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On the approximation of time one maps of
Anosov flows by Axiom A diffeomorphisms

Nancy Guelman

Abstract. We prove that if f; is the time one map of a transitive and codimension
one Anosov flow ¢ and it is C1-approximated by Axiom A diffeomorphisms satisfying
a property caled P, then the flow is topologically conjugated to the suspension of a
codimension one Anosov diffeomorphism.

A diffeomorphism f satisfies property P if for every periodic point in M the number of
periodic points in afundamental domain of its central manifold is constant.
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I ntroduction

Throughout this paper M denotes asmooth compact Riemannian manifold with-
out boundary,and ¢ : M x R — M aC" flow, withr > 1.

Recall that the suspension of an Anosov diffeomorphism is an Anosov flow
in the corresponding manifold. Let us consider a transitive Anosov vector field
X and let f; = X, bethe flow of X at time . Although f; is not an Anosov
diffeomorphism, there exists a D f, -invariant splitting of T M

TM =E'®E‘®E",

suchthat Df,|E* isuniformly contracting, Df,|E" isuniformly expanding, and
E* isanonhyperbolic central direction.

The object of our study are transitiveAnosov flows (i.e. the case when the
non-wandering set is the whole manifold).
A codimension one Anosov flow defined on an n-manifold M isan Anosov flow
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76 NANCY GUELMAN

suchthatforal x € M,dimE*(x) =landdimE"(x) =n—20ordimE*(x) =
n—2anddimE"(x) = 1.

An interesting question is what kind of dynamical system can appear under
perturbations of atime one map of atransitive Anosov flow.

Palis and Pugh (see [9]) wondered whether the time one map of a transitive
Anaosov flow could be approximated by hyperbolic or AxiomA diffeomorphisms.
Itisawell known fact that in the case when the flow arises from the suspension
of an Anosov diffeomorphismg : N — N such an approximation can be carried
out with Axiom A diffeomorphisms.

The suspension manifold N, is obtained from the direct product N x [0, 1]
by identifying pairs of points of the form (x, 0) and (g(x), 1) forx € N. The
suspension flow ¢(x, ¢) is determined by the vector field % The manifold N,
is fibered over S* and the projection of ¢(x, 1) onto St is the identity map.
Let 1 be adiffeomorphism preserving fibers, C- closeto ¢ (x, 1) such that the
projection of f over S isaMorse-Smale map. We have that f isan Axiom A
diffeomorphism.

In this spirit, Bonatti and Diaz ( see [2]) proved that if T is a period of a
periodic orbit of a transitive Anosov flow, then there exist an open set ‘U of
nonhyperbolic and transitive diffeomorphisms, and a sequence (g,,) e, gx € U
suchthat g, — f, inthe C*- topology.

Throughout this paper t will be 1.

Our aimisto give apartial answer to the Palis-Pugh question. We will say that
adiffeomorphism f satisfies property 2 if for any periodic point x the number
of periodic points between x and f (x) in the connected component of its central
manifold is constant (see Section 1).

This property is not so strange. It is, for instance, verified in the case when f
isaconvenient C*-perturbation of the time one map of atransitive Anosov flow
arising from the suspension of an Anosov diffeomorphism. In fact, the above
exampl e verifies that the number of periodic points between x and f(x) in the
connected component of its central manifold is constant, if x isaperiodic point
of f.

We will show that, in the general case thereisan opendenseset V. C M such
that the number of periodic points between x and f (x) isconstant for all the f-
periodic pointsin V. Here, asbefore, f isaC*-perturbation of thetime one map
of atransitive Anosov flow.

We will prove the following:
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APPROXIMATION OF TIME ONE MAP OF ANOSOV FLOWS 7

Theorem 1. LetM a smooth compact riemannian manifold without boundary,
dim(M) > 3. If the time one map of a transitive codimension one Anosov flow
is C1-approximated by Axiom A diffeomorphisms satisfying proprtyen the

flow is topologically conjugated to a suspension of a codimension one Anosov
diffeomorphism.

Perhapsit isworthwhileto note that Verjovsky ( see[10]) proved thatif n > 3
any codimension one Anosov flow is transitive (see [5] for a counterexamplein
dimension 3). Thenthe hypothesisof transitivity can be omitted if the dimension
is higher than 3.

From Theorem 1 follows the next corollary.

Corollary 1. LetM be a negative curvature closed surface. The time one map
of the geodesic flow can not li&-approximated by Axiom A diffeomorphisms
verifying propertyP.

In Section 1 we provethat Property P isa" reasonable property” and we study
some properties of attractors of Axiom A diffeomorphism close to the time one
map of atransitive Anosov flow. In Section 2 weintroduce mapswhich will play
an important role in the proofs of the theorems and we examine some basic facts
about them. Section 3 deals with the continuity of the above mentioned maps.
In Section 4 we prove that there is a repeller basic set which is a hypersurface
and we complete the proofs of the Theorem in Section 5.

