6, which is useful in applications. This
version was inspired by an unpublished algebraic result proved by Simis and Ul-
rich, relating the ideal of Sec(X) to some Fitting ideals of the equations defining
X. Our proof is geometric and completely different.

Theorem 2.7. LetX ⊂ Pr be a smooth algebraic variety. Ifh0(IX(2)) ≥ r+1,
or equivalentlyh0(OX(2)) ≤ (

r+1
r−1

)
, thenSec(X) ⊆ Z2(X)red.

In particular, if alsoX is 2-normal, thenY := πp(X) ⊂ Pr−1 is smooth and
2-normal if and only ifp �∈ Z2(X). If alsoX is projectively normal, thenY is
smooth andk-normal for everyk ≥ 2 if and only ifp �∈ Z2(X).

Proof. Let us begin with the first part. Let φ : Pr ��� P(H0(IX(2))) be the
rational map defined by the linear system | H0(IX(2))| of quadrics through X.
Let f1, .. , fα be a basis of H0(IX(2)) and setW := V (f1, . . . , fα). The rational
map φ is defined exactly on Pr \W . We have the inclusionW ⊆ Z2(X) because
for every p ∈ W the homogeneous system of linear equations

M2(X)(p) · (x0 . . . xr)
t = 0

is satisfied by the coordinates of p by the Euler formula.
Take a point p ∈ Sec(X) \ W , and let lp be a (proper) secant line passing

through p. The restriction of φ to lp is given by a linear system of degree 2
having exactly two base points, possibly coincident, so that φ contracts lp to a
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point. Therefore, rk(M2(X)(p)) is not maximal by the sensitivity of the Jacobian
of φ. Hence p ∈ Z2(X) by Remark 2.4.

The second part follows from Theorem 2.6 and Lemma 1.1. �
It is computationally difficult to find a point outside the secant variety of a given

variety X ⊂ Pr . If h0(IX(2)) ≥ r + 1, Theorem 2.7 says that it is sufficient
to choose p �∈ Z2(X). This condition is easier to verify because Z2(X) is an
explicit determinantal scheme.

In [Me] the author produced some examples of projectively normal linear
systems for which every codimension-1 subsystem is 2-normal (and hence k-
normal for every k ≥ 2 by Lemma 1.1). In these examples, the condition
Z2(X)red = Sec(X) is always (and easily) verified. We will return to these
examples in Corollary 3.3 and Theorem 4.2. In the following example, we show
that, in general, the support of Z2(X) is not contained in Sec(X).

Example 2.8. LetX = ν3(P2) ⊂ P9 be theVeronese embedding of P2 by forms
of degree 3. ThenX is a projectively normal Del Pezzo surface of degree 9, whose
ideal is generated by quadrics. Theorem 3.2 below assures that Z2(X)red =
Sec(X). By Theorem 2.7, the smooth isomorphic projections Y ⊂ P8 are k-
normal for every k ≥ 2; i.e., every codimension-1 very ample subsystem of
|OP2(3)| is k-normal for every k ≥ 2.

For such surfaces Y ⊂ P8, we can verify that Z2(Y ) � P8. Applying Theorem
2.7, we conclude that a general projection W ⊂ P7 of Y is k-normal for every
k ≥ 2. Here “general” means that the center of the projection does not belong
to Z2(Y ).

SinceW is 2-normal, we haveh0(IW(2)) = 8 = (7+1
7

)
. Looking at M2(W), we

see det(M2(W)) �≡ 0. Hence Z2(W) is a hypersurface of degree 8 in P7. Since
Sec(W) is irreducible of dimension 5, we have Sec(W) � Z2(W)red. Projecting
from a point p ∈ P7 \ Z2(W), we obtain a smooth surface S ⊂ P6, which is k-
normal for every k ≥ 2 by Theorem 2.7. Proposition 1.2 yields that S is 3-regular
and that the ideal of S is generated by cubic polynomials because h0(IS(2)) = 0.
The resolution of the ideal of S is then 3-linear because this ideal is 3-regular
and it is generated by cubic polynomials.

If we project W from a point p ∈ Z2(W) \ Sec(W), then the projection will
be smooth, but not 2-normal.

