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A rank-three condition for invariant
(1, 2)-symplectic amost Hermitian structures
on flag manifolds
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Abstract. This paper considers invariant (1, 2)-symplectic almost Hermitian struc-
tures on the maximal flag manifod associated to a complex semi-simple Lie group G.
The concept of cone-free invariant almost complex structure is introduced. It involves
the rank-three subgroups of G, and generalizes the cone-free property for tournaments
related to Sl (n, C) case. It is proved that the cone-free property is necessary for an
invariant almost-complex structure to take part in an invariant (1, 2)-symplectic aimost
Hermitian structure. It isalso sufficient if the Lie groupisnot B;, I > 3, G2 or F4. For
B; and F4 aclose condition turns out to be sufficient.
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1 Introduction

The subject matter of thispaper istheinvariant almost Hermitian structureson the
generalized flag manifolds associated to semi-simple complex Lie algebras and
groups. Let G beacomplex semi-simple Lie group and denoteby F = G/ P the
maximal flag manifold of G, where P isaBorel (minimal parabolic) subgroup of
G. Alternatively, F = U/ T whereU isacompactreal formof GandT = PNU
amaximal torus.

The U-invariant almost Hermitian structures on I have been studied recently
in [2] and [10] with different methods. First, in [2] the group G is speciaized
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tobe Sl (n,C), sothat U = SU (n) and F is identified with the manifold of
complete flags of subspaces of C". In this case there exists a natural bijection
between the set of U-invariant almost complex structures on F and n-player
tournaments. Taking advantage of this bijection in [2] the invariant structures
were studied with the aid of the combinatorics of tournaments (see aso [3]).

On the other hand, [10] adopts the general set up, and studies invariant struc-
tures on the flag manifold associated to an arbitrary semi-simple complex group
G. Themethodsof [10] areintrinsic inthe sensethat the combinatorial questions
are resolved within the framework of root systems and Weyl groups.

In both papers the basic issue is the description of the (1, 2)-symplectic Her-
mitian structures. One of the main results is the derivation of a standard form
for the corresponding invariant almost-complex structures. In [2] the standard
form isgiven in terms of stair-shaped incidence matrices of tournaments, while
in the general setting of [10] it is proved that the (1, 2)-symplectic Hermitian
structures can be put in correspondence to the abelian ideals of a Borel subalge-
bra. Although the results of [10] extend those of [2] the proofs are completely
independent. In particular, the notion of cone-free tournament — which plays a
central role in [2] as a necessary and sufficient condition — does not appear in
[10], leaving a gap in the development of the theory.

The purpose of this paper istofill thisgap, by extending the cone-free concept
to the context of semi-simple Lie algebras, and analyzing its relation to the
(1, 2)-symplectic structures. The cone-free property for the A; series can be
trandated into a condition involving quadruples of roots, and thus makes sense
in general (see Definition 3.1). We maintain the name of cone-free for the
property stated in terms of roots. It isrelated to the (1, 2)-symplectic structures
asfollows: Aninvariant Hermitian structureisapair (J, A) with J aU-invariant
almost complex structure and A an invariant Riemannian metric. The cone-free
property refers to the invariant amost complex structures. Such a structure is
saidtobe (1, 2)-admissibleif thereexists A suchthat (/, A) is(1, 2)-symplectic.
We prove in Theorem 3.3 that the cone-free property is necessary for J to be
(1, 2)-admissible. 1t is aso sufficient if the semi-simple Lie algebra does not
contain components of the types B;, [ > 3, G, or F,4. The point is that for the
Lie algebras with rank > 3, the cone-free property concerns the restriction of J
to the rank-three subalgebras, and is equivalent to (1, 2)-admissibility in Az and
C3 but not in B3. For this reason the correct condition for the Lie algebras B,
and F, (which are the only ones which contain Bs) isthat the restriction of J to
any rank-three subalgebrais (1, 2)-admissible.

We regard our approach here as an application of the affine Wey! group char-
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acterization of the (1, 2)-symplectic structures, proved in [10]. Indeed we check
that a certain J is (1, 2)-admissible by showing that it belongs to the class of
affine invariant almost complex structures, which are defined by means of al-
coves of the affine Weyl group (see Definition 6.3 below). It was proved in [10]
that affine structures are (1, 2)-admissible and conversely. Through the affine
structures we have access to the algebra of integer alcove coordinates devel oped
by Shi [11]. Thisalgebrais used to solve the combinatorial problems arising in
the study of invariant structures.

Therelation of cone-free tournamentswith (1, 2)-symplectic structures on the
classica flag manifolds is discussed in Mo and Negreiros [7] and Paredes [9].
The necessity of the cone-free property for (1, 2)-admissibility was first stated
and proved in [7], with the aid of the moving frame method, while evidence for
sufficiency was provided in[9], by checking small-sized tournaments. A general
proof of sufficiency for tournaments of arbitrary size was givenin[2].

Our attempt to understand the (1, 2)-symplectic structures was motivated by
the study of harmonic mapsinto flag manifolds. However, after studying themin
[10] it became clear that among the invariant almost Hermitian structures on the
flag manifolds the (1, 2)-symplectic ones form an outstanding class, allowing
the classification of the invariant structures given in [10].

2 Preiminaries

Let g and §) be a simple complex Lie algebra and a Cartan subalgebra. Denote
by IT the set of roots of the pair (g, §), and let

e ={Xe€eqg:VHel), [H X]=a(H)X}

be the one-dimensional root space corresponding to o € T1. Given o € §* we
let H, be defined by « (1) = (H,, ), where (-, -) stands for the Cartan-Killing
form of g and define Hr to be the subspace spanned over R by H,,, o € I1. We
fix once and for all aWeyl basis of g which amountsto choosing for each« € T1
an element X,, € g, suchthat (X,, X_o) = 1, and [ X, Xg] = m, gXo4p With
mep € R,m_q_p=—mgpgandmyg =0if a4+ B isnot aroot (see Helgason
[4], Chapter 1X).

Given a choice of positive roots IT™ C II, denote by ¥ the corresponding
simple system of roots and let p = ) @ ), .7+ 8. be the Borel subalgebra
generated by TT*. Let F = G/P be the associated maximal flag manifold,
where G is any connected complex Lie group with Lie algebra g and P isthe
normalizer of p in G. Let u be the compact real form of g spanned by ihr and
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Ay, i8Sy, € T1,whereA, = X, — X_,and S, = X, + X_,. Denoteby U the
corresponding compact real form of G. By the transitive action of U on F we
canwriteF = U/T whereT = P N U isamaximal torus of U.

