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On the k-normality of projected algebraic varieties

Alberto Alzati! and Francesco Russo?

Abstract. We give a necessary and sufficient condition for the isomorphic projection
of ak-normal variety to remain k-normal, k > 2; the condition is based on a scheme Zy
naturally associated to degree k forms vanishing on the variety. We furnish many appli-
cations and examples especially in the case of varieties defined by quadratic equations.
A non-vanishing theorem for the Koszul cohomology of projected varieties allows usto
construct interesting examplesin the last sections. All the results are effective and also
interesting from the computational point of view.
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I ntroduction

Let £ beavery ampleinvertible sheaf onanirreduciblealgebraicvariety X andlet
V C H(L) beavector subspace defininganembedding¢;y,: X < P(V) =P".
We say that X c IP", or thelinear system | V|, isk-normalif the restriction map

S(V) = HY(Op: (k) — HY(Ox (k) = HO(L*)

is surjective. We say that the variety X c P, or the linear system |V|, is
projectively normalf X isanormal algebraic variety that is k-normal for every
k> 1.

If n = dim(X) andd = deg(X) = £" (at least for r > 2n + 1), one could
expect that X C P" isk-normal for k > d + n — r (Castelnuovo bound). This
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28 ALBERTO ALZATI AND FRANCESCO RUSSO

statement was proved for (possibly singular) curves in [GLP] and for surfaces
in[L], generalizing the classical results of Castelnuovo [C] for curvesin P2, see
aso [K].

In this paper, we deal with the following problem: given an algebraic variety
X C P that isk-normal, k > 2, and projecting it from a point p € P such
that the projection 7,: X — P! is an isomorphism (i.e, p is neither on
any secant line to X nor on any tangent embedded space to X), when is the
variety Y = 7,(X) c P! dtill k-normal? Or, equivalently, do there exist
conditions depending on X and V guaranteeing that a 1-codimensiona very
ample subsystem of ak-normal linear system |V | is till k-normal?

If Y isk-normal, then, by Proposition 2.1,

k—1
(1 (k) = (r * ) ) + hO(2y (K)).

Hence h%(Zx (k) = ("71), or equivalently h°(0x (k) < ("H*71).

Fork > 2, weintroduceadeterminantal schemeZy (X) associatedtothedegree
k forms vanishing on X. We prove that, if X is k-normal and if h°(1x(k)) >
(”’j’l), then an isomorphic projection of X isk-normal if and only if the center
of projection p does not belong to Z (X), to any secant line, or to any tangent
embedded space (Theorem 2.6). In this way, we get a criterion that completely
describesthe 1-codimensional k-normal subsystemsof ak-normal linear system.
This criterion seemsto have been unknown even for k = 2.

In Theorem 2.7, we show that, for asmooth algebraic variety with 1°(7x (2)) >
r+1, wehaveSec(X) C Z,(X)eq (thevariety of secant lines Sec(X) isareduced
scheme by definition). Since Z,(X) is a determinantal scheme, this result is
aso interesting from a computational point of view in order to find a center of
projection not lying on the secant variety. Moreover, this result gives an easy
way of controlling 2-normality under projections. In particular, we provethat the
projection of a smooth projectively normal variety is k-normal for every k > 2
if and only if the center of projection p does not belong to Z,(X).

In Section 3, we focus on varieties cut out by quadratic equations. We study
these quadratic equations as elements of linear systems on the ambient space
and welook at the conditions assuring that Z,(X)eg = Sec(X). For instance we
apply Theorem 2.7 to show that the smooth projections into P~ of a smooth
variety X C IP" satisfying property N, are k-normal for every k > 2 (Corollary
3.3).

Let usrecall the following examples of varieties satisfying property N, to see
the wide range of possible applications: varieties of minimal degree, smooth
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ON THE k-NORMALITY OF PROJECTED VARIETIES 29

curves embedded by a line bundle of degree at least 2¢g + 3, canonical curves
whose Clifford index is bigger than 2, Segre varieties, Veronese embedding of
P, al embeddings of any projective variety given by a sufficiently ample line
bundle and embeddings given by suitable adjoint line bundles. Applicationsand
examples follow in abundance in Sections 3 and 4. Moreover, we remark that
if Zo(X)reg = Sec(X), then we have an effective method for writing down the
equations of Sec(X).

In Section 4, we use Theorems 2.6, 2.7 and 3.2 to construct some counterex-
amplesto Theorem 2.4, Corollary 2.6 and Theorem 3.1 of [B2], see Example 4.3,
Example 4.4 and Example 4.5; these examples show that the “cohomological”
vanishing theorems for Koszul cohomology work essentially only for projec-
tively normal linear systems, where they were extensively used and applied (see
[G], [GL]). In fact, we prove a non-vanishing theorem for the Koszul coho-
mology of avariety that isasmooth projection of a projectively normal variety
defined by quadrics of small rank and of particular types (Theorem 4.2). Using
this theorem, we also give a counterexample (Example 4.5) to Theorem 3.1 of
[B1] by constructing, for every d > 2, an explicit cubic generator of theideal of
the projectioninto PV @1, where N (d) = (“4?) — 1, of the Veronese embedding
X = v (P?) c PN@,

Finally, we relate our results to known results on generic projections of v, (IP?)
into P* where k > 2d, see [BE2]. Theorem 2.6 allows us to describe explic-
itly the k-normal linear subsystems. Furthermore, it yields an efficient way of
constructing examples; in particular, by studying 2-normal projections of the
Veronese surface into P2 for every d > 3, we can construct a prime ideal of
arbitrary codimension having a3-linear resolution, i.e., generated by cubic forms
and with syzygies generated by linear forms, answering to a question posed in
[EC], p. 92.