For smooth projections of ν3(P2) into P8, the sharp Castelnuovo bound of [L]
assures that these projections are k-normal for every k ≥ 3, whereas we have
shown they are also 2-normal. For smooth projections into P7 and P6, we can
explicitly determine the 2-normal subsystems of a 2-normal |V | ⊂ | H0(OP2(3))|
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of projective dimension 8.

3 Projected varieties that are k-normal for every k ≥ 2

In this section, we study projectively normal varieties having smooth isomorphic
projections that are k-normal for every k ≥ 2. From now on, X will be smooth
and nondegenerate in Pr of degree d and codimension s.

Let us recall the following definition introduced in [V], 2.2.

Definition 3.1. A subscheme W ⊂ Pr satisfies conditionKd if W is scheme
theoretically cut out by forms F0, . . . , Fq of degree d such that the trivial (or
Koszul) syzygies among the Fi are generated by the linear syzygies.

Theorem 3.2. Let X ⊂ Pr be a smooth2-normal variety such that(
X,H0(IX(2))

)
satisfies conditionK2 and such thatSec(X) � Pr . Then ev-

ery smooth projection ofX into Pr−1 is a 2-normal variety. In particular ifX
is also projectively normal, then every smooth isomorphic projection ofX into
Pr−1 is ak-normal variety for everyk ≥ 2.

Proof. By Theorem 2.7, it is sufficient to prove that h0(IX(2)) ≥ r+1 and that
Z2(X)red ⊆ Sec(X). But these conditions hold since, if

(
X,H0(IX(2))

)
satisfies

conditionK2, then the associated rational mapφ| H0(IX(2))| : Pr ��� P
(
H0(IX(2))

)
is an embedding off Sec(X); see [V], Corollary 2.5. �

Corollary 3.3. LetX ⊂ Pr be a smooth variety satisfying conditionN2 and
such thatSec(X) � Pr . Then every smooth isomorphic projection ofX is k-
normal for everyk ≥ 2.

Proof. It is immediate to see that condition N2 implies condition K2. �
The above results can be applied to a large class of examples: varieties of

minimal degree, smooth curves embedded by a line bundle of degree greater
than or equal to 2g + 3, canonical curves whose Clifford index is bigger than 2,
Segre varieties, Veronese embeddings of Pn, all sufficiently ample embeddings
of any projective variety, suitable embeddings given by adjoint bundles. All these
examples satisfy condition N2, and every smooth isomorphic projection is then
k-normal for every k ≥ 2. (See [Me] for a different treatment made by explicit
calculations in some of the above cases.)
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Corollary 3.4. LetX ⊂ Pr be a smooth linearly normal variety withSec(X) �
Pr . Supposeh1(OX) = 0 if dim(X) ≥ 2. If d ≤ 2s−1, thenX is arithmetically
Cohen-Macaulay, and every smooth isomorphic projection ofX into Pr−1 is a
k-normal variety for everyk ≥ 2.

Proof. In proposition 2 of [AR], it is proved that, if X is as above, then it is
arithmetically Cohen-Macaulay, and it satisfies conditionN2. We can now apply
Corollary 3.3. �

The idea of verifying that the condition Sec(X) = Z2(X)red holds by looking
at the rational map defined by | H0(IX(2))| can be exploited also in the following
interesting examples. Let us recall the definition of Severi varieties.

Definition 3.5. A smooth irreducible nondegenerate subvarietyX ⊂ Pr is said
to be a Severi varietyif dim(X) = 2

3(r − 2) and Sec(X) � Pr .
In [Z] Zak proved that there are only four Severi varieties:

1. the Veronese surface ν2(P2) ⊂ P5,

2. the Segre embedding of P2 × P2 in P8,

3. the Plücker embedding of G(1, 5) in P14,

4. a 16 dimensional E6 variety in P26.

The Severi varieties have the following uniform description. Let AR denote
R, C, H or O, i.e., the four real division algebras of real dimension, respectively,
1,2,4, 8. Let A = AR ⊗R C and let HR denote the AR-hermitian forms on A3

R
,

i.e., the 3 × 3 AR-hermitian matrices. If x ∈ HR, then we may write

x =

 α1 β1 β2

β1 α2 β3

β2 β3 α3




with αi ∈ R and βi ∈ AR. Let H := HR ⊗R C, and let X ⊂ P(H ) the locus
of rank one elements.