If bo stands for the origin of I, the tangent space at by identifies naturally with
the subspace ¢ C u spanned by A,, iS,, @ € I1. Analogously, the complex
tangent space of I isidentified with gc = g& ) C u, spanned by the root spaces
aq, @ € I1. Clearly, the adjoint action of T on g leaves q invariant.

2.1 Invariant metrics

A U-invariant Riemannian metric on I is completely determined by its value at
b, that is, by an inner product (-, -) in g, which is invariant under the adjoint
action of T'. Such an inner product hasthe form (X, Y), = —(A (X), Y) with
A : g — q positive-definite with respect to the Cartan-Killing form. The inner
product (-, -),, admits a natural extension to a symmetric bilinear form on the
complexification q¢ of q. These complexified objects are denoted the same
way astherea ones. The T-invariance of (-, -) , amounts to the elements of the
standard basis A, i S, @ € I, being eigenvectors of A, for the sameeigenval ue.
Thus, inthecomplex tangent spacewehave A (X,) = Ao X Withi, = 4, > 0.
We denote by ds?2 theinvariant metric associated with A. Inthe sequel we allow
abuse of notation and write smply A instead of ds3.

2.2 Invariant almost complex structures

In the sequel we use the abbreviation iacsfor U -invariant almost complex struc-
tureonF. Aniacsiscompletely determined by itsvalue J : ¢ — ¢ inthetangent
space at the origin. Themap J satisfies /2 = —1 and commutes with the adjoint
action of T on q. We denote by the same letter the real valued structure J and
its complexification to qc. Theinvariance of J entailsthat J (g,) = g, for all
a € I1. The eigenvalues of J are +i and the eigenvectorsin q¢ are X, o € TI1.
HenceJ (X,) = ie, X, Withe, = £1satisfyinge, = —¢_. Asusual theeigen-
vectors associated to +i are said to be of type (1, 0) while —i-eigenvectors are
of type (0, 1). Thusthe (1, 0) vectors are linear combinations of X, ¢, = +1,
and the (0, 1) vectors are spanned by X, &, = —1.

Aniacson F is completely prescribed by a set of signs {e, }qen Withe_, =
—&_g4. Inthe sequel we allow some abuse of notation and identify the invariant
structure on IF with J = {g,}.

Since F is a homogeneous space of a complex Lie group it has a natural
structure of a complex manifold. The associated integrable iacs J. is given by
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g« = +1if @ < 0. The conjugate structure —J, is aso integrable. These are
called the standard iacs
2.3 Kahler form

It is easy to see that any invariant metric ds2 is almost Hermitian with respect
to any iacs J, that is, ds2 (J X, JY) = ds2 (X,Y) (cf. [13], Section 8). Let
Q = @, stand for the corresponding Kahler form

Q(X,Y)=ds2 (X,JY) = —(AX,JY).

This form extends naturally to a U-invariant 2-form defined on the complexi-
fication q¢ of g, which we aso denote by 2. Its values on the basic vectors
are:

Q (Xq, Xp) = —iraep(Xq, Xp).

Since (Xq, Xg) = 0unless = —a, Q2 isnot zero only on the pairs (Xq, X_q),
at which 2 takesthevaluei i, g, .
The following formulais well known (see [6]).

Lemma 2.1. Letw be an invariantk-differential form on the homogeneous
spaceL/H. Then

do (X1, ..., Xip1) =

k+DD DV o (X X1 X1, X X Xiga) -

i<j

for Xy, ..., X1 inthe Lie algebrd of L.
Specializing this lemmato the form Q we get

—%dQ X,Y7,2)=—-Q(X.Y],2)+Q(X,Z],Y)—Q((Y,Z],X) (1

From (1) an easy computation yields that dQ (X.. Xg, X,) is zero unless
a+ B+ y =0. Inthiscase

dQ (Xa. Xp, X)) = —i3mep (cara + Erp +6,1)) 2

with m, g asin Section 2 (cf. [10], Proposition 2.1).
Taking into account (2) we make the following distinction between two types
of rootstriples.
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Definition 2.2. LetJ = {¢,} be aniacs. Atriple of roots, 8, y witha + 8 +
y = Ois said to be g0, 3}-triple if ¢, = ¢4 = ¢,, and a{1, 2}-triple otherwise.

Recadll that an ailmost Hermitian manifold is said to be (1, 2)-symplectic (or
quasi-Kahler) if

dQ(X,Y,Z2)=0

when one of the vectors X, Y, Z is of type (1, 0) and the other two are of type
(0, 1).Thestructureis (2, 1)-symplectic if therolesof (1, 0) and (0, 1) areinter-
changed. Accordingly, the structure is (i, j)-symplectic if the (i, j) component
dQ)) of dQ is zero.

In our invariant setting we have the following criterion for an invariant pair
(J, A) to be (1, 2)-symplectic, which follows immediately from formula (2),
and the fact that X, hastype (1,0) if e, = +1and (0, 1) if ¢, = —1 (see[10],
Proposition 2.3 and [13], Theorem 9.15).

Proposition 2.3. The invariant pair(J = {e,}, A = {A.}) is (1, 2)-symplectic
if and only if

Eaha + EgAp + €A, =0

for every{1, 2}-triple {«, B, y}.

In the sequel J is said to be (1, 2)-admissible if there exists A such that the
pair (J, A) isinvariant and (1, 2)-symplectic.

3 Thecone-freeproperty

Givenaset of four rootsg = {«, 8, v, §} witha + 8+ v + 6 = Owesay that a
tripleof roots{(u + v) , w1, wo} isextractedfromqg by u and v if {u, v, w1, wo} =
{a, B, v, 8}. Of course, any such triple satisfies (u + v) + wy + wp, = 0. The
cone-free condition is stated in terms of such triples.

Definition 3.1. LetJ = {g,} be aniacs. We say that/ is cone-free if the
following condition is satisfied:

* Ifg = {«, B, y, §} contains no pairs of opposite roots and- S+ +8 = 0
then the number dD, 3}-triples extracted frong is different fromL.
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I nthisdefinitionthe hypothesisthat the quadrupl esdo not have oppositerootsis
redundant and isincluded only for emphasis sake. Indeed, suppose, for instance,
that 8 = —a. Thens = —y, andthepossibletriplesextracted fromthequadruple
ae(x+y,—a,—y),(@—y,—a,y),(—a+y,a—y)and(—a —y,a,y). It
is easy to seethat in this set {0, 3}-triples appear in pairs, independently of J.