1 Propertiesof basic sets

We begin recalling some basic definitions about flows and diffeomorphisms.

Definition 1. A compactp, —invariant set,A C M, is called ahyperbolic set

for the flow ¢ if there exist a Riemannian metric on an open neighborhiod

of A, andX\ < 1 < u such that for allx € A there is a decomposition
T.(M) = E: ® E" @ E?

such thatd, ¢ (x, 1)|,—0 € EY — {0}, dim(E°(x)) = 1, D¢, (x)(E}) C E|,
withi = s, u, and

(x,1)?

”DX¢(X7 t)lEv(x)” 5 )\t W|tht Z 0
Dy (x, )| puenll < ' withr < 0.

AC flowgp : M x R — M, is called anAnosov flow if M is a hyperbolic set
for ¢.
Let f: M — M beaC" diffeomorphism .
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78 NANCY GUELMAN

Definition 2. An f-invariant setA is calledhyperbolic if there exists aDf -
invariant decomposition df, M such that

TA\M = E* @ E"

and Df|E® is uniformly contracting andf|E* is uniformly expanding. More
precisely, there are > 0, A, withO < A < 1 such that for allx € A

1Dy f*1E° ()| < cA”

and
1Dy f*E" ()] < cA”.

A diffeomorphisny : M — M is called anAnosov diffeomorphism if M is a
hyperbolic set forf.

Let f1 : M — M, the time one diffeomorphism of ¢ defined as
filx) =¢(x, 1), Vx e M,

where¢ : M x R — M isacodimension one Anosov flow if dim(M) > 3(In
the casethat dim (M) = 3, codimension one property isreplaced by transitivity.)
Without loss of generality wemay assumedimE* (x) =n—2anddimE"(x) =
1foralx e M.

Since ¢ has ho singularities, it follows that there exist fi-invariant foliations
Fes, Fen, Fes) i and F. Notice that the leaf of F¢ through x isthe same as
the ¢-orbit of x, and we denote it by F(x) or Wy (x).

By well known properties of transitive Anosov flows, we have that

{F(x)|F°(x)isaclosed set } isdensein M.

{FC(x)|F‘(x) isdensein M} isaresidual set.

If @ isaperiodic orbit of ¢, then W*(O) consists of all points whose foward
¢ orbits never stay far from © and W*(©) of al points whose reverse ¢ orbits
never stay far from ©. Both of them are dense in M, and so are F* (x) and
F(x)Vx € 0.

Since f1 is C", we have that the leaves of F<, F and F¢ are C". Let
f : M — M be a diffeomorphism C!-close to f;. The map f is plague
expansive (see[7] ), thereexist F*, 5" and F} and thereisahomeomorphism
h: M — M closetotheidentity suchthat if 2(x) = x’/, then F;(x') isC!-close
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APPROXIMATION OF TIME ONE MAP OF ANOSOV FLOWS 79

to F; (x) in compact sets and the manifolds F7* (x') and F i (x) are Cl-closein
compact sets. In addition,

hofi(Fy (x)) = foh(FF, (x)).

Themap f isnormally hyperbolic at 7%, therefore every leaf of 7} isinvariant
and every periodic point of f isinaclosed leaf of 7.
According to what was mentioned above we have that

{Fr()|Ff(x) isaclosed set} isdensein M

and
{f]i(x)|F]€(x) isdensein M} isaresidual set.

L et us denote by Fj(x) or by W¢(x) the leaf of the central foliation through the
point x.

We recall that a diffeomorphism f : M — M satisfies Axiom A if the non-
wandering set @ () ishyperbolic and the set of periodic pointsisdensein Q(f).

From now on we will assume that f is an Axiom A diffeomorphism C*—
closeto f1. Moreover, we will make the following assumption: the number of
periodic points in the connected component of W€ (x), between x and f(x) is
constant, for al f-periodic pointin M. Wewill consider the number of periodic
pointsin W¢(x), between x and f (x), in such away that the length of this curve
isamost of the same length of the trgjectory ¢ (x, ¢) of the Anosov flow, with ¢
varying between 0 and 1, and x being a f; periodic point near x. Sometimeswe
have to consider the number of periodic points when the segment of the curve
between x and f (x) winds around itself more than once. The last property will
be called property 2. We will prove that this property is verified in an open and
dense set of the manifold.

Let O = Fj(x) where Fi(x) isaclosed curve.

The rotation number of f must berational, because if it were irrational, there
would be an hyperbolic minimal set 7/ c © and it would be included in abasic
set A.