1 Notationsand definitions

Given anr + 1 dimensional vector space V be over C, let S = ®°,S¥(V) and
P(V) = Proj(S) = P". Let X bean algebraic variety, £ avery ampleinvertible
sheaf, and V < HO(L) alinear subspace. Then V defines an embedding

¢|V| X = P(V) =P

Note that S = @0 H(Op (k)) in this case. Abusing notation, we will use the
same letter X also for ¢,y |(X). We say that X C P, or thelinear system |V |, is
k-normalif the restriction map

S(V) = HY(Op: (k) — HY(Ox (k) = HO(L*)
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30 ALBERTO ALZATI AND FRANCESCO RUSSO

is surjective.

We say that the variety X c P, or the system | V|, is projectively normal
if X isanormal agebraic variety that is k-normal for every k > 1. If Visa
proper subspace of HO(£), we cal ¢y, a noncomplete embeddingnd |V| a
noncomplete very ample linear systeNote that a noncomplete embedding is
the composition of the embedding defined by the complete linear system | L]
with alinear projection.

Given a coherent sheaf F on P, set I',(F) := @,z HO(F(1)). Given a
homogeneous ideal 1 = @1, € S, cal I = I',(I) € I.(5) = S the
saturationof 7, where I and S are the associated sheaves. If I = ¥, call I
saturated Given any positiveinteger m, call / m-saturatedf 7, = I’ for every
t>m.

Givenany X C P, set Iy := I',(Zx), where 7y is the ideal sheaf of X.
Set S(X) := S/Ix, which is the homogeneous coordinate ring of X; obviously
S(X) is a graded C-algebra generated by its degree one part. Set R(X) :=
D, HP(Ox (k)). Thereisanatura map y : S(X) — R(X), whichisan injec-
tive homomorphism of graded C-algebras. Observethat, if X ¢ P isk-norma
forevery k > 1, thenthegraded C-algebra R (X) isgenerated by itshomogeneous
degree-one part, since S(X) ~ R(X). That observation has this consequence,
which we need.

Lemma 1.1. LetX c P be an algebraic variety that is-normal for every
k > 1. LetY c P"~! be anisomorphic projection df. If there exists a positive
integerko such thaty is kp-normal, theny is k-normal for everyk > k.

Proof. Lety: S(Y) — R(Y) be the natural map. Since R(Y) >~ R(X) ~
S(X), both R(Y) and S(Y) are finitely generated graded C-algebras generated
by their degree-one parts. We now usethefollowing general fact: lety: S < R
be an injective homomorphism of graded C-algebras generated by their degree-
one parts; if there exists a kg for which y,: Sy, — Ry, isanisomorphism, then
Vi S < Ry isanisomorphism for every k > ko. O

Letm € Z. A coherent sheaf ‘F onP” iscalled m-regularif H' (‘F(m —i)) = 0
for every i > 0, (see[Mu], p. 99). A homogeneousidea I C S iscaled m-
regularif it ism-saturated and if the associated ideal sheaf TonP ism-regular.
Let I C S beahomogeneousideal, and let

E,:0—-E,—-E, 1—>...>Ey—1—-0
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ON THE k-NORMALITY OF PROJECTED VARIETIES 31

be any minimal graded free resolution of 7. Recall that the following conditions
are equivalent (see[E], p. 510):

1. I ism-regular,;
2. E; isthedirect sum of modules S(—j) withj <m +iforO<i <n.

In particular, a saturated m-regular homogeneous ideal I C S is generated by
forms of degreesm or less.

Let I C S be ahomogeneous ideal, M afinitely generated S-module. Say
that 1, respectively M, has ap-linear resolutionover S if every minimal graded
free resolution E, of I, respectively of M, issuchthat E; = S(—p — i)# for
every 0 < i < n and for suitable integers 8;. In other words, I has a p-linear
resolution if I, = Ofort < p, if I isgenerated by forms of degree p, and if all
the maps of any minimal resolution are represented by matrices of linear forms.
We will construct some examples with p = 3 at the end of the paper.

Let F beacoherent sheaf onIP". If F ism-regular, then, by the Castelnuovo—
Mumford lemma (see [Mu], p. 100),

1. Fis(@n + 1)-regular, and
2. the map H(Op: (1)) ® HO(F (m)) — HO(F(m + 1)) issurjective.

In the following proposition, we collect some simple consegquences, which will
be used below.

Proposition 1.2. Let £ be a very ample line bundle on a projective varigty
such thatH’*1(£17") = 0for0 < i < dim(X) — 1, and let|V| C | £| be a very
ample linear system. Set:= dim(V) —1andX := ¢;y(X) C P". If X is
2-normal, thertZy is 3-regular; furthermore, theiX is k-normal for every > 2,
and its ideal is generated in degr8eor less.

Proof. To prove 7y is 3-regular, we have to show i’/ (P", 7x (3 — j)) = O for
j = 1. Thisvanishing results by considering the exact sequence

0—->12xB—)j) = Opr(B—j) > 0xB—-j)—>0

with j = i + 2. The last two assertions now follow from the Castelnuovo—
Mumford lemma. O
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32 ALBERTO ALZATI AND FRANCESCO RUSSO

We now want to recall the definition of the N, property of a nondegenerate
closed subvariety X c P". Let E, beaminimal free resolution of the S-module
R(X) = @=0H(Ox (k)),

E.:0— @;S(—j) - ... > @;S(—j)? — R(X) — 0.