Except when the root system is G, the cone-free property is a condition on
the rank-three subsystems of the root system. In fact, sincethere are no opposite
rootsin {«, 8, v, 8} the subspace V spanned by theserootsis either two or three
dimensional. However, itiseasy to seethat intherank-tworoot systems A1 @ Aj,
A, and By, which are different from G5, there are no such sets of roots. Hence,
the intersection of IT N V is a rank-three root system if we are not in G, (see
Section 5 below for adiscussion of G»).

The explanation for the term cone in the above definition comes from the
relation between iacs in the flag manifolds of the A; series (the Lie algebras
3l (n,C), n = 1 + 1) and tournaments. Recall that an n-player tournament is
a complete directed graph T = (N, E) where N is an ordered set, |N| = n,
and E stands for the arrows of T'. With each tournament T there is assigned its
incidence matrix ¢ = ey, which is area skew-symmetric matrix with all off-
diagonal entries +1. If (a, b) € E wesay that a winsagainst b and set g,, = 1
and pe = —1.

On the other hand, in the standard realization, the roots of A; are avjy, 1 <
J # k < 1+1, witho; = —aj. Thus an iacs on the corresponding flag
manifold is given by the signs e = &4, = +1, j # k. These numbers are
assembled to form the incidence matrix ¢ of some tournament, establishing a
one-to-one correspondence between theiacson the maximal flag manifold of A,
and n-players tournaments.

A 3-cyclein atournament is a 3-players subtournament {i, j, k} which forms
theloopi — j — k — i. When T isthe tournament associated to theiacs J,
a3-cycle{i, j, k} corresponds to the {0, 3}-triple {«;;, o ji, i} (see[2]).

Now, up to isomorphism, there are four distinct 4-player tournaments. The
two of them which contain a single 3-cycle are called cones Each of them
contains a cycle and a winner or a loser. The other equivalence classes of 4-
player tournaments contain an even number of cycles (zero or two).

Proposition 3.2. In the maximal flag manifold associated4g_1 = 3l (r, C),
an iacs is cone-free in the sense of Definition 3.1 if and only ifdaplayer
subtournament of the associated tournament is a cone.

Bull Braz Math Soc, Vol. 33, No. 1, 2002



56 NIR COHEN, CAIO J.C. NEGREIROS AND LUIZ A.B. SAN MARTIN

Proof. Assume first that an iacs J with corresponding tournament T is cone-
free in the sense of Definition 3.1. Let {i, j, k, [} be a4-player subtournament,
and consider the corresponding set of four roots {«;;, o, a;, o} which satisfies

oij + ajk +oag +a; =0.
From this set we extract the four triples
{Qic, apr, i}, e, i, i}, o, ey, ol and  {ayj, o, o)

Each one of these triples corresponds to a 3-player subtournament (e.g.
{atir, oy, i} 1S @ssociated to {i, k, 1}), in such a way that {0, 3}-triples corre-
spond to 3-cycles. Hence, by our generalized cone-free condition {i, j, k, [} is
not a cone.

For the converse, notethat aset of four roots{«, 8, y, 8} witha+8+y+6 =0
which do not contain opposite roots spansarank-threeroot subsystem, and hence
the set hastheform {«;;, ot ji, axr, i} for1 < i, j, k, I < n. Repeating the above
argument we get the generalized cone-free condition if the tournament has
No CONes. O

We proceed now to prove that the cone-free condition is necessary for an
iacsto be (1, 2)-admissible. Write dQ%3 = dQ©3 4 gQG9 and 4112 =
dQ®? 4+ dQ@Y, sothat

dQ = dQ03 1+ qQit2,

We get a necessary condition for d2!%% = 0 by exploiting the fact that 2 = 0,
computing formally d?Q (X.. Xg, X,, Xs). Analogous to the case of 42 the
only quadruples {«, 8, v, 8} of interest are those satisfyinga + 8 + vy + 8 = 0.
Using the exterior derivative formulaof Lemma2.3, we get for these quadruples,
that 42 isthe sum of the following six terms:

. tmg gmy, s 8a+ﬂ)\'a+ﬁ + 8;/)\;/ + 85)%)

. TMg,yMgs 80(-‘1-)/)\'(1-‘1-)/ + 85)&5 + SB)WS)

1

2

3

4. +mpg,mys (Egyrpry + Eara + E5hs
5

6

(

(
- +masmpy (Satshats + Eghp + Eyhy)

( )
. —mpsma.y (8g45hp+s + Eaha + Eyhy)
.+ st (€ +5hy+s + Eaka + Ephp)
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These terms cancel mutually (e.g. the coefficient of e, Ay IS mq pm,, s +
mg,mys + my, ompg s Which is known to be zero, see [4], Lemmallll 5.3). In
order to look at them closer let ustake, for instance, thefirst one. The coefficient
mg g iSnot zero if and only if o + B isaroot. Buta + 8 = — (y +§), so that
both coefficientsm, g and m, s are simultaneously zero or not. The sameremark
is true for the other terms. Next, in each term the sum appearing in braces has
the form d2 (X¢, X, Xo) with (£, n, ) atriple extracted from {a, g, v, 8} if
the coefficients m. . are not zero.

These comments yield an alternative proof of the following result of [7].

Theorem 3.3. A necessary condition fat/, A) to be(1, 2)-symplectic is that
J is cone-free in the sense of Definition 3.1.

Proof. Letg = {«, B, v, 5} bearoot quadruplesuchthate + 8+ y +6 = 0.
Among the six terms above, those corresponding to {1, 2}-triples extracted from
g arezeroif dQ2 = 0. Ontheother hand aterm corresponding to an extracted
{0, 3}-tripleis not zero. Hence, for d?Q to be zero it is not possible to
extract just one {0, 3}-triple. O

4 Rank-threeLiealgebras

The cone-free condition involves sets of four roots whose sum is zero in such
away that no two roots are opposite to each other. This has the consequence
that the subspace spanned by the roots is three dimensional if the root system
isnot G,. Hence, excluding G, the cone-free condition refers to the rank-three
subsystems of roots. The purpose of this preparatory section isto look at those
rank-three root systems (mainly the irreducible ones A3, B3 and C3) required to
study the cone-free condition in general root systems.

Notefirst that the rank-threereducibleroot systemsare A1 A1 D A1, A1 D Az
and A; @ B». Itiseasy to check that any iacsin these root systems are (1, 2)-
admissible, and thus satisfy the cone-free condition.