If O c Q(f) then © would bein abasic set and f|» would be expansive which
leads to a contradiction with the nonexistence of one dimensional expansive
diffeomorphism. Let y € O then «(y) = w(y) = I, hence

ye W) NW'I) C Wi(A) N W'(A),

therefore y € Q(f) which isacontradiction.
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Then, there exist at least two periodic pointsin © because f isan Axiom A
diffeomorphism. All the pointsin € (f) N © must be periodic because if there
wereanonperiodic point, x € Q(f)NO thentheinvarianceof ()N O implies
that o(x) and w (x) would be periodic points of different indices so they would
bein different basic sets.

From now on, we choose an orientation for ¢, and denote Cj the curve
included in a central foliation leaf, between a and 5. We will consider the
connected component of F¢(a) between a and b in the positive direction from
a, inthe casethat F¢(a) isaclosed curve.

Proposition 1.1. There exists an open and denseldet M such that property
P is verified for f|V i.e. all periodic points inV have the same number of
periodic points in the connected componenttfix), betweerx and f (x).

Proof. The metric induced by the Riemannian metric on the leaves of F°¢ will
be denoted d¢.

The lengths of the curves Ch ) ae bounded away from 0, and as f isAxiom
A there exists ¥ such that d°(p, q) > «, if p and g are periodic points in the
same leaf of F¢. Then, there existsm € N such that

m = min{n € N : W¢(x) has exactly n periodic pointsin C}(x)}.

Let p aperiodic point verifying that the number of periodic pointsin C}’(p) ism.

We claim that there is an open neighborhood U of C]’Z(p) such that for al
periodic point x in U the number of periodic pointsin Ch ism.

If not, there exists a sequence of periodic points p, — p such that the number
of periodic pointsin CJ’Z’(lpn) is greater than m, so there exist more than m limit
points in C}'Z(p). Since these limit points must be periodic, this contradicts our
assumption.

Therefore, there exists a curve included in a dense leaf of central foliation in
U. So, if we saturate U by the central foliation we have an open and dense set

such that any periodic point ¢ in it has exactly m periodic pointsin C}(q). 0

Let us recal that there exists a finite number of attractors (repellers) whose
basin of attraction (repulsion) are open since f isSAxiomA.

Here are some elementary properties of attractor basic sets.

Let A denote an attractor basic set of the spectral decomposition of f. Notice
that A # M because f can not be an Anosov diffeomorphism. Thereisno loss
of generality if we consider that A is connected.
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APPROXIMATION OF TIME ONE MAP OF ANOSOV FLOWS 81
Lemmall Dim(W'(kx)) =n—1Vxe A.

Proof. We have assumed that dim(E}) = n — 2, thenas f is Cl-closeto f;
wehavethat dim(W*(x)) =n — lordim(W*(x)) =n — 2foradl x € Q(f).
Let x € AN per(f), where per(f) istheset of f-periodic points.
Supposethat dim(W*(x)) = n — 2.
Since A isan attractor, W"(x) C A, hence F}, .(x) C W"(x) C A. The set
Aisclosed and f-invariant so thereexistsx’ € F¢(x) N A N per(f).
But dim(Ws(x")) =n — 1sincedim(W?*(x)) = n — 2. It follows that there
exist two periodic points of different indicesin A, which isimpossible. g

Lemma 1.2. For every closed curv® in F¢ there exists a periodic point
peEANO.

Proof. Since O isclosed, W*(0) isdensein M and W*(A) is an open set,
thereexist y in WS(0) N W*(A) and y’ € W*(y) N @ suchthat y’ € W*(A).
Asy € O,y € W¥(p) for aperiodic point p € @. Thenp € AN O. 0

Let K = maX.em length(Cy,)). K is finite because M is compact and the
map g : M — R such that every x € M is mapped into the length of Ci is
continuous.

The previous lemma asserts that in every segment y of central closed curve
withlength(y) > K, thereexistsaperiodic point p € y N A.

Corollary 1.1. Every leaf ofF¢ intersectsA.

Proof. Lety c F¢withlength(y) > K. Since
{F;(x)|F}‘(x) isaclosed set} isdensein M,

we can choose arcs y,, such that y, areincluded in closed leaves of F<, y,, — vy,
andlength(y,) > K. Then, there existsasequence (p,) suchthat p, € ANy,,
and any of itslimit pointsp € y N A. O

Lemmal.3. Ineveryleaf oﬂ»‘; there exists atleast one point outsidéiof(A).
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Proof. If Fi(x) isclosed, by Lemma 1.2 we have that there exists a periodic
point p € ANF(x) andby Lemmal.ldim(W*(p)) = n—1. Thehyperbolicity
of f impliesthat thereexistsaperiodicpointg € F}(x) suchthatdim(W*(q)) =
n—2,henceqg € ¥ where X isabasicset of f, ¥ # A. So we proved the
claim in the case that Fi(x) is closed.

