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Abstract. This paper considers invariant (1, 2)-symplectic almost Hermitian struc-
tures on the maximal flag manifod associated to a complex semi-simple Lie group G.
The concept of cone-free invariant almost complex structure is introduced. It involves
the rank-three subgroups of G, and generalizes the cone-free property for tournaments
related to Sl (n, C) case. It is proved that the cone-free property is necessary for an
invariant almost-complex structure to take part in an invariant (1, 2)-symplectic almost
Hermitian structure. It is also sufficient if the Lie group is not Bl , l ≥ 3, G2 or F4. For
Bl and F4 a close condition turns out to be sufficient.
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1 Introduction

The subject matter of this paper is the invariant almost Hermitian structures on the
generalized flag manifolds associated to semi-simple complex Lie algebras and
groups. Let G be a complex semi-simple Lie group and denote by F = G/P the
maximal flag manifold of G, where P is a Borel (minimal parabolic) subgroup of
G. Alternatively, F = U/T where U is a compact real form of G and T = P ∩U

a maximal torus.
The U -invariant almost Hermitian structures on F have been studied recently

in [2] and [10] with different methods. First, in [2] the group G is specialized
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to be Sl (n, C), so that U = SU (n) and F is identified with the manifold of
complete flags of subspaces of C

n. In this case there exists a natural bijection
between the set of U -invariant almost complex structures on F and n-player
tournaments. Taking advantage of this bijection in [2] the invariant structures
were studied with the aid of the combinatorics of tournaments (see also [3]).

On the other hand, [10] adopts the general set up, and studies invariant struc-
tures on the flag manifold associated to an arbitrary semi-simple complex group
G. The methods of [10] are intrinsic in the sense that the combinatorial questions
are resolved within the framework of root systems and Weyl groups.

In both papers the basic issue is the description of the (1, 2)-symplectic Her-
mitian structures. One of the main results is the derivation of a standard form
for the corresponding invariant almost-complex structures. In [2] the standard
form is given in terms of stair-shaped incidence matrices of tournaments, while
in the general setting of [10] it is proved that the (1, 2)-symplectic Hermitian
structures can be put in correspondence to the abelian ideals of a Borel subalge-
bra. Although the results of [10] extend those of [2] the proofs are completely
independent. In particular, the notion of cone-free tournament – which plays a
central role in [2] as a necessary and sufficient condition – does not appear in
[10], leaving a gap in the development of the theory.

The purpose of this paper is to fill this gap, by extending the cone-free concept
to the context of semi-simple Lie algebras, and analyzing its relation to the
(1, 2)-symplectic structures. The cone-free property for the Al series can be
translated into a condition involving quadruples of roots, and thus makes sense
in general (see Definition 3.1). We maintain the name of cone-free for the
property stated in terms of roots. It is related to the (1, 2)-symplectic structures
as follows: An invariant Hermitian structure is a pair (J, �) with J a U -invariant
almost complex structure and � an invariant Riemannian metric. The cone-free
property refers to the invariant almost complex structures. Such a structure is
said to be (1, 2)-admissible if there exists � such that (J, �) is (1, 2)-symplectic.
We prove in Theorem 3.3 that the cone-free property is necessary for J to be
(1, 2)-admissible. It is also sufficient if the semi-simple Lie algebra does not
contain components of the types Bl , l ≥ 3, G2 or F4. The point is that for the
Lie algebras with rank ≥ 3, the cone-free property concerns the restriction of J

to the rank-three subalgebras, and is equivalent to (1, 2)-admissibility in A3 and
C3 but not in B3. For this reason the correct condition for the Lie algebras Bl

and F4 (which are the only ones which contain B3) is that the restriction of J to
any rank-three subalgebra is (1, 2)-admissible.

We regard our approach here as an application of the affine Weyl group char-
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acterization of the (1, 2)-symplectic structures, proved in [10]. Indeed we check
that a certain J is (1, 2)-admissible by showing that it belongs to the class of
affine invariant almost complex structures, which are defined by means of al-
coves of the affine Weyl group (see Definition 6.3 below). It was proved in [10]
that affine structures are (1, 2)-admissible and conversely. Through the affine
structures we have access to the algebra of integer alcove coordinates developed
by Shi [11]. This algebra is used to solve the combinatorial problems arising in
the study of invariant structures.

The relation of cone-free tournaments with (1, 2)-symplectic structures on the
classical flag manifolds is discussed in Mo and Negreiros [7] and Paredes [9].
The necessity of the cone-free property for (1, 2)-admissibility was first stated
and proved in [7], with the aid of the moving frame method, while evidence for
sufficiency was provided in [9], by checking small-sized tournaments. A general
proof of sufficiency for tournaments of arbitrary size was given in [2].

Our attempt to understand the (1, 2)-symplectic structures was motivated by
the study of harmonic maps into flag manifolds. However, after studying them in
[10] it became clear that among the invariant almost Hermitian structures on the
flag manifolds the (1, 2)-symplectic ones form an outstanding class, allowing
the classification of the invariant structures given in [10].

2 Preliminaries

Let � and � be a simple complex Lie algebra and a Cartan subalgebra. Denote
by � the set of roots of the pair (�, �), and let

�α = {X ∈ � : ∀H ∈ �, [H, X] = α (H) X}
be the one-dimensional root space corresponding to α ∈ �. Given α ∈ �∗ we
let Hα be defined by α (·) = 〈Hα, ·〉, where 〈·, ·〉 stands for the Cartan-Killing
form of � and define �R to be the subspace spanned over R by Hα, α ∈ �. We
fix once and for all a Weyl basis of � which amounts to choosing for each α ∈ �

an element Xα ∈ �α such that 〈Xα, X−α〉 = 1, and [Xα, Xβ] = mα,βXα+β with
mα,β ∈ R, m−α,−β = −mα,β and mα,β = 0 if α + β is not a root (see Helgason
[4], Chapter IX).

Given a choice of positive roots �+ ⊂ �, denote by � the corresponding
simple system of roots and let � = � ⊕ ∑

α∈�+ �α be the Borel subalgebra
generated by �+. Let F = G/P be the associated maximal flag manifold,
where G is any connected complex Lie group with Lie algebra � and P is the
normalizer of � in G. Let � be the compact real form of � spanned by i�R and
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Aα, iSα, α ∈ �, where Aα = Xα − X−α and Sα = Xα + X−α. Denote by U the
corresponding compact real form of G. By the transitive action of U on F we
can write F = U/T where T = P ∩ U is a maximal torus of U .

If b0 stands for the origin of F, the tangent space at b0 identifies naturally with
the subspace � ⊂ � spanned by Aα, iSα, α ∈ �. Analogously, the complex
tangent space of F is identified with �C = �
� ⊂ �, spanned by the root spaces
�α, α ∈ �. Clearly, the adjoint action of T on � leaves � invariant.