Concerning Az = 3[(4,C), an iacs J on the maximal flag manifold cor-
responds to a 4-tournament 7. By Proposition 3.2, J satisfies our cone-free
condition if and only if T does not contain a cone. We know that such iacs
are (1, 2)-admissible (see [2], [3]). Actualy, the set of cone-free iacs has two
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equivalence classes, which are represented by the incidence matrices

0o 1 1 1 o0 1 1 -1

-1 0 1 1 -1 0 1 1 3)
-1 -1 0 1 -1 -1 0 1 '

-1 -1 -1 0 1 -1 -1 O

The class represented by the first matrix consists of the standard iacs

Now, we look at the more delicate Bs. In its standard realization the positive
rootsystemis LU SwhereL ={e; £e; :1<i < j<3landS ={e :1=<
i < 3} arethe sets of long and short roots, respectively.

Theset L isisomorphictothepositiverootsystem Lz = {o;; : 1 <i < j < 3}
of A3 viathe bijection:

e SiImpleroots. ap <> e — e3; a3 <> e1 — e2; Az <> ex + e3.
* Height 2. a13 <> €1 — e3; azq <> e1 + e3.

. Height 3 ot1q <> €1+ eo.

Now, let J = {e,} be a cone-free iacsin Bs. Itsrestriction J/ to L is aso
cone-free so that we can assumethat it is represented by one of the two matrices
in (3). It remainsto see what happens at the short roots eq, ¢, and e3. Regarding
e3, We can assume without loss of generality that ¢,, = +1. Infact, thereflection
r3 With respect to ez leaves L3 invariant fixes the highest root e; + e,. Hence,
we can replace J by rs - J without affecting itsvaluesin L3 if J! isrepresented
by one of the matricesin (3). Asto e; and e; we have

Lemmad.l. e, =¢&,,.

Proof. Consider the quadruple (—e1) + (e1 — e2) + (e2 — e3) +e3 = 0. The
triples extracted from it are {—e, e2 — e3, €3}, {—e1 + €3, €1 — €2, €2 — e3},
{e2, —e1, e1 — ez} and {e1 — e3, —ey, e3}.

Notethat {—e1 + e3, e1 — €2, e2 — ez} isa{l, 2}-triple. Supposethat ¢,, = —1.
Then {—ey, ex — e3, e3} isa{0, 3}-triple, and {e,, —e1, e1 — €2} isa{l, 2}-triple,
forcing thelast tripleto be {0, 3}, whichimpliese,, = —1. Theroot e; + e, does
not appear in the extracted triples, ensuring that our arguments are independent
of the choice of J'.

Onthe other hand from the quadruple (e; — e2) + (e2 + e3) +(—e1) +(—e3) =
0, the only extracted triple which is not automatically of type {0, 3} is {e2, e1 —
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ez, —e1}. Hence, this set must be a {1, 2}-triple, so that ¢,, = +1 implies
€., = +1. Againtheextractedtriplesdonotinvolvee; +e», henceitisimmaterial
which of the J!’s we consider. O

We arrive at the following description of the cone-freeiacson Bs.

Proposition 4.2. Denote byM (J) the set of positive rootsg of B3 such that
e« = —1. Fixing the choices of’ given by (3) and,, = +1, the possibléacs
satisfying the cone-free condition are:

1. M (Jy) =0.

2. M (J) = {e1 + e3}.

3. M (J3) = {e1, e2}.

4. M (Jg) = {e1, €2, €1 + €2}.

Among them the onl¢d, 2)-admissibléacs are J; and J>.

Proof. The (1, 2)-admissibility of J; and J, is a consequence of the abelian
ideal shape of [10]. On the other hand, J3 and J4 are not (1, 2)-admissible. To
see this consider the triples {e1, e1 + e3, —e3} and {e1, e3, —e1 — e3}. They are
{1, 2}-triplesfor both J3 and J4. Now, assumethat A = {A,}is(1, 2)-symplectic
with respect to Jz or J4. Then e, ey = Aey + Aoz 8N Ay = Aoy + Aey 4o, fOrcing
Ae; = 0, acontradiction.

Finaly, it is straighforward but cumbersome to verify that J3; and J4 indeed
satisfy the cone-free condition. One must write down the quadruples of roots of
B3 summing up zero, and their extracted triples, and check that the {0, 3}-triples
do not appear isolated. O

The discussion of C3 follows the same pattern as that of Bs. In the standard
realization of Cs, its short roots coincide with the long roots of Bs, whereas
the long roots are given by +2¢;, i = 1,2, 3. Again we can assume that the
restriction J* of a cone-free iacs J to the short roots has one of the incidence
matrices (3). Also, after applying the reflection with respect to e3 we can assume
that 5., = +1. With the aid of these choices we can check the quadruples of C;
and prove the
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Proposition 4.3. Denote, as before, byf (J) the set of positive rootg of C3
such thate, = —1. Fixing the above choices df ande¢,, = +1, the possible
iacs satisfying the cone-free condition are:

1. M (Jy) = .

2. M (J2) = {e1 + ez, 2e1}.

3. M (J3) = {2e, e1 + €2, 2e4}.

EachM (J;),i = 1, 2, 3, is an abelian ideal of the set of positive roots, so that

the cone-fregacs are (1, 2)-admissible.

Proof. The proposition is a consegquence of the following implications:
Eerder = +1= E2¢p = €2¢1 = +l, Eertep = -1= E2e1 = -1

which are easy consequences of the cone-free property applied to the quadruples
{e1 — €2, 2ep, —ex + €3, —e1 — ez}, {e1 — €2, e1 — €3, 2 + €3, —2e1} and {eg —
ey, 2 — e3, €1 + e3, —2e1}, respectlvely O

5 G2

As mentioned above, G is the only rank-two root system where the cone-free
condition is not vacuous. For the sake of completeness we analyze heretheiacs
on G, which satisfy this condition. We write the positive roots as

Zi ar+az ar+2a2 ap+3az 201 + 3ap.

The set of short roots {+ap, + (a1 + a2) , + (a1 + 2a2)} is an A,-root system.
Let J beaniacson G, and denote by J* itsrestriction to the set of short roots.
In A, there are two equivalence classes of iacs, so that we can assume without
loss of generdlity that J* is one of the following two iacs

1 Jf = {ew, = +1, tay10p = +1, €0y 420, = +1}.

2. JZS = {8042 =+1, Eaytay = +1, 1420y = _1}

Denoteby r thereflection with respect to «;. It satisfiesra, = a1+ a2 and
r (a1 + 200) = a1 + 2. Thisimpliesthat r leaves J* invariant. Hence,
we may assumethat e,, = +1.
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Now, assuming that J satisfiesthe cone-free condition, it remainsto determine
the values of &, 34, aNd €24, +34,. Up to change of signsthere are the following
three zero-sum root quadruples:

L g1 (01) + (02) + (o1 + 202) + (—201 — 3ep) = 0.
2. g20 (a2) + (a1 + a2) + (a1 + a2) + (=201 — 3ap) = 0.
3. ¢3! (1) + (a1 + 32) + (—a1 — a2) + (—ag — 200) = 0.