The four Severi varieties are exactly X ⊂ P(H ) for AR = R,C,H,O and
Sec(X) is the locus of rank 2 matrices; clearly X is defined by dim(P(H ))+ 1
quadrics. These quadrics define a rational map, T : P(H ) ��� P(H ). One sees
that T is a birational, involutory map that is an isomorphism on P(H ) \ Sec(X).
In fact, by writing down the equations defining X, one verifies that T is the
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composition of the map sending a matrix inH to the matrix of its cofactors and
of an involutory projectivity of P(H ). The cases of the Veronese surface and of
the Segre 4-fold are classical (see for example [SR]).

A slightly different proof of the birationality of T is given in Theorem 2.5 of
[ES], where the above Cremona transformations are characterized as the only
quadro-quadricspecial Cremona transformations.

By the previous results we can prove the following proposition.

Proposition 3.6. Let X ⊂ Pr be one of the four Severi varieties described
above. ThenSec(X) = (Z2)red, and ifp �∈ Sec(X), thenY = πp(X) ⊂ Pr−1 is
a smoothk-normal variety for everyk ≥ 2. Moreover, the ideals of the projected
Veronese surfaces and of the projections ofP2 ×P2 are generated by cubic forms
and have3-linear minimal resolutions.

Proof. The Severi varieties are arithmetically Cohen Macaulay (see for exam-
ple [Z], chapter III, theorem 1.2). As the quadrics defining them give rise to a ra-
tional map that is an isomorphism out of Sec(X), we get that Z2(X)red ⊆ Sec(X),
and the equality follows by Theorem 2.7. Then the last part of Theorem 2.7
implies that Y is k-normal for every k ≥ 2. For the first two Severi vari-
eties, the 2-normality of Y implies that IY is 3-regular and that the ideal of
Y is generated by forms of degree less than or equal to three by applying
Proposition 1.2. Since in both cases we have h0(IY (2)) = 0, the ideal of Y
is generated by cubic forms and the minimal resolutions of IY are 3-linear.

�

Remark 3.7. The fact that the projected Veronese surface in P4 is k-normal for
every k ≥ 2 can be also deduced from theorem 1 of [L]. We have preferred to
give a uniform proof, which works for all the Severi varieties.

We remark that Theorem 3.1 of [B1] would imply that the ideal of the
projection of ν2(P2) in P4 is generated by quadrics. However, Proposition 3.6
shows that Theorem 3.1 of [B1] is incorrect.

The same idea can also be applied in the following examples, where the
quadratic equations defining the varieties give rise to birational maps, but the
varieties do not satisfy condition K2.

Example 3.8. (Projections of rational octic surfaces in P6). Let X ⊂ P6

be an octic rational surface obtained as the embedding of the blowup of P2 at
8 points p1, . . . , p8, no 4 on a line and no 7 on a conic, by the linear system
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of quartics containing the pi . Then X is an arithmetically Cohen Macaulay
surface, whose ideal is generated by 7 quadrics (see [HKS] and [MR]). The
linear system | H0(IX(2)| defines a special Cremona transformation of P6, and
Z2(X)red = Sec(X) (see also [ST1] or [HKS]). Then every smooth projection
of X into P5 is k-normal for every k ≥ 2 by Theorem 2.7.

Example 3.9. (Projections of septic elliptic scrolls of invariant e = −1 in
P6). Let X = P(E) ⊂ P6 be the septic elliptic scroll of invariant e = −1 whose
hyperplane section is numerically equivalent to C0 +3f , where C0 is the unique
section with C2

0 = 1 and f is the numerical class of a fiber. The scroll is a
projectively normal surface whose ideal is generated by 7 quadrics defining a
special Cremona transformation of P6 such that Z2(X)red = Sec(X) (see [ST2]
or [HKS]). All smooth projections ofX into P5 are k-normal for every k ≥ 2 by
Theorem 2.7.