2.1 Invariant metrics

A U -invariant Riemannian metric on F is completely determined by its value at
b0, that is, by an inner product (·, ·) in �, which is invariant under the adjoint
action of T . Such an inner product has the form (X, Y )� = −〈� (X) , Y 〉 with
� : � → � positive-definite with respect to the Cartan-Killing form. The inner
product (·, ·)� admits a natural extension to a symmetric bilinear form on the
complexification �C of �. These complexified objects are denoted the same
way as the real ones. The T -invariance of (·, ·)� amounts to the elements of the
standard basis Aα, iSα, α ∈ �, being eigenvectors of �, for the same eigenvalue.
Thus, in the complex tangent space we have � (Xα) = λαXα with λα = λ−α > 0.
We denote by ds2

� the invariant metric associated with �. In the sequel we allow
abuse of notation and write simply � instead of ds2

�.

2.2 Invariant almost complex structures

In the sequel we use the abbreviation iacsfor U -invariant almost complex struc-
ture on F. An iacsis completely determined by its value J : � → � in the tangent
space at the origin. The map J satisfies J 2 = −1 and commutes with the adjoint
action of T on �. We denote by the same letter the real valued structure J and
its complexification to �C. The invariance of J entails that J (�α) = �α for all
α ∈ �. The eigenvalues of J are ±i and the eigenvectors in �C are Xα, α ∈ �.
Hence J (Xα) = iεαXα with εα = ±1 satisfying εα = −ε−α. As usual the eigen-
vectors associated to +i are said to be of type (1, 0) while −i-eigenvectors are
of type (0, 1). Thus the (1, 0) vectors are linear combinations of Xα, εα = +1,
and the (0, 1) vectors are spanned by Xα, εα = −1.

An iacs on F is completely prescribed by a set of signs {εα}α∈� with ε−α =
−ε−α. In the sequel we allow some abuse of notation and identify the invariant
structure on F with J = {εα}.

Since F is a homogeneous space of a complex Lie group it has a natural
structure of a complex manifold. The associated integrable iacsJc is given by
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εα = +1 if α < 0. The conjugate structure −Jc is also integrable. These are
called the standard iacs.

2.3 Kähler form

It is easy to see that any invariant metric ds2
� is almost Hermitian with respect

to any iacs J , that is, ds2
� (JX, JY ) = ds2

� (X, Y ) (cf. [13], Section 8). Let
� = �J,� stand for the corresponding Kähler form

� (X, Y ) = ds2
� (X, JY ) = −〈�X, JY 〉.

This form extends naturally to a U -invariant 2-form defined on the complexi-
fication �C of �, which we also denote by �. Its values on the basic vectors
are:

�
(
Xα, Xβ

) = −iλαεβ〈Xα, Xβ〉.
Since 〈Xα, Xβ〉 = 0 unless β = −α, � is not zero only on the pairs (Xα, X−α),
at which � takes the value iλαεα.

The following formula is well known (see [6]).

Lemma 2.1. Let ω be an invariantk-differential form on the homogeneous
spaceL/H . Then

dω (X1, . . . , Xk+1) =
(k + 1)

∑
i<j

(−1)i+j ω
([Xi, Xj ], X1, . . . , X̂i, . . . X̂j , . . . , Xk+1

)
.

for X1, . . . , Xk+1 in the Lie algebra� of L.
Specializing this lemma to the form � we get

−1

3
d� (X, Y, Z) = −� ([X, Y ], Z) + � ([X, Z], Y ) − � ([Y, Z], X) (1)

From (1) an easy computation yields that d�
(
Xα, Xβ, Xγ

)
is zero unless

α + β + γ = 0. In this case

d�
(
Xα, Xβ, Xγ

) = −i3mα,β

(
εαλα + εβλβ + εγ λγ

)
(2)

with mα,β as in Section 2 (cf. [10], Proposition 2.1).
Taking into account (2) we make the following distinction between two types

of roots triples.
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Definition 2.2. LetJ = {εα} be an iacs. A triple of rootsα, β, γ with α + β +
γ = 0 is said to be a{0, 3}-triple if εα = εβ = εγ , and a{1, 2}-triple otherwise.

Recall that an almost Hermitian manifold is said to be (1, 2)-symplectic (or
quasi-Kähler) if

d� (X, Y, Z) = 0

when one of the vectors X, Y, Z is of type (1, 0) and the other two are of type
(0, 1).The structure is (2, 1)-symplectic if the roles of (1, 0) and (0, 1) are inter-
changed. Accordingly, the structure is (i, j)-symplectic if the (i, j) component
d�(i,j) of d� is zero.

In our invariant setting we have the following criterion for an invariant pair
(J, �) to be (1, 2)-symplectic, which follows immediately from formula (2),
and the fact that Xα has type (1, 0) if εα = +1 and (0, 1) if εα = −1 (see [10],
Proposition 2.3 and [13], Theorem 9.15).

Proposition 2.3. The invariant pair(J = {εα}, � = {λα}) is (1, 2)-symplectic
if and only if

εαλα + εβλβ + εγ λγ = 0

for every{1, 2}-triple {α, β, γ }.
In the sequel J is said to be (1, 2)-admissible if there exists � such that the

pair (J, �) is invariant and (1, 2)-symplectic.

3 The cone-free property

Given a set of four roots q = {α, β, γ, δ} with α + β + γ + δ = 0 we say that a
triple of roots {(u + v) , w1, w2} is extracted from q by u and v if {u, v, w1, w2} =
{α, β, γ, δ}. Of course, any such triple satisfies (u + v) + w1 + w2 = 0. The
cone-free condition is stated in terms of such triples.

Definition 3.1. Let J = {εα} be aniacs. We say thatJ is cone-free if the
following condition is satisfied:

• If q = {α, β, γ, δ} contains no pairs of opposite roots andα+β+γ +δ = 0
then the number of{0, 3}-triples extracted fromq is different from1.
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In this definition the hypothesis that the quadruples do not have opposite roots is
redundant and is included only for emphasis sake. Indeed, suppose, for instance,
thatβ = −α. Then δ = −γ , and the possible triples extracted from the quadruple
are (α + γ, −α, −γ ), (α − γ, −α, γ ), (−α + γ, α, −γ ) and (−α − γ, α, γ ). It
is easy to see that in this set {0, 3}-triples appear in pairs, independently of J .

Except when the root system is G2 the cone-free property is a condition on
the rank-three subsystems of the root system. In fact, since there are no opposite
roots in {α, β, γ, δ} the subspace V spanned by these roots is either two or three
dimensional. However, it is easy to see that in the rank-two root systems A1⊕A1,
A2 and B2, which are different from G2, there are no such sets of roots. Hence,
the intersection of � ∩ V is a rank-three root system if we are not in G2 (see
Section 5 below for a discussion of G2).