First suppose that J* = J;. Writing down the triples extracted from g3, it is

straighforward to check that &4, 3., = —1 impliesthat e3,,13., = —1. Hence,
the possible cone-freeiacsare i ++++, I +++—and i ++—-—.

By the abelian ideal property stated in[10], theseiacsare (1, 2)-admissible, and
hence they are indeed cone-free.
Suppose now that J* = J5. Looking at the triples extracted from g, it is
easy to seethat €4, 34, = +1implies eyy,4+34, = +1. Since there are no other
+

restrictions, the cone-freeiacsare i +—++, " +——+and I +———.

Thelast oneis (1, 2)-admissible, whereas, similar to the B3 case, one can check
that the first two are not (1, 2)-admissible. (We remark that in checking the
cone-free property the quadruple ¢, isirrelevant, sincein it each extracted triple
appearstwice.)

6 TheaffineWeyl group

Inthis section we recall the definition of the affine iacantroduced in [10]. These
structures are constructed by counting hyperplanes separating agiven alcove and
the basic one. We refer to Humphreys [5] as a basic source for the affine Weyl
group. Consider the subspace hr introduced in Section 2. To conform with the
usual notation we often identify Hr with itsdual b and write (x, ) instead of
o (x), x € hr, o € h. Givena € IT and k € Z define the affine hyperplane

H(x,k)=1{x € hr : {x,a) = k}.

The complement A of the set of hyperplanes H («, k), « € T1, k € Z, isthe
disjoint union of connected open simpleces called alcoves Given an alcove A
and aroot «, by definition there exists an integer k, = k, (A) such that

ko < (x,a) <ky+1 x €A.
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Of course, k, = [x (x)] for any x € A where [a] denotes the integer part
of the real number a. According to Shi [11], the integers k, (A) are called
the coordinatesof the alcove A. An acove is completely determined by its
coordinates. A necessary and sufficient condition for k,, @ € TI, to be the
coordinates of an alcove are given by the inequalities below. In writing down
tbese inequalities we must look IT as the set of co-roots of another root system
IT:

2 ~

={a"= co e I1).

(o, )

Theroot system isnormalized so that |«| = 1 if « isashort root.

Proposition 6.1. A set of integerg,, o € ﬁ*, form the coordinates of an
alcove if and only if for every pair of roots, 8 € II such thatx + 8 € II, the
following inequalities hold:

lot|?ke + 1B1%ks + 1 < | + BI? (kasp + 1) 4
< lal?ky + 817k + ||? + B> + | + B> — L.
Proof. See[11], Lemma 1.2 and Proposition 5.1. O

Remark. Itiseasy to seethat theinequalitiesin this proposition are equival ent
to

ot ko + |B1P kg + 1y 1Pk, < 1.
For later reference we note also the following easy necessary condition.
Lemma 6.2. A necessary condition for the integéis € Z, a € II, to be the

coordinates of an alcove is thai. 4 is eitherk, + kg or k, + kg + 1 whenever
«, p anda + B are roots.

Proof. Wehave, foralx € A, ky < (x,a) < ke +1andks < (x, B) < kg+1,
so that
ko +kg < (x,a+B) < ko +kg+ 2.

Hence, the integer part of (x,« + B) is either kyip = ko +kp OF kotp =
ko + kg + 1. O
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Definition 6.3. Given an alcoveA with coordinatesik, : « € TIl}, theiacs
J (A) = {g, (A)} is defined by, (A) = (—1)*. We say that/ is an affineiacs
if it has the formJ = J (A) for some alcov&l.

Note that J (A) isindeed an iacs, sincek_, = —k, — 1, sothat ¢_, (A) =
—&4 (A). The following theorem is one of the main resultsin [10]. It provides
the criterion which will be used in the sequel for ensuring that iacs are (1, 2)-
admissible.

Theorem 6.4. Aniacs J is (1, 2)-admissible if and only if it is affine.

7 Simply-laced root systems

In this section we prove that the cone-free condition is sufficient for aniacsto be
(1, 2)-admissible, in case the algebra g has a simply-laced Dynkin diagram, i.e.
I1 = Ay, D;, Es, E7 Or Eg. The doubly-laced case will be treated in Section 8.
We use the equivaence between the affine and (1, 2)-admissible iacs as stated
in Theorem 6.4, and construct an alcove A suchthat J = J (A) if J satisfiesthe
cone-free condition. Thus the purpose of this section is to prove the following
Statement.

Theorem 7.1. LetII be a simply-laced root system, and suppose fhat{es,}
is a cone-fre@acsonTF. ThenJ is affine.

The proof will consist of several steps. By definition of affine iacs we must
find aset of integers {k, : o e I1} satisfying the inequalities of Shi (4) such that
g = (=D &« e II. In asimply-laced root system the roots have the same
length, simplifying these inequalities. In fact, we have the following equivalent
condition for a set k, to be the coordinates of an alcove.

Lemma7.2. LetIlbesimply-laced. Thentheintegégse Z, « < I1, formthe
coordinates of analcove ifand only ifeither, g = ky+kp Orkyyp = ko +kg+1
whene, 8 anda + B are roots.

Proof. The condition is necessary by Lemma6.2. Conversely, if TT issimply-
laced, the |-|? appearing in inequalities (4) are equal to 1, hence they reduce
to

ka+kﬂ§ka+ﬂ§ka+kﬂ+1.
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Therefore, these inequalities are satisfied by k., a € II, if they are under the
conditions of the statement. O

Before proceeding we prove some lemmas.

Lemma7.3. LetIl, C IT be aroot subsystem &f. ThenIl} = I1, N IT* is
a choice of positive roots ifl..