For any integer p > O, we say X satisfies property N, if foo = 1,if Bo; =0
for j > O0andif g;; =0forl <i < pandj > i+ 1. Property No means
that X is k-normal for every k > 1. Property N; means that furthermore the
homogeneous ideal of X is generated by quadratic forms. Property N, means
that furthermore the syzygies among the quadratic generators are generated by
linear forms, etc.

2 Themain results

Inthissection X C P" is anondegenerate subvariety, ,, is the projection from
asuitable point p € P" to a hyperplane avoiding p, and Y := 7,(X) C P~ tis
an isomorphic projection of X.

Assuming X is k-normal for some k > 2, we want to give a necessary and
sufficient conditionfor Y tobek-normal. Let usbeginwithanecessary condition.

Proposition 2.1. LetX c P" be ak-normal variety,k > 2. If Y is k-normal
in P'-1, thenh®(Zy (k) = ("% + hO(2y (k). Henceh®(Ix(k)) = ("7,
or equivalently h%(Ox(k)) < ("t*7%), and equality holds if and only if
hO(1y (k)) = 0.

Proof. Since X isk-normal in P, then

h(1x (k) = h°(Op (k) — h°(Ox (k)
= h%(Op-1(k)) + h°(Op-1(k — 1) + - - - + h%(Opr-1) — %Oy (k)
= (") + h0(Opr-1(k)) — h°(Oy (k)
= (") + 102y (K)),

where the last equality follows from the k-normality of Y. d
We need the following definitions.
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Definition 2.2. Let X C P" be avariety with h%(Zx (k) =: a > ("), and
let f1, ..., f, beabasisof HO(7x(k)). Denote by My (X) the matrix of linear
forms obtained by taking the (k — 1)th partial derivatives of the f; with respect to
the coordinate functions. For any point p € P", denote by M (X)(p) the matrix
obtained by evaluating M (X) at p. Finally, denoteby Z, (X) the (determinantal)
scheme defined by the vanishing of the minors of maximal orders of My (X).

Remark 2.3. Obviously thedefinition of Zy(X) doesnot depend on the choice
of the base of HO(7x (k)). For k = 2, the scheme Z,(X) was classically called
the Jacobian schemef the linear system | HO(7x (2))|. The Jacobian scheme of
alinear system | V| of hypersurfaces of degreek onP" is defined by the vanishing
of the minors of maximal order of the matrix of (k — 1) forms abtained by taking
thefirst partial derivatives of the elements of abase of V.

If hO(Ix(k)) < ("), the scheme Zy(X) can aso be defined in the same
way. In this case Zx(X) was studied classically, and its support is the locus of
verticesof conesof degreek containing X. Inour situation, the support of Zy (X)
is the locus of points p at which the space of these cones, passing through p,
has dimension greater than expected; moreover, Zx(X) is closely related to the
k-normality of projectionsof X from these points, aswewill seein Theorem 2.6.

Note that M, (X) is the (homogeneous) Jacobian matrix of the rational map
associated to the linear system of quadrics| HO(7x (2))|. Thisfact will allow usto
deduce some interesting relations between Sec(X) and Z,(X), see for example
Theorem 2.7 and 3.2 below.

Remark 2.4. A point p € P" does not belong to Z,(X) if and only if
rk(M(X)(p)) ismaximal, i.e., k(M(X)(p)) = ("71).
We have the following result.

Proposition 25. LetX C P be a variety withh°(Ix (k) =: o« > ("™7).
Form the vector space of homogeneous polynomials of dégieéining cones
containingX c P and having given vertex € P". Then this vector space is of
dimensiom®(Zx (k)) — rk(My(X)(p)); moreover, ifY := 7,(X) Cc P tisan
isomorphic projection ok, theni®(7y (k)) = h°(Ix (k)) — rk(Mk(X)(p)).

Proof. Let H* beahypersurfaceof degreek inP". Thenr,(H*) isahypersur-
face of degree k in P’ if and only if H* is acone with vertex passing through
p,i.e,if andonlyif p isapoint of multiplicity k on H*. Hence h°(1y (k)) isthe
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34 ALBERTO ALZATI AND FRANCESCO RUSSO

dimension of the vector space of polynomials of degree k defining cones with
vertex through p and containing X .

We can caculate this dimension as follows. we have to determine
the ai, ... ,a, suchthat f = )7, a; f; defines a hypersurface with a point of
multiplicity k at p; i.e, the (k — 1)th partial derivatives of f must vanish at p.
Let

8k_lf
(@x0) ... (3x,)r

’

be the corresponding system of (’“‘ l) equations in the unknowns ay, . .. , da,,

withig+...+i, =k—1. Seta :=(ay, ... , a,). We seek for the dimension of
the space of solutions of the linear system of homogeneous equations given by

a-M(X)(p) =0.

The result now follows via elementary linear algebra. O

Now we can prove a criterion of k-normality for the isomorphic projections
of ak-normal variety.

Theorem 2.6. Let X C " be ak-normal variety such that®(Zy(k)) >
("1, or equivalentlyh®(Ox (k)) < ("T*]%), and letp € P be such that the
projectionr,: X — Y C P"~1is anisomorphism. Them,(X) =Y c P"lis
a k-normal variety if and only ifp & Zy(X).

In particular, if |V| defines the embedding of a smoéthormal variety X
into P", then every codimensiahvery ample subsystem @f| is k-normal if

and only ifZy(X)reg € Sec(X).