In the case that Co = Fi(x) is a future-dense curve, thisis, if f(x) > x in
the chosen orientation, then W<t (x) = {y € W¢(x)/y > x} isdense, and if
f(x) < x then W (x), with the obvious definition, is dense.

Clearly we havethat Co N W*(A) # @.

We only needto show that Cyisnotincludedin W*(A),i.e. CoNd(WS(A)) #
@.

Suppose that for every y in Chy we havethat y € W*(A). There exists an
open and nondense set U, suchthat A C U, f(U) C U and C},, C U; then
if Cqintersects U, Co would beincluded in U in the future. This contradicts the
nondensity of U, sothereexists y € C},, suchthat y ¢ W*(A).

It still remains to prove the claimin the casethat C = F(x) isany curve.

Recall that K = maXyen length(Cy ).

Suppose that there exists a curve y C Fj(x) such that y C W*(A) and
length(y) > K + 1.

Thenthereexistsanopenset V,V c W¥(A)andy C V. Thereexistsy € V
suchthat W¢(y) isdensein M, and W¢(y) N V haslength greater or equal than
K. Thisgivesthe existence of afundamental domainin W¢(y) NV, and thenin
W*(A). This contradicts the previous case. O

Note that we have proved that every leaf of the central foliation “goes away”
from the basin of attraction of any attractor.

Lemmal4. Nocurvey,y included inFj(x) for anyx, satisfiesy C A.

Proof. Suppose the statement isfalse, i.e. thereexists y C W, (x) such that
y C A. Sincey ¢ A C W*(A), then the negative iterates of y are included
in A and the length of them grow exponentially.

Letz € a(x) thenz € A and by the proof of Lemma1.3 W¢(z) hastointersect
(WS (A)), but We(z) c A Cc W (A), which yields a contradiction. O

All the above lemmas admit versions for repeller basic sets and the proofs are
analogous. Infact, if A isarepéeller basic set, thenfor x € A, Dim(W*(x)) =
n — 2, every leaf of F9 intersects A, in every leaf of F% there exists a point
outside of W*(A), and no y included in Fj(x) satisfiesy C A.
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2 Properties of the projection along the central foliation

In this section, we will introduce some maps which are important from the
technical point of view.

Definition 2.1. Let S, : W (A) — aW*(A) be amap such that, for every x
in the basin of the attractor A, S, (x) isthe nearest point inits central leaf in the
positive direction verifying that it is not in the basin of attraction of A.

Definition 2.2. Let S, : WS (A) — dW*(A) bethe map analogousto S, but
in the negative direction of the central foliation .

I?efinition 23 Let S : A - IWN(A) be the restriction of S4 to A and
S: A — aW*(A) therestriction of S, to A.

Lemma (1.3) makes the preceding definitions possible.
Let We(x) denotethe connected component of We(x)NW*(A) which contains

x.
Let/!: A —>R,l(x)= length(Cg(x)).

Lemma?2.1. [islower semicontinuous.

Proof. Since Csoy — (S0} C Wi (A and W*(A) isan open set, there exists
aneighborhood V such that Ciy — {8} CV C Wi(A).

Thecentral foliationisaC*- lamination because f isC*-closetothetimeonemap
of an Anosov flow (see[7]), hencefor dl € > 0 there exists a neighborhood U,
of x suchthatif y € U, thenthecurveC}y,, includedin F¢(y) with length(C;’,) =
I(x) — e isincluded in V, and hence in W*(A). Thenl(y) > I(x) — € which
proves that / is a semicontinuous map. d

Sincel : A — R issemicontinuous, the set R of points of continuity of / isa
residual set. Let ® : M x R.o — M suchthat ®(x,l) = z,if z € W(x), zis
in the positive direction of W< (x) and length(C}) = I. ® isa continuous map
then

Sx) = D(x,Il(x))

is continuous over R.
Without loss of generality we can assumethat R isaresidual set of continuity
for both S and S.
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Anaogously there exists a residual set Q in W*(A) such that Q is a set of
continuity for S, and Sy4.

Following, we prove some properties of themap S. They are verified by S and
the proofs are anal ogous.

Lemma2.2. S(R)is f-invariant.

Proof. Letx € R,y = S(x). Foralze Cy —{y}, we havethat z € W5 (A),
f(@) e We(f(x)) and f(z) € W(A). From f(y) € aW*(A) it follows that
f(») = S(f(x)). Replacing f by £~ we conclude that

F(S(R)) = S(R). O
Lemma23. Forally e S(R),dim(W*(y)) =n — 2.

Proof. Let y = S(x) with x € A; since dim(W*(y)) = n — 2 and
dim(W"(y)) = 1, dim(W*(y)) = n — 1orn — 2, but by Lemma (1.1) if
z€Cy—{y} thenz € W¥(x). Then

Wi(y) ={z € We(y) suchthat d“(z, y) < €}

can not beincluded in W* (y) and we can assert that dim(W*(y)) =n — 2. [

Lemma2.4. The set of periodic points il \ R is nowhere dense inl.