The explanation for the term cone in the above definition comes from the
relation between iacs in the flag manifolds of the Al series (the Lie algebras
�� (n, C), n = l + 1) and tournaments. Recall that an n-player tournament is
a complete directed graph T = (N, E) where N is an ordered set, |N | = n,
and E stands for the arrows of T . With each tournament T there is assigned its
incidence matrix ε = εT , which is a real skew-symmetric matrix with all off-
diagonal entries ±1. If (a, b) ∈ E we say that a wins against b and set εab = 1
and εba = −1.

On the other hand, in the standard realization, the roots of Al are αjk, 1 ≤
j 
= k ≤ l + 1, with αkj = −αjk. Thus an iacs on the corresponding flag
manifold is given by the signs εjk = εαjk

= ±1, j 
= k. These numbers are
assembled to form the incidence matrix ε of some tournament, establishing a
one-to-one correspondence between the iacson the maximal flag manifold of Al

and n-players tournaments.
A 3-cycle in a tournament is a 3-players subtournament {i, j, k} which forms

the loop i → j → k → i. When T is the tournament associated to the iacsJ ,
a 3-cycle {i, j, k} corresponds to the {0, 3}-triple {αij , αjk, αki} (see [2]).

Now, up to isomorphism, there are four distinct 4-player tournaments. The
two of them which contain a single 3-cycle are called cones. Each of them
contains a cycle and a winner or a loser. The other equivalence classes of 4-
player tournaments contain an even number of cycles (zero or two).

Proposition 3.2. In the maximal flag manifold associated toAn−1 = �� (n, C),
an iacs is cone-free in the sense of Definition 3.1 if and only if no4-player
subtournament of the associated tournament is a cone.
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Proof. Assume first that an iacsJ with corresponding tournament T is cone-
free in the sense of Definition 3.1. Let {i, j, k, l} be a 4-player subtournament,
and consider the corresponding set of four roots {αij , αjk, αkl, αli} which satisfies

αij + αjk + αkl + αli = 0.

From this set we extract the four triples

{αik, αkl, αli}, {αjl, αli, αij }, {αki, αij , αjk} and {αlj , αjk, αkl}.
Each one of these triples corresponds to a 3-player subtournament (e.g.
{αik, αkl, αli} is associated to {i, k, l}), in such a way that {0, 3}-triples corre-
spond to 3-cycles. Hence, by our generalized cone-free condition {i, j, k, l} is
not a cone.

For the converse, note that a set of four roots {α, β, γ, δ} with α+β+γ +δ = 0
which do not contain opposite roots spans a rank-three root subsystem, and hence
the set has the form {αij , αjk, αkl, αli} for 1 ≤ i, j, k, l ≤ n. Repeating the above
argument we get the generalized cone-free condition if the tournament has
no cones. �

We proceed now to prove that the cone-free condition is necessary for an
iacs to be (1, 2)-admissible. Write d�{0,3} = d�(0,3) + d�(3,0) and d�{1,2} =
d�(1,2) + d�(2,1), so that

d� = d�{0,3} + d�{1,2}.

We get a necessary condition for d�{1,2} = 0 by exploiting the fact that d2 = 0,
computing formally d2�

(
Xα, Xβ, Xγ , Xδ

)
. Analogous to the case of d� the

only quadruples {α, β, γ, δ} of interest are those satisfying α + β + γ + δ = 0.
Using the exterior derivative formula of Lemma 2.3, we get for these quadruples,
that d2� is the sum of the following six terms:

1. +mα,βmγ,δ

(
εα+βλα+β + εγ λγ + εδλδ

)
2. −mα,γ mβ,δ

(
εα+γ λα+γ + εβλβ + εδλδ

)
3. +mα,δmβ,γ

(
εα+δλα+δ + εβλβ + εγ λγ

)
4. +mβ,γ mα,δ

(
εβ+γ λβ+γ + εαλα + εδλδ

)
5. −mβ,δmα,γ

(
εβ+δλβ+δ + εαλα + εγ λγ

)
6. +mγ,δmα,β

(
εγ+δλγ+δ + εαλα + εβλβ

)
Bull Braz Math Soc, Vol. 33, No. 1, 2002
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These terms cancel mutually (e.g. the coefficient of εαλα is mα,βmγ,δ +
mβ,γ mα,δ + mγ,αmβ,δ which is known to be zero, see [4], Lemma III 5.3). In
order to look at them closer let us take, for instance, the first one. The coefficient
mα,β is not zero if and only if α + β is a root. But α + β = − (γ + δ), so that
both coefficients mα,β and mγ,δ are simultaneously zero or not. The same remark
is true for the other terms. Next, in each term the sum appearing in braces has
the form d�

(
Xξ, Xη, Xθ

)
with (ξ, η, θ) a triple extracted from {α, β, γ, δ} if

the coefficients m∗,∗ are not zero.
These comments yield an alternative proof of the following result of [7].

Theorem 3.3. A necessary condition for(J, �) to be(1, 2)-symplectic is that
J is cone-free in the sense of Definition 3.1.

Proof. Let q = {α, β, γ, δ} be a root quadruple such that α + β + γ + δ = 0.
Among the six terms above, those corresponding to {1, 2}-triples extracted from
q are zero if d�{1,2} = 0. On the other hand a term corresponding to an extracted
{0, 3}-triple is not zero. Hence, for d2� to be zero it is not possible to
extract just one {0, 3}-triple. �

4 Rank-three Lie algebras

The cone-free condition involves sets of four roots whose sum is zero in such
a way that no two roots are opposite to each other. This has the consequence
that the subspace spanned by the roots is three dimensional if the root system
is not G2. Hence, excluding G2 the cone-free condition refers to the rank-three
subsystems of roots. The purpose of this preparatory section is to look at those
rank-three root systems (mainly the irreducible ones A3, B3 and C3) required to
study the cone-free condition in general root systems.

Note first that the rank-three reducible root systems are A1 ⊕A1 ⊕A1, A1 ⊕A2

and A1 ⊕ B2. It is easy to check that any iacs in these root systems are (1, 2)-
admissible, and thus satisfy the cone-free condition.

Concerning A3 = �� (4, C), an iacs J on the maximal flag manifold cor-
responds to a 4-tournament T . By Proposition 3.2, J satisfies our cone-free
condition if and only if T does not contain a cone. We know that such iacs
are (1, 2)-admissible (see [2], [3]). Actually, the set of cone-free iacs has two
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equivalence classes, which are represented by the incidence matrices




0 1 1 1
−1 0 1 1
−1 −1 0 1
−1 −1 −1 0







0 1 1 −1
−1 0 1 1
−1 −1 0 1
1 −1 −1 0


 . (3)

The class represented by the first matrix consists of the standard iacs.
Now, we look at the more delicate B3. In its standard realization the positive

root system is L ∪ S where L = {ei ± ej : 1 ≤ i < j ≤ 3} and S = {ei : 1 ≤
i ≤ 3} are the sets of long and short roots, respectively.

The set L is isomorphic to the positive root system L3 = {αij : 1 ≤ i < j ≤ 3}
of A3 via the bijection:

• Simple roots: α12 ↔ e2 − e3; α23 ↔ e1 − e2; α34 ↔ e2 + e3.