Proof. Proposition 2.5 says that the space of polynomials defining cones of
degree k containing X, with vertex passing through p, has dimension 2°(Zy (k)),
which is equal to h°(7x (k)) — rk(My(X)(p)). Moreover, we obviously have

k(M (X)(p)) < ("),
Therefore, we have
RO (Op—1(k)) — K2y (k) = ("7 — h°(Ix (k) + rK(Mk(p))
(r+k 1) ho(’JX(k)) + (r-H;—l)
(") = hO(2x (k)
= h%(Op (k) — h°(Ix (k)) = h°(Oy (K)),
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where the last equality holds because r,: X — ¥ C P"~! isan isomorphism.
We conclude that Y isk-normal, i.e., that

ho(Opr-1(k)) — hO(Ty (k) = h°(Oy (k)),

if and only if
k(Mc(X)(p)) = (77,
i.e,ifandonlyif p & Zy(X) by Remark 2.4. 0

Theorem 2.6 completely and explicitly describes the condition under which a
very ample codimension-1 (or more) linear subsystem of a k-normal subsystem
remains k-normal. In the literature, there are many results of this sort—for
example, see [M¢], [BE1], [BE2], [B1], [B2]. The difference in our result is
that, with precision, we determine the open subset describing the k-normal very
ample subsystems in the corresponding Grassmannian of subspaces of fixed
codimension. Furthermore, our method is computational .

We now give aversion of Theorem 2.6, which is useful in applications. This
version wasinspired by an unpublished algebraic result proved by Simisand Ul-
rich, relating theideal of Sec(X) to someFitting ideal s of the equations defining
X. Our proof is geometric and completely different.

Theorem2.7. LetX C P be asmooth algebraic variety. i (7x (2)) > r+1,
or equivalentlyz®(0x(2)) < (:“_Li) thenSec(X) C Zo(X)req.

In particular, if also X is 2-normal, thenY := 7,(X) C P"-1is smooth and
2-normal if and only ifp € Z>(X). If also X is projectively normal, thery is

smooth and-normal for everyk > 2if and only if p &€ Z,(X).

Proof. Let us begin with the first part. Let ¢: P" --» P(H%(7x(2))) be the
rational map defined by the linear system | HO(7x(2))| of quadrics through X.
Let f1, .., f, beabasisof HO(7x(2)) andset W := V(f1, ..., f,). Therational
map ¢ isdefined exactly on P \ W. We havetheinclusion W C Z,(X) because
for every p € W the homogeneous system of linear equations

Mo(X)(p) - (x0...x:) =0

is satisfied by the coordinates of p by the Euler formula.

Teke a point p € Sec(X) \ W, and let [, be a (proper) secant line passing
through p. The restriction of ¢ to [, is given by a linear system of degree 2
having exactly two base points, possibly coincident, so that ¢ contracts/, to a
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point. Therefore, rk(M,(X)(p)) isnot maximal by the sensitivity of the Jacobian
of ¢. Hence p € Z,(X) by Remark 2.4.
The second part follows from Theorem 2.6 and Lemma 1.1. O

Itiscomputationally difficult to find apoint outsidethe secant variety of agiven
variety X C P". If h°(1x(2)) > r + 1, Theorem 2.7 says that it is sufficient
to choose p ¢ Z,(X). This condition is easier to verify because Z,(X) is an
explicit determinantal scheme.

In [M¢g] the author produced some examples of projectively normal linear
systems for which every codimension-1 subsystem is 2-normal (and hence k-
normal for every k > 2 by Lemma 1.1). In these examples, the condition
Z2(X)red = Sec(X) is aways (and easily) verified. We will return to these
examplesin Corollary 3.3 and Theorem 4.2. In the following example, we show
that, in general, the support of Z,(X) is not contained in Sec(X).

Example2.8. LetX = v3(P?) c P° betheVeroneseembedding of P2 by forms
of degree3. Then X isaprojectively normal Del Pezzo surface of degree 9, whose
ideal is generated by quadrics. Theorem 3.2 below assures that Zy(X)reg =
Sec(X). By Theorem 2.7, the smooth isomorphic projections Y  P® are k-
normal for every k > 2; i.e, every codimension-1 very ample subsystem of
|Op2(3)| isk-normal for every k > 2.

For such surfaces Y C IP®, we can verify that Z»(Y) S IP8. Applying Theorem
2.7, we conclude that a general projection W C P’ of Y is k-normal for every
k > 2. Here “general” means that the center of the projection does not belong
to Zo(Y).

Since W is2-normal, wehave h°(Zy (2)) = 8 = ("+%). Lookingat Mo(W), we
see det(M2(W)) # 0. Hence Z,(W) is a hypersurface of degree 8 in P’. Since
Sec(W) isirreducible of dimension 5, we have Sec(W) g Z>(W)req. Projecting
from apoint p € P7\ Z,(W), we obtain a smooth surface S ¢ P®, which is k-
normal for every k > 2 by Theorem 2.7. Proposition 1.2 yieldsthat S is3-regular
and that theideal of S isgenerated by cubic polynomials because #1°(75(2)) = 0.
The resolution of the ideal of S is then 3-linear because this ideal is 3-regular
and it is generated by cubic polynomials.

If we project W from apoint p € Z,(W) \ Sec(W), then the projection will
be smooth, but not 2-normal.

For smooth projections of vz(P?) into P8, the sharp Castelnuovo bound of [L]
assures that these projections are k-normal for every k£ > 3, whereas we have
shown they are also 2-normal. For smooth projections into P7 and P, we can
explicitly determinethe 2-normal subsystemsof a2-normal |V | C | HO(Op2(3))]
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of projective dimension 8.

3 Projected varietiesthat are k-normal for every k > 2

In this section, we study projectively normal varieties having smooth isomorphic
projections that are k-normal for every k > 2. From now on, X will be smooth
and nondegenerate in IP" of degree d and codimension s.