Proof. Inorder to prove the lemmait is enough to prove:

Let (p,).en be a sequence of periodic points such tkias not continuous at
p, andp, — x. ThenS is not continuous at.
Let g, = S(pn).
Since p, isapoint of discontinuity, there exist « > 0 and (r,,,) C A such that
limg_ o0 7y, = pn and

length(Cyp:, ) > length(CS;, ) +a

and for any e with 0 < € < § there exist (s,,) C R such that lim_, o s, = pa
and
length(Cy, |) = length(Cg(, ) — € > length(C(, ).

Bull Braz Math Soc, Vol. 33, No. 1, 2002



APPROXIMATION OF TIME ONE MAP OF ANOSOV FLOWS 85

It follows that there exists a periodic limit point of S(s,,), g, iIn W(p,).
Both ¢, and ¢, arein W¢(p,) N S(R), are periodic and

dim(W*(g,)) = dim(W'(q,)) =n — 2.

Since ¢, and g, are in the same closed leaf of F¢, it follows that there exists a
periodic point p/, such that p! € CZ anddim(W*(p))) =n — 1.

Suppose, contrary to our claim, that S is continuous at x.
From p, — x we concludethat g, — S(x) by the continuity of S at x.
Besides g, — S(x) because there exist (s,,) C R such that lim;_, o s,, = pa
and lim_. S(sn,) = ¢, . Letting a convenient subsequence k(n), we can assert
that

nll_)n;lo Snpy = X and ,,Ii_[go S(Snpgy) = S(x)

by the continuity of S a x. Thisgivesq, — S(x).

Thendist(gy, q,) — Owhenn — oo and d“(g,, q,) — Owhenn — oo.
But d“(gn. q,) > min{d(p,, q,).d°(p., q,)} and this leads to a contradiction
because p;, and g, (or p, and g, ) arein different basic sets because they have
different indices.

We have proved that S is not continuous at x.

h @ °
° ® o 0e? x
9 e
Pn o
® S(x)
9 e
Figure 1
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Observe that as a consequence we have that for al x € A there exists a
sequence of periodic points (p,).en C R suchthat p, — x.

Lemma25. S(R) is transitive andS(R) C Q(f).

Proof. Since F¢ is continuous, the set of periodic points is densein R and
S(p) isperiodicif p isperiodic, then the set of periodic pointsisdensein S(R),
hence

S(R) € Q(f).

Analogously the image of adense orbit isdensein S(R). O

Corollary 2.1. From the above properties we conclude tl§&R) is included
in A, a basic set of the spectral decompositioryof

LemmaZ2.6. S(W*(x)) C W (S(x)).

Proof. Letx € A, y € W (x) N A. Suppose that S(y) ¢ W*(S(x)).
Since S(y) € F“(x) there exists z = W*(S(y)) N We(x). We have that
Yw € 3(W*(A)), WS (w) C 3(W*(A)),then W5(S(x)) C 9(W*(A))Vx € A,
and z € 3(W*(A)), but this contradicts the definition of S. O

Lemma2.7. |If xis a point of continuity of, then all the points iW*(x) N A
are continuity points of.

Proof. Letx beapoint of continuity of S, y € W _(x) N A. Wefirst prove
that y isacontinuity point of S.

Let{y,}nen C A,suchthatlim, . y, = y. Thereexistsx, = W; .(y,)NW"(x)
and y, € W*(x,). By continuity of the stablefoliation, we havelim,,_, ., x, = x,
and by continuity of S at x we concludethat lim,,_, o, S(x,) = S(x).

From y, € W*(x,), and the above lemma, it follows that S(y,) € W*(S(x,)),
hence S(y,) = Wi, (S(xn)) N W ().

By the continuity of W* and W¢ we have that:

lim Wi, S(x) = Wi, S(x) and lim We(y,) = W();

hence
nlLrgo S(yn) = Wi, .Sx)NW(y) = S().

Bull Braz Math Soc, Vol. 33, No. 1, 2002



APPROXIMATION OF TIME ONE MAP OF ANOSOV FLOWS 87

We have proved that Vy € Wy, .(x) N A, S iscontinuousat y i.e. Slw; (na IS
continuous.

Now, if z € W¥(x) N A thereis N > O such that fV(z) € Wi .(f¥x)NA
and the previous argument still applies. O

Remark. Note thgt Lemmas (2.6) and (2.7) are verified not only by S and §
but also by S, and S4. The proofs are analogous.

Lemma?2.8. If x € A, thenx is a point of continuity of if and only ifx is a
point of continuity ofS 4.