4 A nonvanishing theorem for the Koszul cohomology of projections of
varieties defined by quadrics of small rank

In [B2], the property Np was generalized to the case of a variety embedded in
Pr by an incomplete very ample linear system. Let |V | ⊆ | H0(OX(1))| be a
codimension-1 very ample linear subsystem. Let Y := φ|V |(X) ⊂ Pr−1 be an

isomorphic projection. Define the S-module R̃(X) = ⊕t≥0R̃(X)t by letting
R̃(X)0 := C and R̃(X)1 := V and R̃(X)t := H0(OX(t)) for t ≥ 2. Let β̃i,j
be the graded Betti numbers of a minimal resolution of R̃(X) as an S-module.
For any integer p ≥ 0, we say that V , or Y , satisfies propertỹNp if β̃0,0 = 1, if
β̃0,j = 0 for j > 0, and if β̃i,j = 0 for 1 ≤ i ≤ p and j > i + 1.

Note that property Ñ0 means that Y is k-normal for every k ≥ 2; property Ñ1

means that furthermore the homogeneous ideal of Y is generated by quadrics,
etc. In the previous sections, we showed that, in many cases, a generic smooth
projection of a varietyX satisfies property Ñ0 ifX satisfiesN0. On the contrary,
here we show that property Np for p ≥ 1 has bad behaviour under projection,
even in the simplest cases.

First recall that property Ñp can be characterized, as in [G], by the vanishing of
certain Koszul cohomology groups. Recall the definition of the Koszul complex
associated to V :

→ 
p+1V ⊗C S(−p − 1) → 
pV ⊗C S(−p) → 
p−1V ⊗C S(−p + 1) →,
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and of the homogeneous degree (p + q)-part of the twisted complex

→ 
p+1V ⊗C R̃(X)q−1
dp+1,q−1−−−−→ 
pV ⊗C R̃(X)q
dp,q−−−→ 
p−1V ⊗C R̃(X)q+1 →

The Koszul cohomology groupKp,q(V , R̃(X)) is the cohomology group:

Kp,q(V , R̃(X)) := ker(dp,q)

im(dp+1,q−1)
.

Recall the following two conditions are equivalent (see [B2], 2.2 and also [G]):

1. V satisfies the property Ñp

2. Ki,q(V , R̃(X)) = 0 for 0 ≤ i ≤ p and q ≥ 2.

The previous equivalence tells us it is useful to study the Koszul cohomology
groups associated to codimension-1 very ample subspaces V ⊂ H0(OX(1)).
In particular, we will concentrate on the group K1,2(V , R̃(X)), which is the
cohomology in the middle of the following sequence of complex vector spaces:

→ 
2V ⊗C V
α→ V ⊗C H0(OX(2)) β→ H0(OX(3)) → 0.

Let us fix some more notation. Let e0, . . . , er be a base of the vector space
H0(OX(1)) such that e0, . . . , er−1 form a base of V . Then

S(V ) = C[x0, . . . , xr−1],
and we can identify V and the elements of degree 1 in C[x0, . . . , xr−1]. We will
use square brackets to indicate the classes modulo IY of the elements of Sk(V ).
If Y is 2-normal and 3-normal, then every element of H0(OX(2)) can be written
in the form [∑i,j ai,j ei ⊗ ej ] and every element in H0(OX(3)) has an expression
of the form [∑i,j,k bi,j,kei ⊗ ej ⊗ ek].

Let us recall that by definition

β(ei ⊗ [ej ⊗ ek]) = [ei ⊗ ek ⊗ ej ],
or equivalently, by the identification of S with C[x0, . . . , xr−1] we have

β(xi ⊗ [xjxk]) = [xixjxk].
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By definition α operates in the following way:

α((ei ∧ ej )⊗ ek) = ej ⊗ [ei ⊗ ek] − ei ⊗ [ej ⊗ ek].
The conclusion is that, if Y is a 2-normal and 3-normal variety, then to show

that im(α) � ker(β), i.e., that K1,2 �= 0, it is sufficient to prove that in ker(β)
there are some elements not of the following type∑

ai,j,k(xj ⊗ [xixk] − xi ⊗ [xjxk]).
Below will use the following technical remark.

Remark 4.1. In the above notation, two elements xa ⊗ [xbxc] and xd ⊗ [xexf ]
are equal in V ⊗ H0(OX(2)) if and only if xa = xd and xbxc − xexf ∈ IY .

We proceed by proving the following theorem.