Let usrecall the following definition introduced in [V], 2.2.

Definition 3.1. A subscheme W C P satisfies condition K, if W is scheme
theoretically cut out by forms Fo, ... , F, of degree d such that the trivia (or
Koszul) syzygies among the F; are generated by the linear syzygies.

Theorem 3.2. Let X Cc P be a smooth2-normal variety such that
(X, H%(7x(2))) satisfies conditiork, and such thaSec(X) S P". Then ev-
ery smooth projection ok into P"~! is a 2-normal variety. In particular ifX
is also projectively normal, then every smooth isomorphic projectiaxi wito
P is ak-normal variety for every > 2.

Proof. By Theorem 2.7, itissufficient to provethat 2°(7x (2)) > r + 1 and that
Z>(X)red € Sec(X). But these conditionshold since, if (X, HO(7x(2))) satisfies
condition K, thentheassociated rational map ¢ yoesy, 2y : P --» P (H2(2x(2)))
isan embedding off Sec(X); see[V], Corollary 2.5. d

Corollary 3.3. LetX c P" be a smooth variety satisfying conditio» and
such thatSec(X) & P’. Then every smooth isomorphic projection)ofs k-
normal for everyk > 2.

Proof. Itisimmediate to see that condition N, implies condition K. O

The above results can be applied to a large class of examples: varieties of
minimal degree, smooth curves embedded by a line bundle of degree greater
than or equal to 2¢g + 3, canonical curves whose Clifford index is bigger than 2,
Segre varieties, Veronese embeddings of P, all sufficiently ample embeddings
of any projectivevariety, suitable embeddingsgiven by adjoint bundles. All these
examples satisfy condition N, and every smooth isomorphic projection is then
k-normal for every k > 2. (See [M¢] for a different treatment made by explicit
calculationsin some of the above cases.)
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Corollary 3.4. LetX C P" be asmooth linearly normal variety wigec(X) ;
P". Supposél(Ox) = 0if dim(X) > 2. If d < 25 — 1, thenX is arithmetically
Cohen-Macaulay, and every smooth isomorphic projectioX afto P! is a
k-normal variety for every > 2.

Proof. In proposition 2 of [AR], it is proved that, if X is as above, then it is
arithmetically Cohen-Macaulay, and it satisfies condition N,. We can now apply
Corollary 3.3. d

Theidea of verifying that the condition Sec(X) = Z,(X)req holds by looking
at the rational map defined by | H(7x (2))| can be exploited also in the following
interesting examples. Let us recall the definition of Severi varieties.

Definition 3.5. A smooth irreducible nondegenerate subvariety X ¢ P” issaid
to be aSeveri varietyf dim(X) = %(r — 2) and Sec(X) ; Pr.
In[Z] Zak proved that there are only four Severi varieties:

1. the Veronese surface vo(P?) C P®,

2. the Segre embedding of P? x P? in P8,
3. the Pliicker embedding of G(1, 5) in P4,
4. a16 dimensional Eg variety in P2,

The Severi varieties have the following uniform description. Let Ar denote
R,C,HorQ,i.e.,thefour rea division algebras of real dimension, respectively,
1,2,4,8. Let A = Ar ®g C and let HR denote the Ar-hermitian formson A3,
i.e., the3 x 3 Ag-hermitian matrices. If x € Hp, then we may write

a1 By Ez
X = B1 a2 B3
B2 B3 a3

witha; € Rand 8; € Ag. Let H = Hyr ®g C, and let X C P(H) the locus
of rank one elements.

The four Severi varieties are exactly X ¢ P(H) for Ag = R, C, H, O and
Sec(X) isthe locus of rank 2 matrices; clearly X isdefined by dim(P(#H)) + 1
quadrics. These quadrics definearational map, 7: P(H) --» P(H'). One sees
that T isabirational, involutory map that is an isomorphismon P(H) \ Sec(X).
In fact, by writing down the equations defining X, one verifies that T is the
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composition of the map sending amatrix in H to the matrix of its cofactors and
of an involutory projectivity of P(H'). The cases of the Veronese surface and of
the Segre 4-fold are classical (see for example [SR]).

A dightly different proof of the birationality of 7 is given in Theorem 2.5 of
[ES], where the above Cremona transformations are characterized as the only
guadro-quadricspecial Cremona transformations.

By the previous results we can prove the following proposition.

Proposition 3.6. Let X c P be one of the four Severi varieties described
above. TherBec(X) = (Zo)red, and if p ¢ Sec(X), thenY = 7,(X) c P tis

a smoottk-normal variety for every > 2. Moreover, the ideals of the projected
Veronese surfaces and of the projection®ok P2 are generated by cubic forms
and haves-linear minimal resolutions.

Proof. The Severi varieties are arithmetically Cohen Macaulay (see for exam-
ple[Z], chapter 111, theorem 1.2). Asthe quadricsdefining them giverisetoara-
tional map that isan isomorphism out of Sec(X), weget that Z,(X)eqg C Sec(X),
and the equality follows by Theorem 2.7. Then the last part of Theorem 2.7
implies that Y is k-normal for every k > 2. For the first two Severi vari-
eties, the 2-normality of Y implies that 7y is 3-regular and that the ideal of
Y is generated by forms of degree less than or equal to three by applying
Proposition 1.2. Since in both cases we have 1°(7y(2)) = 0, the ideal of ¥
is generated by cubic forms and the minimal resolutions of 7, are 3-linear.