Proof. We only have to provethat if x € A isapoint of continuity of S then
it isacontinuity point of S,.

Let y beapoint closetox, theny’ =
S(y") iscloseto S(x) and

(x)NW;? (y)isapointin A suchthat

loo loc

Sa(y) = W (S() N We(y) iscloseto S4(y") = S().

Hence S, (y) iscloseto S, (x) = S(x). O

Proposition 2.1. If f satisfies property then for every periodic poing, S is
continuous ap.

Proof. Let k denote the number of periodic pointsin C} ., for al periodic
point x € A. Suppose x isa periodic discontinuity point of S, then we have a
sequence (x,,).en Of periodic points of continuity such that lim,,_, o, x, = x and
length(CS(X ) > length(Cy ) + o, witha > 0.

For every x,, there exist k periodic points x! < ... < xXin C;i”(x"), ordered by
the chosen orientation.

Since lim,_, o W¢(x,) = W¢(x) in compact sets, there exist x’, limit point of
x!in W¢(x), and x' must be periodic. Since the number of periodic pointsin
Ci, andin Cf( , is the same, then there exists only a limit point of x;, i.e.

lim, e x! = x'

In particular Iim,,_mxl = x!, and this gives lim,_ ., S(x,) = S(x); SO
length(CS(x ) < length(Cy,,) + e if n isbig enough, which is absurd.
We have proved that S is continuous at every periodic point. O
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Lemma2.9. LetA be abasicsetand € A.

1. If dim(W*(x)) = n — 1then there is a finite number of points sfin the
connected component Bf¢(x) N W*(A) that containst.

2. If dim(W*(x)) = n — 2then there is a finite number of points &fin the
connected component Bf(x) N W*(A) that containst.

Proof. Wewill provejust thefirst statement.

Supposethat it isfalse. Then we can choose {x;} in A N W*(A) N W¢(x), such
that x1 < x2 < ... < x; < ... inthegiven orientation of W¢(x). There exists
k > 0 suchthat f~%ye.) "expands’, Vx € A. Then there exists ny € N
verifying that length(f~"*(Cy))) > k, foral n > n;. Thereexistsn, € N such
that length(f~"2(C;1)) > k,foraln > ny. Letlpsuchthat klo > K +1, where
K = max,cy length(C;i(x)). We continue in this way obtaining ns, ... , ny.
Let N = max{ny, ..., n;}, then

length(f~ N(cx ) >klp>K+1

Hence, asinthe proof of Lemma1.3weconcludethat thereexistsp € £~V (C;‘lo)
such that p € aW?*(A) and therefore fV(p) € aW*(A) and VN (p) € ijlo C
WS (A); which is acontradiction.

We have actually proved that there are no more than [KT“] points of A inthe
connected component of W*(A) N We(x). O

3 Continuity of themap S.

Let usfirst prove the next lemma.

Lemma3.l. Letx be a continuity point of4 andSy, (i.e. x € Q) then for all
y € Wix), We(y) N A # 0.

Proof. Lete > Obesuchthat Uyeqa W) (x) C W*(A).
Letx € Q and U, be a neighborhood of x such that for all y € U, we have

thaIlength(Wc(y)) |scloseenoughtolength(Wé(x)) andlety € U, N W*(x).
Since W¢ (y) C W*(A) and W(A) is open, there exists a neighborhood of
V/V?(/y), V,suchthat vV € Ws(A)andV C uzeux(v/v?(z/)), in such away that
if z€ VN A then length(ﬂ//_"(\?)) is close enough tolength(m).
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By the density of theclosed leavesinthecentral foliation, thereexistsacurve( in
"V, included inaclosed leaf of the central foliation, @ suchthat; = ONWS(A).

Thereexistsaperiodic point p suchthat p € ¢ N.A, ¢ = We(p) and since S,
and S, are continuous at y by the remark of Lemma 2.7, the lengths of W¢(y)

and ¢ are close; and the lengths of the curves C §A (o ad C f‘* ) are greater than
the € previously defined.

Then, considering open sets V, such that 'V, — V[//C(\;) we can assert that
thereexist curves¢, C "V, and periodic points p, € ¢, N A such that thelengths

of We(y) and ¢, are close; and the lengths of the curves €1 |, and C54P) gre
greater than e.

Since ¢, convergesto W¢(y) and the distance of p, to 9(W*(A)) is bounded

away from 0, there exists alimit point p of p, suchthat p € A N We(y).
We have proved that if x € Q then

P

Vy e W) .(x),dp € We(y) N A.

Successive applications of thisproceeding enablesusto concludethat if x € Q

P

Vy € Wi(x),3p € We(y) N A. O
Corollary 3.1. A = S(R) is arepeller set.