• Height 2: α13 ↔ e1 − e3; α34 ↔ e1 + e3.

• Height 3: α14 ↔ e1 + e2.

Now, let J = {εα} be a cone-free iacs in B3. Its restriction J l to L is also
cone-free so that we can assume that it is represented by one of the two matrices
in (3). It remains to see what happens at the short roots e1, e2 and e3. Regarding
e3, we can assume without loss of generality that εe3 = +1. In fact, the reflection
r3 with respect to e3 leaves L3 invariant fixes the highest root e1 + e2. Hence,
we can replace J by r3 · J without affecting its values in L3 if J l is represented
by one of the matrices in (3). As to e1 and e2 we have

Lemma 4.1. εe1 = εe2 .

Proof. Consider the quadruple (−e1) + (e1 − e2) + (e2 − e3) + e3 = 0. The
triples extracted from it are {−e2, e2 − e3, e3}, {−e1 + e3, e1 − e2, e2 − e3},
{e2, −e1, e1 − e2} and {e1 − e3, −e1, e3}.

Note that {−e1 +e3, e1 −e2, e2 −e3} is a {1, 2}-triple. Suppose that εe2 = −1.
Then {−e2, e2 − e3, e3} is a {0, 3}-triple, and {e2, −e1, e1 − e2} is a {1, 2}-triple,
forcing the last triple to be {0, 3}, which implies εe1 = −1. The root e1 +e2 does
not appear in the extracted triples, ensuring that our arguments are independent
of the choice of J l .

On the other hand from the quadruple (e1 − e2)+(e2 + e3)+(−e1)+(−e3) =
0, the only extracted triple which is not automatically of type {0, 3} is {e2, e1 −
Bull Braz Math Soc, Vol. 33, No. 1, 2002
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e2, −e1}. Hence, this set must be a {1, 2}-triple, so that εe2 = +1 implies
εe1 = +1. Again the extracted triples do not involve e1+e2, hence it is immaterial
which of the J l’s we consider. �

We arrive at the following description of the cone-free iacson B3.

Proposition 4.2. Denote byM (J) the set of positive rootsα of B3 such that
εα = −1. Fixing the choices ofJ l given by (3) andεe3 = +1, the possibleiacs
satisfying the cone-free condition are:

1. M (J1) = ∅.

2. M (J2) = {e1 + e2}.
3. M (J3) = {e1, e2}.
4. M (J4) = {e1, e2, e1 + e2}.

Among them the only(1, 2)-admissibleiacs areJ1 andJ2.

Proof. The (1, 2)-admissibility of J1 and J2 is a consequence of the abelian
ideal shape of [10]. On the other hand, J3 and J4 are not (1, 2)-admissible. To
see this consider the triples {e1, e1 + e3, −e3} and {e1, e3, −e1 − e3}. They are
{1, 2}-triples for both J3 and J4. Now, assume that � = {λα} is (1, 2)-symplectic
with respect to J3 or J4. Then λe1+e3 = λe1 +λe3 and λe3 = λe1 +λe1+e3 , forcing
λe1 = 0, a contradiction.

Finally, it is straighforward but cumbersome to verify that J3 and J4 indeed
satisfy the cone-free condition. One must write down the quadruples of roots of
B3 summing up zero, and their extracted triples, and check that the {0, 3}-triples
do not appear isolated. �

The discussion of C3 follows the same pattern as that of B3. In the standard
realization of C3, its short roots coincide with the long roots of B3, whereas
the long roots are given by ±2ei , i = 1, 2, 3. Again we can assume that the
restriction J s of a cone-free iacsJ to the short roots has one of the incidence
matrices (3). Also, after applying the reflection with respect to e3 we can assume
that ε2e3 = +1. With the aid of these choices we can check the quadruples of C3

and prove the
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Proposition 4.3. Denote, as before, byM (J) the set of positive rootsα of C3

such thatεα = −1. Fixing the above choices ofJ s andεe3 = +1, the possible
iacs satisfying the cone-free condition are:

1. M (J1) = ∅.

2. M (J2) = {e1 + e2, 2e1}.
3. M (J3) = {2e2, e1 + e2, 2e1}.

EachM (Ji), i = 1, 2, 3, is an abelian ideal of the set of positive roots, so that
the cone-freeiacs are (1, 2)-admissible.

Proof. The proposition is a consequence of the following implications:

εe1+e2 = +1 ⇒ ε2e2 = ε2e1 = +1, εe1+e2 = −1 ⇒ ε2e1 = −1.

which are easy consequences of the cone-free property applied to the quadruples
{e1 − e2, 2e2, −e2 + e3, −e1 − e3}, {e1 − e2, e1 − e3, e2 + e3, −2e1} and {e1 −
e2, e2 − e3, e1 + e3, −2e1}, respectively. �

5 G2

As mentioned above, G2 is the only rank-two root system where the cone-free
condition is not vacuous. For the sake of completeness we analyze here the iacs
on G2 which satisfy this condition. We write the positive roots as

α1

α2
α1 + α2 α1 + 2α2 α1 + 3α2 2α1 + 3α2.

The set of short roots {±α2, ± (α1 + α2) , ± (α1 + 2α2)} is an A2-root system.
Let J be an iacson G2 and denote by J s its restriction to the set of short roots.
In A2 there are two equivalence classes of iacs, so that we can assume without
loss of generality that J s is one of the following two iacs:

1. J s
1 = {εα2 = +1, εα1+α2 = +1, εα1+2α2 = +1}.

2. J s
2 = {εα2 = +1, εα1+α2 = +1, εα1+2α2 = −1}.

Denote by r the reflection with respect to α1. It satisfies rα2 = α1 +α2 and
r (α1 + 2α2) = α1 + 2α2. This implies that r leaves J s invariant. Hence,
we may assume that εα1 = +1.
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Now, assuming that J satisfies the cone-free condition, it remains to determine
the values of εα1+3α2 and ε2α1+3α2 . Up to change of signs there are the following
three zero-sum root quadruples:

1. q1: (α1) + (α2) + (α1 + 2α2) + (−2α1 − 3α2) = 0.

2. q2: (α2) + (α1 + α2) + (α1 + α2) + (−2α1 − 3α2) = 0.

3. q3: (α1) + (α1 + 3α2) + (−α1 − α2) + (−α1 − 2α2) = 0.

First suppose that J s = J s
1 . Writing down the triples extracted from q3, it is

straighforward to check that εα1+3ε2 = −1 implies that ε2α1+3ε2 = −1. Hence,

the possible cone-free iacsare
+
+ + + + +,

+
+ + + + − and

+
+ + + − −.

By the abelian ideal property stated in [10], these iacsare (1, 2)-admissible, and
hence they are indeed cone-free.

Suppose now that J s = J s
2 . Looking at the triples extracted from q1 it is

easy to see that εα1+3α2 = +1 implies ε2α1+3α2 = +1. Since there are no other

restrictions, the cone-free iacsare
+
+ +−++,

+
+ +−−+ and

+
+ +−−−.