Proof. Thereexistsy e f such that
Nt={aell: (ay) >0}

Of course, («, y) # Oforall « € T1. Let y; be the orthogonal projection of y
onto the subspace of f); spanned by IT,. For g € I, we have (8, y) = (B, y1),
sothat (B, 1) # Ofor al B € IT,. Hence, y; isregular for T1,, implying that

N ={pel.: (B y) >0}

is a choice of positive rootsin IT,. Using again (8, y) = (B, 1), B € I, it
followsthat IT} = IT, N I1*, proving the lemma. O

Lemma7.4. Fixasimple system of roos, and let/ = {¢,} be an affineacs.
Suppose that a set of integeits € Z, « € X, satisfies, = (—1)"«. Then there
exists an alcovel such that/ = J (A) andk, (A) = m,, a € X.

Proof. PutX = {ay,..., o} anddefine{ws, ..., o} by (o, ;) = §;. Also,
let A be an alcove such that J = J (A%), that is, &, = (—1)*(*). Since
8o = (1™, theintegers m,, — ko, (A') are even. Now, atranslation 7, with
A spanned over Z by w;, i = 1,...,1, maps acoves into alcoves, and the
coordinates are changed according to

ko (6.A) = (a, A) + ko (A) . (5)

Take = dy,w1 + - - - + do, 1, With dy, = mg, — ko, (A*). Then the coordinates
of A = nA' ek, (A) = (o, 1) + ko (A?), and since (o, 1) is even for all
a, we conclude that J = J (A). Furthermore, for a simple roots «; we have
ko, (A) = dy, + ko (AY) = my,, proving the lemma O
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Now, for proving Theorem 7.1 we construct k., « € I, by induction on the
height of «. Thuslet usfix once and for all asimple system of roots ¥ with TT+
the corresponding set of positive roots. Then given J = {g,} define:

1 Leta € =. Thenk, = (1 — &) /2.
2. Leta, B,y e 1T besuchthat e = B + y. Then

1— (=Dt g,
; .

ke = kg + Ky + 6)

3. Leta € —II*. Thenk, = —k_, — 1.

A caseby caseanalysisshowseasily that the coordinates {k,, } so defined satisfy
ge = (—=1)*. Also, the condition of Lemma 7.2 isreadily satisfied. The point is
to show that k,, isindependent of the decomposition« = 8 + y used in (6). We
prove this by induction on the height () of a € TTI*. If h («) = 1, theroot is
simple, and no decompositiona = B + y, B,y € IIT exists, hence &, is well
defined.

Now take @ € I suchthat @ = B1 + y1 = B2 + 2, Bi, i = 1, 2, positive
roots, and hence having height smaller than & («). By the inductive hypothesis
kg, ky,, i =1, 2 arewell defined. We must show that kg, + k,, = kg, + k.

Denote by V C b the subspace spanned by B, y1, B2 and y». We have
dmV =2or3.

Incasedim V = 2, thesubset V N1 isarank-two system of roots, containing
two roots (8, and 1) whose sum isaroot. Hence V N IT is irreducible, and
since our original root system is simply-laced, it followsthat V N IT isan A,
system. Now, in A, aroot iswritten uniquely as a sum of two roots, hence there
is nothing to prove.

Supposethenthat dim V = 3, and let TT,, = V NI bethe corresponding rank-
three system. Since the rootsin IT have the same length, either IT, = A1 ® A,
or IT, = As. Again, thereisnothing to proveinthe A1 ® A, case.

Assuming that T1, = Ags, let J, be the restriction of J to IT,. Then J, is
(1, 2)-admissible and hence affine.

Now, by Lemma7.3, IT} = 1, N I1* isapositiveroot system. Let £, C I+
the corresponding set of simple roots.

Lemma7.5. «is the highest root il .
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Proof. Writethe positiverootsof Az asw;j, 1 <i < j < 4, sothat o isone of
theseroots. Itisnot asimpleroot, sincea = B1 + y1 with 81, 1 € I} . Also, a
root of height 2 in Az iswritten uniquely as a sum of two positive roots. Hence
the height of o in I} isnot 2, sincedmV = 3anda = B1 + y1 = B2 + 2
Therefore, the height of « in T} isthree, that is, « isthe highest root. O

By thislemmaand the equality IT;” = I1, NI+ we conclude that the height of
a in IT" isbigger than the height (in TT*) of any y € X,. Hence, the inductive
hypothesis ensures that k,, iswell defined for y € %,.

Now, by the cone-free assumption, there exists an alcove A* in the affine
system of I, suchthat J, = J (A*). By Lemma 7.4 we can choose A* so that
k, (A*) =k, fordl y € X,. Theintegersks (A*), § € Il,, satisfy the conditions
of Lemma7.2. Also, J. = J (A*) istherestriction of J to IT,. Hence starting
with k, (A*) = k,, y € X, the values of k; (A*), § € II], are determined
according to the rules used to define k,. This means that within IT}, &, iswell
defined. However, the decompositions o = B1 + y1 = B2 + y» are inside
[T}, so that the value of k,, does not depend upon one of these decompositions,
concluding the proof of Theorem 7.1.

Corollary 7.6. In a simply-laced situation leA' and A? be alcoves such that
J (AY) = J (A?). Then there exists with (A, a) € 2Z for every roota such
that A2 = 1, AL

Proof. Asin the proof of Lemma 7.4 let {«y, ..., «;} be asimple system of
rootsand {w;, ... , w;} itsdua basis, and put

A=dy o1+ +dyw

With do, = ko, (A%) — ko, (AY). The assumption J (A') = J (A?) implies that
dy,,i =1,...,1, areevenintegers, sothat (A, «) € 2Zforal « € I1. According
tothe changeof coordinatesformula(5), toseethat A2 = 1, A* wemust check that
ko (A?) = (A, a)+kq (A) for every positiveroota. Thisisdoneby inductionon
the height of «: If « issimple, the equality holds by definition of A. Onthe other
hand if « = B + y with B8, y € I1", we assume by induction that the equality is
truefor g and y. In particular, ks (A') + k, (A?) = kg (A?) + k,, (A?) mod2.
Now, from the construction performed in the proof of Theorem 7.1, it follows
that formula (6) holds for both sets of integers ks (A*) and ks (A?), § € I1, with
the same ¢,.. Therefore, k, (A") — kg (A") — k,, (A") isindependent of i = 1, 2.
Thus applying the inductive hypothesis we get

ko (A%) = ko (AY) + (A, B) + (A, ¥) = ko (AY) + (1, @),
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concluding the proof. O

Remark. Itisworth mentioning that with Theorem 7.1 we get anindirect proof
of aresult in tournament theory, namely Theorem 3.5 of [2] which assertsthat the
verticesof atournament 7' can berearranged so that itsincidence matrix becomes
stair-shapedincase T hasnocones. Infact, thisresult followsby piecingtogether
Proposition 3.2, Theorem 7.1 and the results of [10] on invariant almost complex
structures (see [10], Theorem 4.12).