O

Remark 3.7. Thefact that the projected Veronese surfacein P* isk-normal for
every k > 2 can be also deduced from theorem 1 of [L]. We have preferred to
give auniform proof, which works for all the Severi varieties.

We remark that Theorem 3.1 of [B1] would imply that the ideal of the
projection of v,(PP?) in P* is generated by quadrics. However, Proposition 3.6
shows that Theorem 3.1 of [B1] isincorrect.

The same idea can also be applied in the following examples, where the
quadratic equations defining the varieties give rise to birational maps, but the
varieties do not satisfy condition K.

Example 3.8. (Projections of rational octic surfacesin P®). Let X c P®
be an octic rational surface obtained as the embedding of the blowup of P? at
8 points p4, ..., ps, no 4 on aline and no 7 on a conic, by the linear system
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of quartics containing the p;. Then X is an arithmetically Cohen Macaulay
surface, whose ideal is generated by 7 quadrics (see [HKS] and [MR]). The
linear system | H(7x(2)| defines a special Cremona transformation of P6, and
Z2(X)red = Sec(X) (see also [ST1] or [HKS]). Then every smooth projection
of X into P° is k-normal for every k > 2 by Theorem 2.7.

Example 3.9. (Projections of septic elliptic scrolls of invariant e = —1in
IP%). Let X = P(F) C P° bethe septic elliptic scroll of invariant e = —1 whose
hyperplane section isnumerically equivalent to Co + 3 f, where Cq isthe unique
section with C§ = 1 and f is the numerical class of afiber. The scroll is a
projectively normal surface whose ideal is generated by 7 quadrics defining a
special Cremona transformation of P® such that Z,(X)req = Sec(X) (see [ST2]
or [HKS]). All smooth projections of X into IP° are k-normal for every k > 2 by
Theorem 2.7.

4 A nonvanishing theorem for the Koszul cohomology of projections of
varieties defined by quadrics of small rank

In [B2], the property N, was generalized to the case of a variety embedded in
IP" by an incomplete very ample linear system. Let |[V| € |H%(Ox(1))| be a
codimension-1 very ample linear subsystem. Let Y = ¢|V|(X) c P~ pean
|somorph|c prolectlon Define the S module R(X) = @,>0R(X)t by Iettlng
R(X)o := C and R(X); := V and R(X), := HO(OX(t)) fort > 2. Let B
be the graded Betti numbers of a minimal resolution of R(X ) asan S-module.
For any integer p > 0, Wesaythat V,orY, satisfies propertW,, if ,300 =1,if
ﬂoj_OforJ >0, and|f;3” =0forl<i<pandj>i+1

Note that property No meansthat Y is k-normal for every k > 2; property Ny
means that furthermore the homogeneous ideal of Y is generated by quadrics,
etc. In the previous sections, we showed that, in many cases, a generic smooth
projection of avariety X satisfies property Ny if X satisfies No. On the contrary,
here we show that property N, for p > 1 has bad behaviour under projection,
even in the simplest cases.

First recall that property N » can becharacterized, asin[G], by the vanishing of
certain Koszul cohomology groups. Recall the definition of the Koszul complex
associated to V:

— A"V @c S(—=p —1) = APV ®c S(=p) = APV ®c S(—p+1) —,
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and of the homogeneous degree (p + ¢)-part of the twisted complex

p+1lqg-1

— APV ® I?(\f) d—>
C qg—1

dp,q

APV Q¢ IEF)_(/)(]
ApilV ®(C E-(/)Oq+l —>
The Koszul cohomology grouf, ,(V, 1?(3(/)) is the cohomology group:

K, q(V,R(X)) := mfg:%.

Recall thefollowing two conditionsare equivalent (see[B2], 2.2 and also [G]):
1. V satisfiesthe property N,

2. Kiq(V, 1?(\}7)) =0for0O<i<pandg > 2.

The previous equivalence tells us it is useful to study the Koszul cohomology
groups associated to codimension-1 very ample subspaces V. C HO(Ox (1)).
In particular, we will concentrate on the group XK 2(V, I?(\)?)), which is the
cohomology in the middle of the following sequence of complex vector spaces:

= AV ®c V 5 V @ H0x(2) 5 H0x(3) — 0.

Let us fix some more notation. Let e, ... , e, be abase of the vector space
HO(Ox (1)) suchthat eg, ..., e,_1 formabaseof V. Then

S(V) =Clxo, ..., xr-1l,

and we can identify V and the elements of degree 1in Clxo, ... , x,_1]. Wewill
use square brackets to indicate the classes modulo 7y of the elements of S<(V).
If Y is 2-normal and 3-normal, then every element of H(Ox (2)) can be written
intheform [Zi’j a; je; ® ej] and every element in H°(Ox (3)) has an expression
of theform [Zw.,k bijrei ®e; @ exl.

Let usrecall that by definition

Blei ®le; ®ex]) =[ei @ex ®ejl,
or equivalently, by the identification of S with C[xg, ... , x,_1] we have

B(xi @ [xjxi]) = [xix;xi].
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By definition o operates in the following way:
a(eiNe)@e) =e;®@[e; ®er] —e; @ e ® e

The conclusion isthat, if Y isa2-normal and 3-normal variety, then to show
that im(a) S ker(B), i.e, that Ky # 0, itis sufficient to prove that in ker(f)
there are some elements not of the following type

Zai,j,k(xj ® [xixk] — x;i @ [xx¢]).

Below will use the following technical remark.

Remark 4.1. Inthe above notation, two elements x, ® [xx.] and x; @ [x.x ]
areequa in V ® H(Ox(2)) if and only if x, = x; and x,x. — x.x; € Iy.
We proceed by proving the following theorem.