The last one is (1, 2)-admissible, whereas, similar to the B3 case, one can check
that the first two are not (1, 2)-admissible. (We remark that in checking the
cone-free property the quadruple q2 is irrelevant, since in it each extracted triple
appears twice.)

6 The affine Weyl group

In this section we recall the definition of the affine iacsintroduced in [10]. These
structures are constructed by counting hyperplanes separating a given alcove and
the basic one. We refer to Humphreys [5] as a basic source for the affine Weyl
group. Consider the subspace �R introduced in Section 2. To conform with the
usual notation we often identify �R with its dual �∗

R
and write 〈x, α〉 instead of

α (x), x ∈ �R, α ∈ �∗
R

. Given α ∈ � and k ∈ Z define the affine hyperplane

H (α, k) = {x ∈ �R : 〈x, α〉 = k}.
The complement A of the set of hyperplanes H (α, k), α ∈ �, k ∈ Z, is the

disjoint union of connected open simpleces called alcoves. Given an alcove A

and a root α, by definition there exists an integer kα = kα (A) such that

kα < 〈x, α〉 < kα + 1 x ∈ A.
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Of course, kα = [α (x)] for any x ∈ A where [a] denotes the integer part
of the real number a. According to Shi [11], the integers kα (A) are called
the coordinatesof the alcove A. An alcove is completely determined by its
coordinates. A necessary and sufficient condition for kα, α ∈ �, to be the
coordinates of an alcove are given by the inequalities below. In writing down
these inequalities we must look � as the set of co-roots of another root system
�̃:

� = {α∨ = 2α

〈α, α〉 : α ∈ �̃}.

The root system is normalized so that |α| = 1 if α is a short root.

Proposition 6.1. A set of integerskα, α ∈ �̃+, form the coordinates of an
alcove if and only if for every pair of rootsα, β ∈ �̃ such thatα + β ∈ �̃, the
following inequalities hold:

|α|2kα + |β|2kβ + 1 ≤ |α + β|2 (
kα+β + 1

)
≤ |α|2kα + |β|2kβ + |α|2 + |β|2 + |α + β|2 − 1.

(4)

Proof. See [11], Lemma 1.2 and Proposition 5.1. �

Remark. It is easy to see that the inequalities in this proposition are equivalent
to

|α|2 kα + |β|2 kβ + |γ |2 kγ ≤ 1.

For later reference we note also the following easy necessary condition.

Lemma 6.2. A necessary condition for the integerskα ∈ Z, α ∈ �, to be the
coordinates of an alcove is thatkα+β is eitherkα + kβ or kα + kβ + 1 whenever
α, β andα + β are roots.

Proof. We have, for all x ∈ A, kα < 〈x, α〉 < kα +1 and kβ < 〈x, β〉 < kβ +1,
so that

kα + kβ < 〈x, α + β〉 < kα + kβ + 2.

Hence, the integer part of 〈x, α + β〉 is either kα+β = kα + kβ or kα+β =
kα + kβ + 1. �
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Definition 6.3. Given an alcoveA with coordinates{kα : α ∈ �}, the iacs
J (A) = {εα (A)} is defined byεα (A) = (−1)kα . We say thatJ is an affineiacs
if it has the formJ = J (A) for some alcoveA.

Note that J (A) is indeed an iacs, since k−α = −kα − 1, so that ε−α (A) =
−εα (A). The following theorem is one of the main results in [10]. It provides
the criterion which will be used in the sequel for ensuring that iacs are (1, 2)-
admissible.

Theorem 6.4. An iacs J is (1, 2)-admissible if and only if it is affine.

7 Simply-laced root systems

In this section we prove that the cone-free condition is sufficient for an iacsto be
(1, 2)-admissible, in case the algebra � has a simply-laced Dynkin diagram, i.e.
� = Al , Dl , E6, E7 or E8. The doubly-laced case will be treated in Section 8.
We use the equivalence between the affine and (1, 2)-admissible iacs, as stated
in Theorem 6.4, and construct an alcove A such that J = J (A) if J satisfies the
cone-free condition. Thus the purpose of this section is to prove the following
statement.

Theorem 7.1. Let� be a simply-laced root system, and suppose thatJ = {εα}
is a cone-freeiacs onF. ThenJ is affine.

The proof will consist of several steps. By definition of affine iacs we must
find a set of integers {kα : α ∈ �} satisfying the inequalities of Shi (4) such that
εα = (−1)kα , α ∈ �. In a simply-laced root system the roots have the same
length, simplifying these inequalities. In fact, we have the following equivalent
condition for a set kα to be the coordinates of an alcove.

Lemma 7.2. Let� be simply-laced. Then the integerskα ∈ Z, α ∈ �, form the
coordinates of an alcove if and only if eitherkα+β = kα+kβ or kα+β = kα+kβ+1
whenα, β andα + β are roots.

Proof. The condition is necessary by Lemma 6.2. Conversely, if � is simply-
laced, the |·|2 appearing in inequalities (4) are equal to 1, hence they reduce
to

kα + kβ ≤ kα+β ≤ kα + kβ + 1.
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Therefore, these inequalities are satisfied by kα, α ∈ �, if they are under the
conditions of the statement. �

Before proceeding we prove some lemmas.

Lemma 7.3. Let�∗ ⊂ � be a root subsystem of�. Then�+∗ = �∗ ∩ �+ is
a choice of positive roots in�∗.

Proof. There exists γ ∈ �∗
R

such that

�+ = {α ∈ � : 〈α, γ 〉 > 0}.
Of course, 〈α, γ 〉 
= 0 for all α ∈ �. Let γ1 be the orthogonal projection of γ

onto the subspace of �∗
R

spanned by �∗. For β ∈ �∗ we have 〈β, γ 〉 = 〈β, γ1〉,
so that 〈β, γ1〉 
= 0 for all β ∈ �∗. Hence, γ1 is regular for �∗, implying that

�+
∗ = {β ∈ �∗ : 〈β, γ1〉 > 0}

is a choice of positive roots in �∗. Using again 〈β, γ 〉 = 〈β, γ1〉, β ∈ �∗, it
follows that �+∗ = �∗ ∩ �+, proving the lemma. �

Lemma 7.4. Fix a simple system of roots�, and letJ = {εα} be an affineiacs.
Suppose that a set of integersmα ∈ Z, α ∈ �, satisfiesεα = (−1)mα . Then there
exists an alcoveA such thatJ = J (A) andkα (A) = mα, α ∈ �.