8 Doubly-laced root systems

In this section we look at the cone-free property for the doubly-laced diagrams
(B;, C; and Fy). Thefinal result for C; differsfrom B, and Fj.

Theorem 8.1. LetIT be a root system and an iacs on the corresponding
maximal flag manifold.

1. Suppose thail is C;. ThenJ is affine (and hencél, 2)-admissible) if
and only ifJ satisfies the cone-free property.

2. Suppose thdl is B; or Fy4, and that the restriction of to any rank-three
subsystem is affine. Thdns affine, and hencél, 2)-admissible.

Remark. Therank-threeconditionfor B; and F4isequivalent to J being cone-
free together with the additional assumption that the restriction of J to any Bs-
subsystem is affine. This assumption is not required for C; because it does not
contain B3-subsystems.

The proof of Theorem 8.1 uses the corresponding result for simply-laced dia-
grams(Theorem 7.1), applied to the set of short rootsof IT. Let IT* and I’ denote
the sets of short roots and long roots, respectively. We have the digoint union
T = IT* UTT'. Both setsT1° and I’ are simply-laced root systems (for example,
inIT = B;, IT' isa D; while IT* is reducible with / orthogonal components).

Let J* stand for the restriction of J to IT*. Clearly, under the conditions of
Theorem 8.1, J* satisfies the cone-free assumption of Theorem 7.1, so that J*
is affine in T1°. Thus there are integers ko, o € IT¥, with &, = (—1)* such
that k., form the coordinates of an alcovein IT*. We shall prove Theorem 8.1 by
extending these coordinates to IT'.
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For the doubly-laced root systems, we have the following characterization of
the coordinates of alcoves, which is obtained from the inequalities of Shi after a
case-by-case analysis.

Proposition 8.2. In a doubly-laced root system a set of integerse € Z, are

the coordinates of an alcove if and only if the following inequalities are satisfied.
Each inequality is satisfied by a triple of roots as indicated, whereans short
root and!/ long root.

L (@ B o+ B) = (1 1): ke +hp < harp <o+ kg +1
2. (a,B,a+B) =(s,s,s5): 2ka+2kﬂ+1§2ka+,3+2§Zka+2kﬁ+5
3. (@, Boat+2B) = (I, 5. 1): ke + 2k < kgsop < ko + 2k + 2

4 (o, B, (x+8)/2 =U,1,5): ky +k/3 < 2k(a+/3)/2+ 1<k, +k/3 +2

Proof. See[10], Proposition 5.4. O

Lemma8.3. Suppose the doubly-laced root systAns irreducible, and letr
be a long root. Then there exists a short rgasuch that(e, 8) # 0.

Proof. Therearealongroot «; and ashort root 8; such that (a;, 81) # 0 (look
e.g. at the Dynkin diagram). The Weyl group W leaves invariant both I’ and
IT%, and since I isirreducible, these subsets are orbits of W. Hence, for along
root « thereexists w € W with o = way. Thus, (o, wB1) # 0. O

Lemma8.4. Leta bealongroot. Then there are short rogtgndy such that
a=p+y.

Proof. By the previous lemma there exists a short root g with («, 8) # O.
Let IT, be the intersection of TT with the subspace spanned by « and 8. It has
rank-two and contains two roots « and g of different length with {(«, 8) # 0.
Hence I, isa B,. The lemmafollows then by looking at the roots of Bs. O

Now, we write down the conditions for a set of integers to be the coordinates
of an alcove in terms of the short and long roots.
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Lemma 8.5. In a doubly-laced root systeri the following conditions are
necessary and sufficient for a set of integerse € IT, to be the coordinates of
an alcove:

1. Theintegers,, a € IT', are the coordinates of an alcove in the root system
of the long roots.

2. Theintegers,,a € IT¢, are the coordinates of an alcove in the root system
of the short roots.

3. Take a long rootx = B8 + y with 8 and y short roots. Then either
ky :kﬂ—i-ky or k, Ikﬂ—i-ky—{—l.

Proof. Suppose first that k., @ € II, are the coordinates of an alcove. Then
the first and second sets of inequalities in Proposition 8.2 together with the
corresponding inegqualities in the simply-laced case show that the restriction of
k. to the long roots as well as to the short roots are coordinates of alcoves.
Furthermore, the last condition is necessary by Lemma 6.2.

We prove sufficiency by showing that the three conditions of the lemmaimply
the inegualities of Proposition 8.2. The first two sets of those inequalities are
equivalent to our conditions on the sets of long and short roots, respectively. For
the other two we make a case by case analysis. As before! meanslong root and
s short root.

s (@, B, a+2B) = (I,5,1): kg +2ks < koyyop < ko + 2kg + 2. Put
y =a+ pands =a + 2B8. Notethat y isashort root (look at the roots
of By) §isalongroot, and§ = S + y. Hence by thethird condition either
ks = kg 4k, or ks = kg+k,+1. Ontheother hand, « = —B +y isasum
of short roots giving riseto along root. So that either k, = —kg +k, — 1
or ke = —kg +k,. Now, we plug these possibilitiesinto 2kg < ks —k, <
2kg + 2. We list below the inequalities that arise:

a—(kﬂ-l-k) (kﬂ—l-k —1) 2kg <2kg+1<2kp+2

= (kg +ky) = (=kp + k) 2k < 2kp < 2kp +2
a_(k,g—i—k—i—) (kg +ky —1) 2kg < 2kg +2 < 2kg +2
kg ko = (kg +ky + 1) — (—kp + ky) 2kg < 2kp +1 < 2kg +2

Hence the third set of inequalities of Proposition 8.2 holds under the
conditions of the lemma.

e (o, B, (@+B)/2)=(,1,5): kg +k/3 < Zk(a+ﬁ)/2+l < kg +kﬂ+2 Put
y=(ax+pB)/2and§ = (8 — «) /2. Both y and § are short roots (again
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look at By). Wehavep =y +danda =y — 6, sothat kg = k), + ks or
kg =k, + ks +1landk, = k, — ks — 1ork, = k, — ks. Plugging these
choicesinto ky, + kg < 2k, + 1 < ko + kg + 2 we get:

ko + kg = (ky — ks — 1) + (ky + ks) 2k, —1<2k, +1<2k, +1

k,,,+kﬂ_(ky—k3—1) (ky +ks +1) 2ky <2k +1<2k, +2

ko + kg = (ky — ks) + (k, + ks) 2k, < 2k, +1 <2k, +2

ka+k,g_(ky—k5)+(ky+k5+ 1) 2k, +1<2k, +1<2k, +3
Concluding the proof of the lemma. d

We return now to Theorem 8.1. Let J = {g,} be aniacsin the doubly-laced
root system IT, which satisfies the cone-free property. Then therestriction J* of
J tothe short roots IT* is cone-free. Hence, by Theorem 7.1, J* is affine, so that
there are integers kg, B € I1°, forming the coordinates of an alcove in IT*, such
that e5 = (—1)* for al g e T1*.