Proof. Letx €e QN A,z € W (S(x)) andz/ = Wez) N W*(x). Since
7' € W¥(x) withx € Q,thenby Lemma3.1thereexistsqg € We(z’) N A; hence
S(g) =zandz € S(R). Then

Vx e QNA, Wi(S(x)) € S(R).

We have proved that S(R) isincluded in abasic set A. Now, if y = S(x) with
x € AN Q then

W*(y) € S(R) € S(R) € A C W*(y).

It followsthat S(R) isabasic set, and sinceit contains a stable manifold we have
that A = S(R) isarepeller set. O

Let us consider the following maps.
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Definition 3.1. LetX, : W*(A) — aW"(A) be a map such that, for every
in the basin of repulsion of, X, (x) is the nearest point in its central leaf in
the positive direction verifying that it is not in the basin of repulsiomof

Definition 3.2. LetX, : W“(A) — dW“(A) be the map analogous tB,,
but in the negative direction of the central foliation.

Definition 3.3. LetX : A — dW*(A) be the restriction of, to A and
Y : A — dWH"(A) the restriction of¥, to A.

The version of Lemma (1.3) for repeller sets makes the preceding definitions
possible. o

As done after Definition 2.3 we define W< (x) as the connected component of
We(x) N W*(A) which contains x, if x € W*(A).

All the properties verified by S, S, S, and S, are verified by ¥, £, =, and
3, with the obvious modifications. In particular, there exists a residual set
® C W"(A) suchthat ¥, and i@continuousin ©. Besides, if x € © then
foral y € W*(x) we havethat We(y) N A # @. Once again, if property P is
verified, al the periodic points of A are continuity points for al these maps.

Lemma3.2. Letx € A. Suppose that € W*(x). Then

We(y) N A # 0.

Proof. By theversion of Lemma3.1 for repeller sets and the continuity of X,
and X, restricted to ®, we have that for all point x € ® thereisaneighborhood
U, suchthat if y € U, and z € W _(y) then We(z) N A # .
Let

U = U,coUs.

‘U isan open and dense set in W*(A).

Let x € A and suppose by contradiction that there exists yg € W*(x) such that
We(yo) N A = @. In addition, there exists a neighborhood V,, of yo such that if
z € Vyy N Wi (yp) then We(z) N A = 0.

Since W¥(x) isdensein A, there exists v € W*(x) N ‘U, hence there exists
ve W"(x)NU.

Let C € W"(x) an arc such that is maximal with respect to the following
property: if y € C, We(y) N A = 0.
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P

Let7 beanextremeof Candr = We(F) N A.
Ifwe CNWL(F) thenw = W (w) N Wk (r) existsand verifiesthat We(w) N

loc

A = @; sowe can define
W"*(r) = connected component of {y € W* (r)|V{//f(\;) NA =0}

such that W**(r) N W¥(r) # @ forany € > 0.

Fordln € N, f*(r) € A and W*“*(f"(r)) containsanarc D, C W"“( f"(r))
whose length grows exponentially and it has an extremein f"(r).
Let g € w(r), then W¥t(g) contains a “half plang” of W(q), i.e. with an
adequate orientation = on W"*(q), we have

W @) ={ v e W@l W@ nNW"q) > q}

We may also assumethat f”(r) — ¢. Taking n and m big enough we obtain
that f"(r) and f™(r) are as close as we wish, then there is no possibility that
WS(f™(r)) intersects W“(f™(r)) in W (f™(r)) because this point would be
in Wt (f™(r)) N A.

In the same way thereis no possibility that W*( f™(r)) intersects W*(f"(r)) in
W ().

It followsthat if n and m are big enough then W* (" (r)) intersects W*( f™(r))
in We(f™(r)) because the central-stable foliation locally separates M.

Then there are two possibilities:

1. There exist infinite many stable manifolds of f/(r), with j € N. In this
case, thereexistinfinitemany pointsin ANWe( f™(r)), but thiscontradicts
Lemma?2.9.

2. There exists a finite number of different stable manifolds of f/(r), with
jeN.
We can supposethat W*(f"(r)) isthesamefor dl n € N. Since f(r) —
q, we have that ¢ is periodic point; and since W**(g) N A = @, g isnot
acontinuity point of £, and £, because it would contradict the version
of Lemma 3.1 for repeller sets.
On the other hand, the version of proposition 2.1 for repeller sets asserts
that all periodic pointsin A are continuity pointsof %, and £, and hence
of =,, and =, which yields a contradiction.

We noticethat it is at this point where Property 2 is used.
We have proved that for all x € A, andfor all y € W*(x)

We(y) N A # 0. O
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Proposition 3.1. S, S: R — dW*(A) can be extended continuouslyfo

Proof. Wewill just prove the proposition for S.
We recall that there exists aresidual set R suchthat S : R — aW*(A) is
continuous.
If for all y € A\R, and for all sequence (x,),en € R With lim,_ o x, = v,
we have that there exists lim,_, .. S(x,) and it is unique, then we can extend
continuoudly S, insuch away that S(y) = lim,_, « S(x,).