Proof. Put � = {α1, . . . , αl} and define {ω1, . . . , ωl} by 〈αi, ωj 〉 = δij . Also,

let A1 be an alcove such that J = J
(
A1

)
, that is, εα = (−1)kα(A1). Since

εα = (−1)mα , the integers mαi
− kαi

(
A1

)
are even. Now, a translation tλ with

λ spanned over Z by ωi , i = 1, . . . , l, maps alcoves into alcoves, and the
coordinates are changed according to

kα (tλA) = 〈α, λ〉 + kα (A) . (5)

Take λ = dα1ω1 + · · · + dαl
ωl , with dαi

= mαi
− kαi

(
A1

)
. Then the coordinates

of A = tλA
1 are kα (A) = 〈α, λ〉 + kα

(
A1

)
, and since 〈α, λ〉 is even for all

α, we conclude that J = J (A). Furthermore, for a simple roots αi we have
kαi

(A) = dα1 + kα

(
A1

) = mαi
, proving the lemma. �
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Now, for proving Theorem 7.1 we construct kα, α ∈ �, by induction on the
height of α. Thus let us fix once and for all a simple system of roots � with �+
the corresponding set of positive roots. Then given J = {εα} define:

1. Let α ∈ �. Then kα = (1 − εα) /2.

2. Let α, β, γ ∈ �+ be such that α = β + γ . Then

kα = kβ + kγ + 1 − (−1)kβ+kγ εα

2
. (6)

3. Let α ∈ −�+. Then kα = −k−α − 1.

A case by case analysis shows easily that the coordinates {kα} so defined satisfy
εα = (−1)kα . Also, the condition of Lemma 7.2 is readily satisfied. The point is
to show that kα is independent of the decomposition α = β + γ used in (6). We
prove this by induction on the height h (α) of α ∈ �+. If h (α) = 1, the root is
simple, and no decomposition α = β + γ , β, γ ∈ �+ exists, hence kα is well
defined.

Now take α ∈ �+ such that α = β1 + γ1 = β2 + γ2, βi , i = 1, 2, positive
roots, and hence having height smaller than h (α). By the inductive hypothesis
kβi

, kγi
, i = 1, 2 are well defined. We must show that kβ1 + kγ1 = kβ2 + kγ2 .

Denote by V ⊂ �∗
R

the subspace spanned by β1, γ1, β2 and γ2. We have
dim V = 2 or 3.

In case dim V = 2, the subset V ∩� is a rank-two system of roots, containing
two roots (β1 and γ1) whose sum is a root. Hence V ∩ � is irreducible, and
since our original root system is simply-laced, it follows that V ∩ � is an A2

system. Now, in A2 a root is written uniquely as a sum of two roots, hence there
is nothing to prove.

Suppose then that dim V = 3, and let �∗ = V ∩� be the corresponding rank-
three system. Since the roots in � have the same length, either �∗ = A1 ⊕ A2

or �∗ = A3. Again, there is nothing to prove in the A1 ⊕ A2 case.
Assuming that �∗ = A3, let J∗ be the restriction of J to �∗. Then J∗ is

(1, 2)-admissible and hence affine.
Now, by Lemma 7.3, �+∗ = �∗ ∩�+ is a positive root system. Let �∗ ⊂ �+

the corresponding set of simple roots.

Lemma 7.5. α is the highest root in�+∗ .
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Proof. Write the positive roots of A3 as αij , 1 ≤ i < j ≤ 4, so that α is one of
these roots. It is not a simple root, since α = β1 + γ1 with β1, γ1 ∈ �+∗ . Also, a
root of height 2 in A3 is written uniquely as a sum of two positive roots. Hence
the height of α in �+∗ is not 2, since dim V = 3 and α = β1 + γ1 = β2 + γ2.
Therefore, the height of α in �+∗ is three, that is, α is the highest root. �

By this lemma and the equality �+∗ = �∗ ∩�+ we conclude that the height of
α in �+ is bigger than the height (in �+) of any γ ∈ �∗. Hence, the inductive
hypothesis ensures that kγ is well defined for γ ∈ �∗.

Now, by the cone-free assumption, there exists an alcove A∗ in the affine
system of �∗ such that J∗ = J (A∗). By Lemma 7.4 we can choose A∗ so that
kγ (A∗) = kγ for all γ ∈ �∗. The integers kδ (A∗), δ ∈ �∗, satisfy the conditions
of Lemma 7.2. Also, J∗ = J (A∗) is the restriction of J to �∗. Hence starting
with kγ (A∗) = kγ , γ ∈ �∗, the values of kδ (A∗), δ ∈ �+∗ , are determined
according to the rules used to define kα. This means that within �+∗ , kα is well
defined. However, the decompositions α = β1 + γ1 = β2 + γ2 are inside
�+∗ , so that the value of kα does not depend upon one of these decompositions,
concluding the proof of Theorem 7.1.

Corollary 7.6. In a simply-laced situation letA1 andA2 be alcoves such that
J

(
A1

) = J
(
A2

)
. Then there existsλ with 〈λ, α〉 ∈ 2Z for every rootα such

thatA2 = tλA
1.

Proof. As in the proof of Lemma 7.4 let {α1, . . . , αl} be a simple system of
roots and {ω1, . . . , ωl} its dual basis, and put

λ = dα1ω1 + · · · + dαl
ωl

with dαi
= kαi

(
A2

) − kαi

(
A1

)
. The assumption J

(
A1

) = J
(
A2

)
implies that

dαi
, i = 1, . . . , l, are even integers, so that 〈λ, α〉 ∈ 2Z for all α ∈ �. According

to the change of coordinates formula (5), to see that A2 = tλA
1 we must check that

kα

(
A2

) = 〈λ, α〉+kα

(
A1

)
for every positive root α. This is done by induction on

the height of α: If α is simple, the equality holds by definition of λ. On the other
hand if α = β + γ with β, γ ∈ �+, we assume by induction that the equality is
true for β and γ . In particular, kβ

(
A1

) + kγ

(
A1

) ≡ kβ

(
A2

) + kγ

(
A2

)
mod2.

Now, from the construction performed in the proof of Theorem 7.1, it follows
that formula (6) holds for both sets of integers kδ

(
A1

)
and kδ

(
A2

)
, δ ∈ �, with

the same εα. Therefore, kα

(
Ai

) − kβ

(
Ai

) − kγ

(
Ai

)
is independent of i = 1, 2.

Thus applying the inductive hypothesis we get

kα

(
A2

) = kα

(
A1

) + 〈λ, β〉 + 〈λ, γ 〉 = kα

(
A1

) + 〈λ, α〉,
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concluding the proof. �

Remark. It is worth mentioning that with Theorem 7.1 we get an indirect proof
of a result in tournament theory, namely Theorem 3.5 of [2] which asserts that the
vertices of a tournament T can be rearranged so that its incidence matrix becomes
stair-shaped in case T has no cones. In fact, this result follows by piecing together
Proposition 3.2, Theorem 7.1 and the results of [10] on invariant almost complex
structures (see [10], Theorem 4.12).

8 Doubly-laced root systems

In this section we look at the cone-free property for the doubly-laced diagrams
(Bl , Cl and F4). The final result for Cl differs from Bl and F4.

Theorem 8.1. Let � be a root system andJ an iacs on the corresponding
maximal flag manifold.