Theorem 4.2. Let X ⊂ Pr be a k-normal variety,k ≥ 1, whose ideal is
generated by quadrics, i.e.,X satisfies propertiesN0 andN1. LetY ⊂ Pr−1 be
an isomorphic projection ofX from the point(xr)∞ = (0 : . . . : 0 : 1) for which
the propertyÑ0 holds. Suppose that, among the generators of the idealIX, there
are two irreducible degree2 polynomials of the formx2

h−xaxrandφ2 −xhxr with
φ2 ∈ C[x0, . . . , xr−1]2 andh �= r, a �= r, a �= h and that there is no irreducible
polynomial vanishing onX of the formx2

h − ψ2 with ψ2 ∈ C[x0, . . . , xr−1]2.

ThenK1,2(V , R̃(X)) �= 0, and hence there is at least one cubic generator ofIY ,
namely, the cubic formx3

h − xaφ2.

Proof. As usual, we can identify V and C[x0, . . . , xr−1]1. By eliminating xr
from the above degree-2 polynomials, we have x3

h − xaφ2 ∈ IY ; hence,

0 = [x3
h − xaφ2] = β(xh ⊗ [x2

h] − xa ⊗ [φ2]).
Thus xh ⊗[x2

h]− xa ⊗[φ2] ∈ ker(β), but it is not in im(α) as we will now show.
Let us suppose that

xh ⊗ [x2
h] − xa ⊗ [φ2] =

∑
i,j,k

ai,j,k{xj ⊗ [xixk] − xi ⊗ [xjxk]}

with i, j, k �= r . By Remark 4.1, we have

xh ⊗ [x2
h] =

∑
ai,h,kxh ⊗ [xixk] −

∑
ah,j,kxh ⊗ [xjxk]
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(recall that a �= h). Therefore, we have

x2
h −

∑
ai,h,kxixk +

∑
ah,j,kxjxk ∈ IY .

Since Y is the projection from (xr)∞ of X, we would have

x2
h −

∑
ai,h,kxixk +

∑
ah,j,kxjxk ∈ IX,

in contradiction to the assumptions on the elements of IX. �

Example 4.3. (Projections of rational normal curves of degree r ≥ 4). Let
X ⊂ Pr be a rational normal curve of degree r ≥ 4. Denote the ideal of X by
IX. It is generated by the 2 × 2 minors of the 2 × r matrix(

x0 x1 . . . xr−1

x1 x2 . . . xr

)
.

The point p = (0 : 1 : 0 : . . . : 0 : 1) does not belong to Sec(X). Modulo a
projective transformation sendingp into (xr)∞, we can suppose that the equations
defining X are given by the 2 × 2 minors of the matrix(

x0 x1 + xr . . . xr−1

x1 + xr x2 . . . xr

)

and that (xr)∞ �∈ Sec(X). The hypothesis of Theorem 4.2 are satisfied: proper-
tiesN0 andN1 hold forX; by Theorem 3.2 we know that Y satisfies property Ñ0,
where Y is the projection from (xr)∞ of X; the assumptions on the generators
of IX are fullfilled by taking, for example, h = r − 1 and a = r − 2 and the
two polynomials x2

r−1 − xr−2xr and xr−1(x1 + xr)− x2xr−2, which is xr−1x1 −
x2xr−2 + xr−1xr ; there are no polynomials of type x2

r−1 −ψ2(x0, . . . , xr−1) van-
ishing on X. Then, by Theorem 4.2, the ideal IY has a cubic generator of the
following form:

x3
r−1 − xr−2(x2xr−2 − x1xr−1).

We now construct some counterexamples to Theorem 3.1 of [B2] by using the
above results.

Given a base point free linear system |V | ⊆ |L| on an algebraic variety X, we
introduce the locally free sheaf MV over X by the following exact sequence:

0 → MV → V ⊗ OX → L → 0.

Let us recall the following assertions of [B2]:
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1. Let |V | ⊆ |L| be a 2-normal very ample linear system on X, and p ≥ 0
an integer. If H 1(
iMV ⊗ Lk) = 0 for 1 ≤ i ≤ p + 1 and k ≥ 1, then
φ|V |(X) ⊂ P(V ) satisfies property Ñp (Theorem 2.4 of [B2]).