Theorem 4.2. Let X C P be a k-normal varietyk > 1, whose ideal is
generated by quadrics, i.eX, satisfies propertied/o and N;. LetY ¢ P'~! be
an isomorphic projection ok from the pointlx,)s, = (0:...:0: 1) for which
the propertyN, holds. Suppose that, among the generators of the itleahere
are two irreducible degre2 polynomials of the formﬁ —Xgx-andeg, — xp, x,- with
¢2 € Clxo, ... ,x_1]2andh # r,a # r,a # h and that there is no irreducible
polynomial vanishing orX of the formxf — Yo with ¥, € Clxo, ..., x,_1]2.
ThenXq2(V, R/(\X/)) # 0, and hence there is at least one cubic generatdi, of
namely, the cubic form? — x,¢s.

Proof. Asusual, we canidentify V and C[xo, ..., x,_1]1. By eliminating x,
from the above degree-2 polynomials, we have x? — x,¢> € Iy; hence,

0 =[x} — xup2] = B(xi ® [x7] — x4 ® [$2]).

Thusx;, ® [x2] — x, ® [¢2] € ker(B), butitisnotinim(c) aswewill now show.
L et us suppose that

X ® [X2] = x4 ® 2] = Y @i julx; ® [xixi] — x: @ [xj])

i,j.k
withi, j, k # r. By Remark 4.1, we have
X ® [P =D ainaxn ® [xixi] — Y anjuxn ® [xjx]
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(recall that a # h). Therefore, we have

2
X, — E a; pkXiXp + E ap,jxkXjXx € Iy.

Since Y isthe projection from (x,)., of X, we would have

2
X — E aj h kXiXk + E an,jixjx; € Iy,

in contradiction to the assumptions on the elements of 7. 0

Example4.3. (Projectionsof rational normal curves of degreer > 4). Let
X C P bearational normal curve of degree r > 4. Denote the ideal of X by
Ix. Itisgenerated by the 2 x 2 minors of the 2 x » matrix

X0 X1 ... Xp_1
X1 X2 ... Xy ’

Thepoint p=(0:1:0:...:0:1) doesnot belong to Sec(X). Modulo a
projectivetransformation sending p into (x,) ., We can supposethat theequations
defining X are given by the 2 x 2 minors of the matrix

X0 X1+x ... X1
< X1+ x, X2 R X, >
and that (x,). ¢ Sec(X). The hypothesis of Theorem 4.2 are satisfied: proper-
ties No and N1 hold for X ; by Theorem 3.2 we know that Y satisfies property No,
where Y isthe projection from (x, ), Of X; the assumptions on the generators
of Iy are fullfilled by taking, for example, h = r — 1 and a = » — 2 and the
two ponnomiaIerz_l — x,_ox, and x,_1(x1 + x,) — x2x,_2, Whichisx,_1x1 —
XoX,_2 + x,_1x,; there are no polynomial s of typexrz_1 —Yo(xg, ..., X,—1) Van-
ishing on X. Then, by Theorem 4.2, the ideal Iy has a cubic generator of the
following form:
x2 1 — Xro2(X2X,—p — X1X,_1).

We now construct some counterexamplesto Theorem 3.1 of [B2] by using the
above results.

Given abase point freelinear system |V| C |£| on an algebraic variety X, we
introduce the locally free sheaf My over X by the following exact sequence:

O—- My - V®0Ox — L— 0.

Let usrecall the following assertions of [B2]:
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1. Let|V]| C |£| bea2-normal very ample linear systemon X,and p > 0
aninteger. If HY(A'My @ £F) = Oforl<i<p+2landk > 1,then
¢v|(X) C P(V) setisfies property N, (Theorem 2.4 of [B2]).

2. Let X beacurve, and |V| C | £| a2-normal very ample linear system on
X. If H{(A'My ® L) = Oforsomep > Oand1 < i < p+ 1, then
év|(X) C P(V) setisfies property N, (Corollary 2.6 of [B2]).

3. Let|V| C |£] beavery amplelinear system on X satisfying property No.
If HY(A’My ® L) = 0for j > k — 1, thentheideal of ¢y (X) C P(V)
is generated by forms of degrees or less (Theorem 3.1 of [B2]).

The following example is a counterexampl e to the previous assertions.

Example4.4. Let X C P" bearational normal curve of degree r > 4 given
by the equations at the end of Example 4.3. Let V C H%(Op1(r)) be the very
ample linear system associated to the projection from (x, )., as above. Since V
has no base points on X, we have an exact sequence of locally free sheaves

0> My - V®Opr — Opi(r) — 0.

By construction HO(V ® Op1) injectsinto HO(Op(r)) giving h°%(My) = 0.
Since My isarank r — 1 vector bundle on P!, and since deg(My) = —r and
h%(My) = 0, we have the following splitting for My :

My ~ ®720p1(—1) @ Op1(—2).

Then HY(A'My ® Opi(rm)) = 0fori = 1,2 and for every m > 1. Inthe
language of [B2], we say that Y C P" ! possesses the property No, but not the
property Ny, sinceitsideal requires at least a cubic generator, as was shown in
Example 4.3.

In Proposition 3.6 we proved that the ideal of the projected Veronese surface
Y C P*is generated by cubic forms and that Y is k-normal for every k > 2,
i.e., Y satisfies property N but not property N1, in opposition to Theorem 3.1 of
[B1].