1. Suppose that� is Cl. ThenJ is affine (and hence(1, 2)-admissible) if
and only ifJ satisfies the cone-free property.

2. Suppose that� is Bl or F4, and that the restriction ofJ to any rank-three
subsystem is affine. ThenJ is affine, and hence(1, 2)-admissible.

Remark. The rank-three condition for Bl and F4 is equivalent to J being cone-
free together with the additional assumption that the restriction of J to any B3-
subsystem is affine. This assumption is not required for Cl because it does not
contain B3-subsystems.

The proof of Theorem 8.1 uses the corresponding result for simply-laced dia-
grams (Theorem 7.1), applied to the set of short roots of �. Let �s and �l denote
the sets of short roots and long roots, respectively. We have the disjoint union
� = �s ∪�l . Both sets �s and �l are simply-laced root systems (for example,
in � = Bl , �l is a Dl while �s is reducible with l orthogonal components).

Let J s stand for the restriction of J to �s . Clearly, under the conditions of
Theorem 8.1, J s satisfies the cone-free assumption of Theorem 7.1, so that J s

is affine in �s . Thus there are integers kα, α ∈ �s , with εα = (−1)kα such
that kα form the coordinates of an alcove in �s . We shall prove Theorem 8.1 by
extending these coordinates to �l .
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For the doubly-laced root systems, we have the following characterization of
the coordinates of alcoves, which is obtained from the inequalities of Shi after a
case-by-case analysis.

Proposition 8.2. In a doubly-laced root system a set of integerskα, α ∈ Z, are
the coordinates of an alcove if and only if the following inequalities are satisfied.
Each inequality is satisfied by a triple of roots as indicated, wheres means short
root andl long root.

1. (α, β, α + β) = (l, l, l): kα + kβ ≤ kα+β ≤ kα + kβ + 1

2. (α, β, α + β) = (s, s, s): 2kα + 2kβ + 1 ≤ 2kα+β + 2 ≤ 2kα + 2kβ + 5

3. (α, β, α + 2β) = (l, s, l): kα + 2kβ ≤ kα+2β ≤ kα + 2kβ + 2

4. (α, β, (α + β) /2) = (l, l, s): kα + kβ ≤ 2k(α+β)/2 + 1 ≤ kα + kβ + 2

Proof. See [10], Proposition 5.4. �

Lemma 8.3. Suppose the doubly-laced root system� is irreducible, and letα
be a long root. Then there exists a short rootβ such that〈α, β〉 
= 0.

Proof. There are a long root α1 and a short root β1 such that 〈α1, β1〉 
= 0 (look
e.g. at the Dynkin diagram). The Weyl group W leaves invariant both �l and
�s , and since � is irreducible, these subsets are orbits of W . Hence, for a long
root α there exists w ∈ W with α = wα1. Thus, 〈α, wβ1〉 
= 0. �

Lemma 8.4. Letα be a long root. Then there are short rootsβ andγ such that

α = β + γ.

Proof. By the previous lemma there exists a short root β with 〈α, β〉 
= 0.
Let �2 be the intersection of � with the subspace spanned by α and β. It has
rank-two and contains two roots α and β of different length with 〈α, β〉 
= 0.
Hence �2 is a B2. The lemma follows then by looking at the roots of B2. �

Now, we write down the conditions for a set of integers to be the coordinates
of an alcove in terms of the short and long roots.
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Lemma 8.5. In a doubly-laced root system� the following conditions are
necessary and sufficient for a set of integerskα, α ∈ �, to be the coordinates of
an alcove:

1. The integerskα, α ∈ �l, are the coordinates of an alcove in the root system
of the long roots.

2. The integerskα, α ∈ �s , are the coordinates of an alcove in the root system
of the short roots.

3. Take a long rootα = β + γ with β and γ short roots. Then either
kα = kβ + kγ or kα = kβ + kγ + 1.

Proof. Suppose first that kα, α ∈ �, are the coordinates of an alcove. Then
the first and second sets of inequalities in Proposition 8.2 together with the
corresponding inequalities in the simply-laced case show that the restriction of
kα to the long roots as well as to the short roots are coordinates of alcoves.
Furthermore, the last condition is necessary by Lemma 6.2.

We prove sufficiency by showing that the three conditions of the lemma imply
the inequalities of Proposition 8.2. The first two sets of those inequalities are
equivalent to our conditions on the sets of long and short roots, respectively. For
the other two we make a case by case analysis. As before l means long root and
s short root.

• (α, β, α + 2β) = (l, s, l): kα + 2kβ ≤ kα+2β ≤ kα + 2kβ + 2. Put
γ = α + β and δ = α + 2β. Note that γ is a short root (look at the roots
of B2) δ is a long root, and δ = β +γ . Hence by the third condition either
kδ = kβ +kγ or kδ = kβ +kγ +1. On the other hand, α = −β +γ is a sum
of short roots giving rise to a long root. So that either kα = −kβ + kγ − 1
or kα = −kβ + kγ . Now, we plug these possibilities into 2kβ ≤ kδ − kα ≤
2kβ + 2. We list below the inequalities that arise:

kδ − kα = (
kβ + kγ

) − (−kβ + kγ − 1
)

2kβ ≤ 2kβ + 1 ≤ 2kβ + 2
kδ − kα = (

kβ + kγ

) − (−kβ + kγ

)
2kβ ≤ 2kβ ≤ 2kβ + 2

kδ − kα = (
kβ + kγ + 1

) − (−kβ + kγ − 1
)

2kβ ≤ 2kβ + 2 ≤ 2kβ + 2
kδ − kα = (

kβ + kγ + 1
) − (−kβ + kγ

)
2kβ ≤ 2kβ + 1 ≤ 2kβ + 2

Hence the third set of inequalities of Proposition 8.2 holds under the
conditions of the lemma.

• (α, β, (α + β) /2) = (l, l, s): kα +kβ ≤ 2k(α+β)/2 +1 ≤ kα +kβ +2. Put
γ = (α + β) /2 and δ = (β − α) /2. Both γ and δ are short roots (again
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look at B2). We have β = γ + δ and α = γ − δ, so that kβ = kγ + kδ or
kβ = kγ + kδ + 1 and kα = kγ − kδ − 1 or kα = kγ − kδ. Plugging these
choices into kα + kβ ≤ 2kγ + 1 ≤ kα + kβ + 2 we get:

kα + kβ = (
kγ − kδ − 1

) + (
kγ + kδ

)
2kγ − 1 ≤ 2kγ + 1 ≤ 2kγ + 1

kα + kβ = (
kγ − kδ − 1

) + (
kγ + kδ + 1

)
2kγ ≤ 2kγ + 1 ≤ 2kγ + 2

kα + kβ = (
kγ − kδ

) + (
kγ + kδ

)
2kγ ≤ 2kγ + 1 ≤ 2kγ + 2

kα + kβ = (
kγ − kδ

) + (
kγ + kδ + 1

)
2kγ + 1 ≤ 2kγ + 1 ≤ 2kγ + 3

Concluding the proof of the lemma. �
We return now to Theorem 8.1. Let J = {εα} be an iacs in the doubly-laced

root system �, which satisfies the cone-free property. Then the restriction J s of
J to the short roots �s is cone-free. Hence, by Theorem 7.1, J s is affine, so that
there are integers kβ , β ∈ �s , forming the coordinates of an alcove in �s , such
that εβ = (−1)kβ for all β ∈ �s .