Maintaining this choice of acove in IT* we intend to extend the integers &,
to the long roots. Taking into account the third condition of Lemma 8.5, we
must define &, o € T, by the expression (6) already used in the simply-laced
case, but now with « along root and 8 and y short roots, suchthat « = 8 + y.
Again, the very expression for k, ensuresthat &, = (—1)*. Hence, in order to
proceed we must prove that the integers k,,, o € I1', are well defined, and form
the coordinates of an alcove.

Lemma8.6. Letkg, B € I1°, bethe coordinates of an alcovelili, representing
J*. Leta > 0 be along root withw = 8 + y, 8 andy short roots, and put

1— (=D g,
2
Thenk, is independent of the short rogsandy .

ko = kg +ky, + (7

Proof. Let o = B1 + y; be another sum with 8; and y; short roots. Denote
by V the subspace spanned by theroots 8, y, 81 and y1, and let TT, = V N 1T
be the corresponding subsystem. The possible dimensions of V are 2 or 3. If
dimV = 2, I1, isa B, system, so that the componentsin the two sumsare equal.
Similarly, in B3 thereisonly oneway of writing along root asasum of two short
roots. Hence we can assume that I, is Cs.

By Proposition 4.3 any cone-freeiacsin Cs isaffine. Of course, therestriction
J. of J to I, is cone-free. Hence, there are integers, say ms, § € Il,, which
are the coordinates of an alcove in C3, such that e5 = (—1)° for al § € I,. In
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particular ks = msmod?2 for every shortroot § € IT,.. The set of short rootsin Cs
forms an Az-root system, so that we can apply Corollary 7.6, to get A such that
for every shortroot § € IT, wehaveks = ms+ (A, §) and (A, §) € 2Z. Sincethe
longrootsin C3 arelinear combinations of short rootswith integer coefficients, it
followsthat (1, 8) € 27Z for thelongrootsin IT, aswell. Therefore, ms + (A, §),
§ € I1,, are the coordinates of an alcove A* such that J, = J (A*).

Now, let « = B + y be asin the statement. By the third condition in Lemma
8.5 we have

1— (-1 g,
5 .

Since the left hand side isindependent of the way « iswritten as a sum of short
roots, the lemmafollows. O

mg + (A, a) = kg +k, +

It remainsto prove that the extension of &, to the long roots given by (7) form
the coordinates of an alcove. For thisweuse Lemmaa8.5, and verify that thethree
conditions of that lemmaare satisfied. Firstly, theintegersk, werechosen so that
they form the coordinates of an alcove on the short roots. Also, the compatibility
condition (3) follows immediately from the definition of &, in (7). Hence, the
point is to show that the integers &, are coordinates of an acove on the long
roots. At this point we consider C; separately. In fact, the set IT' of long roots
of C; isadecomposable root system with / orthogonal positive roots. In such a
root system there are no restrictions on the integers to be the coordinates of an
alcove. In particular, for C; the condition of Lemma8.5 regarding the long roots
isvacuous. Therefore, Theorem 8.1 istruein the C; case.

To consider B; and F, we provefirst the following easy lemma.

Lemma8.7. LetJ = {g,} be an affingacsin the root system
Bi={f(eitej):1<i<j<lU{te:1<i<I}.

Suppose we are given integersi = 1, ...,/ such thats,, = (—=Dk. Then
there exists an alcov& with coordinates, (A) satisfyingc,, = k;,i =1,...,1
and such that/ = J (A).

Proof. Issimilar to the proof of Lemma 7.4, after taking into account that the
shortrootse;, i = 1,...,1, span B, over Z. O

Finally, we can conclude the proof of Theorem 8.1 for B; and F4, by showing
that the extension defined in Lemma 8.6 are indeed the coordinates of an alcove
on the set of long roots.

Bull Braz Math Soc, Vol. 33, No. 1, 2002



72 NIR COHEN, CAIO J.C. NEGREIROS AND LUIZ A.B. SAN MARTIN

Lemma8.8. Givenkg, g € IT¥, definek,, o € 1’ as in Lemma 8.6. Thejk,}
are the coordinates of an alcove Jif .

Proof. By Lemma7.2wemust show that if «, 8 and & + B8 arelong roots then
either ko g = ko + kg O koyp = ko + kg + 1.

Write 8 = y1 + y» as a sum of short roots and denote by V the subspace
spanned by {«, y1, y»}. Let T1, be the root system V N I1. We claim that IT,
is a Bz-subsystem. In fact, dimV > 1 because 8 # +« and we cannot have
dimV = 2, since this would imply that IT, is a B,-system, because it contains
short and long roots and a pair of roots (y; and y») whose sum is aroot. But
in B, the sum of two long roots is not aroot. Hence, dimV = 3. Anaogous
arguments show that I, isirreducible. Now, IT, hasroots of different length, so
that either IT, = B3 or C3. However, in C3 no sum of two long rootsis aroot.
Therefore, I1,, = Bs, as claimed.

By looking at the roots of B3 we can ensure that, since o + 8 isaroot, one of
the roots in the decomposition of 8, say y1, is such that there exists a short root
S witha = —y1 + 8. Hence, o + B = y» + 8, and we have

* katp =k ko + (1= (=192 eqpp),
o ko = —k,, — 14+ks + (1+ (=Dt g,), and
« kg = ky +ky, + (1— (—Dfthzgg).

These formulae imply that the dependence of k.5 — (ks + k) on the integers
k,,y € Il,isonly mod?2.

Now, we use the cone-free condition to get an alcove A* in V such that J, =
J (A*), where J, is the restriction of J to I1,. For aroot y € Il,, ¢, =
(-1} (4) = (=%, so that k, (A*) = k, (mod2). The formulae above are
true with k, (A*), y € II, in place of k,. But we know that for the coordinates
of an alcove either ko5 (A*) — (ko (A*) + kg (A¥)) = 0 or 1. Hence, either
koytp — (ka + kﬁ) = 0 or 1, concluding the proof of the lemma. O
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