In the following example, we will show that there exist 1-codimensional very
ample subspaces V. C H%(Op2(d)), for every d > 3, satisfying property No,
but not property N1, in opposition to Theorem 3.1 of [B1]. Moreover, we will
produce an explicit cubic generator of the projected surface Y; = ¢y(P?) C
P(@*+3d-2)/2 These will be further counterexamples to Theorems 2.4 and 3.1
of [B2], they show that the vanishing of the cohomology groups associated to
exterior powers of My does not imply the vanishing of X ».
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Example4.5. (Projected Veronesesurfacesof degreed > 3). Let usconsider
the Veronese embedding of P2 by forms of degreed, X, = v,(P?) C P@*+30)/2,
d > 3. Then Corollary 3.4 implies that every 1-codimensional very ample
subsystem V. C H%(Op2(d)) is 2-normal and that Y, = ¢y(P?) isk-normal for
every k > 2, i.e., Y, satisfies property No. Infact, s = (d? + 3d — 4)/2 and
d?<2s—1=d?+3d—5.

Let us take the distinct monomials of degree d > 3 in x, y, u as a basis
of HO(Op2(d)) and in P@>+3)/2 |gt us take coordinates in the following way:
Xg = ud, X1 = xd, X2 = yd, X3 = xud_l, X4 = xd_lu, X5 = yud_l, Xg = yd_lu,
x7 = x97 1y, xg = xy?~1 and so on. Among the elements of theideal of X, there
are the quadratic polynomials:

X0oX1 — X3X4, X0oX2 — X5Xp, X1X2 — X7X8.

One verifiesthat p = (1:1:1:0: ---: 0) does not belong to Sec(X), or
equivalently, that p & Z>(X4)red, Which is computationaly easier.
Apply the projective transformation

W @ Xy = Xo, X1 = X1 — X0, Xp = X2 — Xo, x} =x;for3<j<r,
and denote the new variables by xg, x1, ..., x,. Then the polynomials
(xo0 + x1)x0 = x3x4, (X0 + x2)x0 = x5%6, (X0 + Xx1)(X0 + X2) = X7X8
vanish on w (X ;). Hence the quadratic polynomials
XoX2 + X1X2 — x7x8 + x3%4 and xgxq1 + x1X2 — x7x8 + X5Xg

vanish on w(X,) too.
Project w (X,) fromthepoint p = (1:0:0:0: ---: 0). Weobtain asmooth
projective surface Y. The cubic polynomial

. 2 2
Y 1= X1X7Xg — X1X3X4 — X1X2 — X2X7Xg + X2X5Xg + X1X5

vanisheson Y}, becauseit is obtained by eliminating the variable xo between the
two above quadratic polynomials vanishing on w(X,). We will show that
gives an element v’ that isin ker(B8), but not in im(«); i.e., it can betaken as a
cubic generator of the ideal of Y.

Let us remark that there are no quadratic elements in the ideal of w(X,)
containing monomialsin xf, x§ or x1x2 and not containing monomialsin xox;.
Hence v givesriseto an element that isnot in im ().
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Indeed, et us consider

V' = x1®[x7xg] —x1®[x3xa] —x2®[x1x1] —X2® [x7x8]+x2® [x5x6] +X1Q [X2X2]

such that B(y') = [v] = 0. If ¥' were equal to an element of the form

Zai,j,k{xj ® [xixe] — x; ® [x;xi 1}

i,j.k
with i, j, k # 0, then by remark 4 this expression would contain the term
—x2 ® [x1x1] + x1 @ [xoxa] + x1 ® [x2x2] — x2 & [x1x2] + - - -
and then we would have

X1 ® [x7x8] — x1 ® [x3x4] — x2 @ [x7x8] + X2 & [x5x6]
= x1 ® [xox1] — X2 ® [x1x2] + - -

But 4.1 tellsusthat also thisrelation isimpossible, because there are no elements
in the ideal of w(X,) that contain monomials in x1x, and no monomials with
xo. By construction, any polynomial inthevariablesxy, ... , x, vanishingon Y}
gives a polynomial vanishing on o (X,) not containing the variable xg.

Then, by looking back at the previous coordinates, we havethat thereexistsa1-
codimensional very ample subsystem of |Op2(d)| corresponding to hyperplanes
through the point p = (1:1:1:0: --- : 0) that does not satisfy property N;.

In [BE2] generic projections of ruled and Veronese surfaces were studied. In
the aboveterminology, we can rephrase Theorem 3 of [BE2] asfollows: ageneral
projection of v, (P?) C P@*+39/2 jnto Pk, where k > 2d, satisfies property No.

As we pointed out before, Theorem 2.6 allows us to describe completely the
open subset parameterizing very ample subsystems satisfying property Nginthe
corresponding Grassmannians of subspaces of HY(Op2(d)). Infact, we can con-
struct examples of surfaces W; ¢ P of degreed? that are projections of v, (P?)
and that are k-normal for every k > 2. It suffices, at every step, to take the center
of projection outside the corresponding scheme Z,; moreover, computationally
the method is highly efficient. In particular, since h°(Op2(2d)) = h°(Op21(2))
and since 7y, is 3-regular by Proposition 1.2, Iy, isgenerated by cubics, and the
minimal resolutions of Iy, are 3-linear according to Eisenbud-Goto (see [EG]).
Hence we have an effective method for constructing prime ideals of arbitrary
codimension that are 3-linear.

According to [EG], p. 92, it isparticularly interesting to ask about domains of
type S/I having p-linear resolution, with / homogeneous prime saturated ideal,
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i.e., to construct examples of algebraic varieties whose ided is p-regular and
generated by forms of degree p. Let us point out that, for any homogeneous
ideal 1, clearly I, := ®;>,1, dways has a p-linear resolution for p large
enough, but it is neither saturated, nor prime.
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