2. Let X be a curve, and |V | ⊆ |L| a 2-normal very ample linear system on
X. If H 1(
iMV ⊗ L) = 0 for some p ≥ 0 and 1 ≤ i ≤ p + 1, then
φ|V |(X) ⊂ P(V ) satisfies property Ñp (Corollary 2.6 of [B2]).

3. Let |V | ⊆ |L| be a very ample linear system on X satisfying property Ñ0.
If H 1(
2MV ⊗Lj ) = 0 for j ≥ k − 1, then the ideal of φ|V |(X) ⊂ P(V )
is generated by forms of degrees k or less (Theorem 3.1 of [B2]).

The following example is a counterexample to the previous assertions.

Example 4.4. Let X ⊂ Pr be a rational normal curve of degree r ≥ 4 given
by the equations at the end of Example 4.3. Let V ⊂ H0(OP1(r)) be the very
ample linear system associated to the projection from (xr)∞ as above. Since V
has no base points on X, we have an exact sequence of locally free sheaves

0 → MV → V ⊗ OP1 → OP1(r) → 0.

By construction H0(V ⊗ OP1) injects into H0(OP1(r)) giving h0(MV ) = 0.
Since MV is a rank r − 1 vector bundle on P1, and since deg(MV ) = −r and

h0(MV ) = 0, we have the following splitting for MV :

MV 
 ⊕r−2
1 OP1(−1)⊕ OP1(−2).

Then H 1(
iMV ⊗ OP1(rm)) = 0 for i = 1, 2 and for every m ≥ 1. In the
language of [B2], we say that Y ⊂ Pr−1 possesses the property Ñ0, but not the
property Ñ1, since its ideal requires at least a cubic generator, as was shown in
Example 4.3.

In Proposition 3.6 we proved that the ideal of the projected Veronese surface
Y ⊂ P4 is generated by cubic forms and that Y is k-normal for every k ≥ 2,
i.e., Y satisfies property Ñ0 but not property Ñ1, in opposition to Theorem 3.1 of
[B1].

In the following example, we will show that there exist 1-codimensional very
ample subspaces V ⊂ H0(OP2(d)), for every d ≥ 3, satisfying property Ñ0,
but not property Ñ1, in opposition to Theorem 3.1 of [B1]. Moreover, we will
produce an explicit cubic generator of the projected surface Yd = φ|V |(P2) ⊂
P(d

2+3d−2)/2. These will be further counterexamples to Theorems 2.4 and 3.1
of [B2], they show that the vanishing of the cohomology groups associated to
exterior powers of MV does not imply the vanishing of K1,2.
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Example 4.5. (ProjectedVeronese surfaces of degreed ≥ 3). Let us consider
the Veronese embedding of P2 by forms of degree d, Xd = νd(P2) ⊂ P(d

2+3d)/2,
d ≥ 3. Then Corollary 3.4 implies that every 1-codimensional very ample
subsystem V ⊂ H0(OP2(d)) is 2-normal and that Yd = φ|V |(P2) is k-normal for
every k ≥ 2, i.e., Yd satisfies property Ñ0. In fact, s = (d2 + 3d − 4)/2 and
d2 ≤ 2s − 1 = d2 + 3d − 5.

Let us take the distinct monomials of degree d ≥ 3 in x, y, u as a basis
of H0(OP2(d)) and in P(d

2+3d)/2 let us take coordinates in the following way:
x0 = ud , x1 = xd , x2 = yd , x3 = xud−1, x4 = xd−1u, x5 = yud−1, x6 = yd−1u,
x7 = xd−1y, x8 = xyd−1 and so on. Among the elements of the ideal ofXd there
are the quadratic polynomials:

x0x1 − x3x4, x0x2 − x5x6, x1x2 − x7x8.

One verifies that p = (1 : 1 : 1 : 0 : · · · : 0) does not belong to Sec(X), or
equivalently, that p �∈ Z2(Xd)red, which is computationally easier.