Maintaining this choice of alcove in �s we intend to extend the integers kα

to the long roots. Taking into account the third condition of Lemma 8.5, we
must define kα, α ∈ �l , by the expression (6) already used in the simply-laced
case, but now with α a long root and β and γ short roots, such that α = β + γ .
Again, the very expression for kα ensures that εα = (−1)kα . Hence, in order to
proceed we must prove that the integers kα, α ∈ �l , are well defined, and form
the coordinates of an alcove.

Lemma 8.6. Letkβ ,β ∈ �s , be the coordinates of an alcove in�s , representing
J s . Letα > 0 be a long root withα = β + γ , β andγ short roots, and put

kα = kβ + kγ + 1 − (−1)kβ+kγ εα

2
. (7)

Thenkα is independent of the short rootsβ andγ .

Proof. Let α = β1 + γ1 be another sum with β1 and γ1 short roots. Denote
by V the subspace spanned by the roots β, γ , β1 and γ1, and let �∗ = V ∩ �

be the corresponding subsystem. The possible dimensions of V are 2 or 3. If
dim V = 2, �∗ is a B2 system, so that the components in the two sums are equal.
Similarly, in B3 there is only one way of writing a long root as a sum of two short
roots. Hence we can assume that �∗ is C3.

By Proposition 4.3 any cone-free iacsin C3 is affine. Of course, the restriction
J∗ of J to �∗ is cone-free. Hence, there are integers, say mδ, δ ∈ �∗, which
are the coordinates of an alcove in C3, such that εδ = (−1)δ for all δ ∈ �∗. In
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particular kδ ≡ mδmod2 for every short root δ ∈ �∗. The set of short roots in C3

forms an A3-root system, so that we can apply Corollary 7.6, to get λ such that
for every short root δ ∈ �∗ we have kδ = mδ +〈λ, δ〉 and 〈λ, δ〉 ∈ 2Z. Since the
long roots in C3 are linear combinations of short roots with integer coefficients, it
follows that 〈λ, δ〉 ∈ 2Z for the long roots in �∗ as well. Therefore, mδ +〈λ, δ〉,
δ ∈ �∗, are the coordinates of an alcove A∗ such that J∗ = J (A∗).

Now, let α = β + γ be as in the statement. By the third condition in Lemma
8.5 we have

mα + 〈λ, α〉 = kβ + kγ + 1 − (−1)kβ+kγ εα

2
.

Since the left hand side is independent of the way α is written as a sum of short
roots, the lemma follows. �

It remains to prove that the extension of kα to the long roots given by (7) form
the coordinates of an alcove. For this we use Lemma 8.5, and verify that the three
conditions of that lemma are satisfied. Firstly, the integers kα were chosen so that
they form the coordinates of an alcove on the short roots. Also, the compatibility
condition (3) follows immediately from the definition of kα in (7). Hence, the
point is to show that the integers kα are coordinates of an alcove on the long
roots. At this point we consider Cl separately. In fact, the set �l of long roots
of Cl is a decomposable root system with l orthogonal positive roots. In such a
root system there are no restrictions on the integers to be the coordinates of an
alcove. In particular, for Cl the condition of Lemma 8.5 regarding the long roots
is vacuous. Therefore, Theorem 8.1 is true in the Cl case.

To consider Bl and F4 we prove first the following easy lemma.

Lemma 8.7. LetJ = {εα} be an affineiacs in the root system

Bl = {± (
ei ± ej

) : 1 ≤ i < j ≤ l} ∪ {±ei : 1 ≤ i ≤ l}.
Suppose we are given integerski , i = 1, . . . , l such thatεei

= (−1)ki . Then
there exists an alcoveA with coordinateskα (A) satisfyingkei

= ki , i = 1, . . . , l

and such thatJ = J (A).

Proof. Is similar to the proof of Lemma 7.4, after taking into account that the
short roots ei , i = 1, . . . , l, span Bl over Z. �

Finally, we can conclude the proof of Theorem 8.1 for Bl and F4, by showing
that the extension defined in Lemma 8.6 are indeed the coordinates of an alcove
on the set of long roots.
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Lemma 8.8. Givenkβ , β ∈ �s , definekα, α ∈ �l as in Lemma 8.6. Then{kα}
are the coordinates of an alcove in�l.

Proof. By Lemma 7.2 we must show that if α, β and α +β are long roots then
either kα+β = kα + kβ or kα+β = kα + kβ + 1.

Write β = γ1 + γ2 as a sum of short roots and denote by V the subspace
spanned by {α, γ1, γ2}. Let �∗ be the root system V ∩ �. We claim that �∗
is a B3-subsystem. In fact, dim V > 1 because β 
= ±α and we cannot have
dim V = 2, since this would imply that �∗ is a B2-system, because it contains
short and long roots and a pair of roots (γ1 and γ2) whose sum is a root. But
in B2 the sum of two long roots is not a root. Hence, dim V = 3. Analogous
arguments show that �∗ is irreducible. Now, �∗ has roots of different length, so
that either �∗ = B3 or C3. However, in C3 no sum of two long roots is a root.
Therefore, �∗ = B3, as claimed.

By looking at the roots of B3 we can ensure that, since α + β is a root, one of
the roots in the decomposition of β, say γ1, is such that there exists a short root
δ with α = −γ1 + δ. Hence, α + β = γ2 + δ, and we have

• kα+β = kγ2 + kδ + (
1 − (−1)kγ2 +kδ εα+β

)
,

• kα = −kγ1 − 1 + kδ + (
1 + (−1)kγ1+kδ εα

)
, and

• kβ = kγ1 + kγ2 + (
1 − (−1)kγ1+kγ2 εβ

)
.

These formulae imply that the dependence of kα+β − (
kα + kβ

)
on the integers

kγ , γ ∈ �, is only mod2.
Now, we use the cone-free condition to get an alcove A∗ in V such that J∗ =

J (A∗), where J∗ is the restriction of J to �∗. For a root γ ∈ �∗, εγ =
(−1)kγ (A∗) = (−1)kγ , so that kγ (A∗) ≡ kγ (mod2). The formulae above are
true with kγ (A∗), γ ∈ �, in place of kγ . But we know that for the coordinates
of an alcove either kα+β (A∗) − (

kα (A∗) + kβ (A∗)
) = 0 or 1. Hence, either

kα+β − (
kα + kβ

) = 0 or 1, concluding the proof of the lemma. �
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