Apply the projective transformation

ω : x ′
0 = x0, x

′
1 = x1 − x0, x

′
2 = x2 − x0, x

′
j = xj for 3 ≤ j ≤ r,

and denote the new variables by x0, x1, . . . , xr . Then the polynomials

(x0 + x1)x0 = x3x4, (x0 + x2)x0 = x5x6, (x0 + x1)(x0 + x2) = x7x8

vanish on ω(Xd). Hence the quadratic polynomials

x0x2 + x1x2 − x7x8 + x3x4 and x0x1 + x1x2 − x7x8 + x5x6

vanish on ω(Xd) too.
Project ω(Xd) from the point p = (1 : 0 : 0 : 0 : · · · : 0). We obtain a smooth

projective surface Y ′
d . The cubic polynomial

ψ := x1x7x8 − x1x3x4 − x2
1x2 − x2x7x8 + x2x5x8 + x1x

2
2

vanishes on Y ′
d because it is obtained by eliminating the variable x0 between the

two above quadratic polynomials vanishing on ω(Xd). We will show that ψ
gives an element ψ ′ that is in ker(β), but not in im(α); i.e., it can be taken as a
cubic generator of the ideal of Y ′

d .
Let us remark that there are no quadratic elements in the ideal of ω(Xd)

containing monomials in x2
1 , x2

2 or x1x2 and not containing monomials in x0xj .
Hence ψ gives rise to an element that is not in im(α).
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Indeed, let us consider

ψ ′ := x1⊗[x7x8]−x1⊗[x3x4]−x2⊗[x1x1]−x2⊗[x7x8]+x2⊗[x5x6]+x1⊗[x2x2]
such that β(ψ ′) = [ψ] = 0. If ψ ′ were equal to an element of the form∑

i,j,k

ai,j,k{xj ⊗ [xixk] − xi ⊗ [xjxk]}

with i, j, k �= 0, then by remark 4 this expression would contain the term

−x2 ⊗ [x1x1] + x1 ⊗ [x2x1] + x1 ⊗ [x2x2] − x2 ⊗ [x1x2] + · · ·
and then we would have

x1 ⊗ [x7x8] − x1 ⊗ [x3x4] − x2 ⊗ [x7x8] + x2 ⊗ [x5x6]
= x1 ⊗ [x2x1] − x2 ⊗ [x1x2] + · · · .

But 4.1 tells us that also this relation is impossible, because there are no elements
in the ideal of ω(Xd) that contain monomials in x1x2 and no monomials with
x0. By construction, any polynomial in the variables x1, . . . , xr vanishing on Y ′

d

gives a polynomial vanishing on ω(Xd) not containing the variable x0.
Then, by looking back at the previous coordinates, we have that there exists a 1-

codimensional very ample subsystem of |OP2(d)| corresponding to hyperplanes
through the point p = (1 : 1 : 1 : 0 : · · · : 0) that does not satisfy property Ñ1.

In [BE2] generic projections of ruled and Veronese surfaces were studied. In
the above terminology, we can rephrase Theorem 3 of [BE2] as follows: a general
projection of νd(P2) ⊂ P(d

2+3d)/2 into Pk, where k ≥ 2d, satisfies property Ñ0.
As we pointed out before, Theorem 2.6 allows us to describe completely the

open subset parameterizing very ample subsystems satisfying property Ñ0 in the
corresponding Grassmannians of subspaces of H0(OP2(d)). In fact, we can con-
struct examples of surfacesWd ⊂ P2d of degree d2 that are projections of νd(P2)

and that are k-normal for every k ≥ 2. It suffices, at every step, to take the center
of projection outside the corresponding scheme Z2; moreover, computationally
the method is highly efficient. In particular, since h0(OP2(2d)) = h0(OP2d (2))
and since IWd is 3-regular by Proposition 1.2, IWd is generated by cubics, and the
minimal resolutions of IWd are 3-linear according to Eisenbud-Goto (see [EG]).
Hence we have an effective method for constructing prime ideals of arbitrary
codimension that are 3-linear.

According to [EG], p. 92, it is particularly interesting to ask about domains of
type S/I having p-linear resolution, with I homogeneous prime saturated ideal,
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i.e., to construct examples of algebraic varieties whose ideal is p-regular and
generated by forms of degree p. Let us point out that, for any homogeneous
ideal I , clearly I≥p := ⊕t≥pIt always has a p-linear resolution for p large
enough, but it is neither saturated, nor prime.

Acknowledgements. We wish to thank the referee for his very careful reading
and for the suggestions about style. We also thank the editor for his precise
revision.
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