We will show that if (x,),eny € R withlim,_ o x, = y, and (w,),eny C R
with lim,_, ., w, = y, then every subsequence verifies that

lim S(x,) = lim S(w,,).
i—00 j—o00

Since W¢(x,) — W¢(y) in compact sets, and thelengthsof the curves CS(X ,ae
bounded, thereexists y’ = lim S(x,,), y' € F°(y), ¥’ € A. ldentical argument
shows that there exists y” such that y” = lim S(w,,), y” € F°(y),and y” € A.

We suppose that y' # y” and there is no point in C)y N A but the extremes of

Cf because in the connected component of W<(y") N A thereis only afinite
number of points by Lemma 2.9.
In order to prove the proposition we need the next lemma:

Lemma3.3. There exist € A, r,r' € A, andg such thaty € A, whereA
is a basic setA # A; all these points are in the same leaf $f; r € C;, and
qgecC.

Proof. Lets € w(y). Thereexist (my)ren Such that

I|m lim f™(x,)=s and I|m lim f™(w,,;) =s.

k—o00i—00 00 j—>00

Since the central foliati on is continuous (in compact sets) and the length of the
(X,l[ ( n )

curves Cs(fmk( and CS(fmA(

) are bounded, there exist
lim f™ () =r and lim f"(") =7,
k—00 k— 00

withr, 7" € A,r,r" € F(s)andr € C;.

Sincelength(Cy,,) < K + 1forall z € A (see the proof of Lemma 1.3) and
S(f(2)) = f(S(z)) we have that " (C§,)) = Cluig,, fordl m € N, and
therefore f’”k(Cj,,) — C’.
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Since C)y isnot included in A by the version of Lemma 1.4 for repeller sets,

thereexistsz € C)y suchthatz ¢ A. Thereexistsu € Q(f) suchthatz € W*(u),
withu € A, where A isabasicset A # A. It followsthat w(z) = w(u), hence
w(z) € A.

Since ™« (Ci’,/,) — CJ,, thereexistsapointg € C/,Nw(z), thereforeq € C/,NA
and the lemmais proved. O

L et us continue with the proof of Proposition 3.1.

Lets,r, g andr’' beasinthe Lemma3.3.

Since s € A, there exists a sequence (z,)neny SUch that z, € A, z, isa
continuity pointof S and S , z, — s and S(z,) — r'.
Let ng be big enough in order to have

a=W"'(s)NW(z,,), and g = W"(g) N W’ (z,,)

closeto s and ¢ respectively. It followsthat « and 8 arein the same leaf of the
central foliation. Let
o =W'@r) N Wa).

Since W*(r) hasdimension 2, thereexistsacurve C, such that C isthe connected
component of W<(p) N W“(A).

Zny “ s

P
r

B
q
L 7"

S(Z’n())
Figure 2

Sincea € A and g issuchthat 8 € W*(A) where A isabasic set such that
q € AwithA # A, and g arenotin C. Hence C C Cg.
From Lemma 3.2 we have that there existsx € CN A. Butx € W*(z,,) <
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W*(A) and it yieldsto a contradiction because thereisno pointsin W*(A) N A.
Then y’ and y” coincide, and S is continuous at y. O

Corollary 3.2. S (orits continuous extension)d — A is onto.

Proof. We have that
A =S8(R)CSA)=S5A)

The last equality holds since S is continuous, then S(A) isacompact set. [

4 Existence of arepédlling topological hypersurface

Proposition 4.1. A is a topological hypersurface.

Proof. SinceS (oritsextension) isonto, for every k-periodic point y € A there
existsx € A, k-periodic such that S(x) = y. Let usdenote I'(y) = S(W*(x)).

Since W*(x) C A,thenT'(y) C A,andT'(y) isacurvein T (y) = W"(y).
The curveis f* invariant and y belongsto it.

We claim that any pointin W*(y) N A hastobeinT (y), if y isaperiodic point
inA.

Letr € I'(y). Since W'(y) isdensein A, there existsz € W*(y) N W*(y)
suchthat d“(z, r) < €/2 whered" istherestriction of the Riemannian metric of
M totheleavesof F" and e verifiesthat U,cp W2 (x) C W"(A).

Supposethat z ¢ T'(y), thenthereexistsg € W¢(z)NI'(y) suchthatd®(z, ¢) < e.
Sincez € W (y) thereexist (n;) jen Such that
limn; =00 and lim f"(z) =y.
J—>00 j—o00
Since
lim f"(Cy) € F°(y), and lim f"(Cy)
j—o00 j—00

isnotincludedin W*(A), thereexistsy’ € a(W*(A))NW<(y) suchthat X (y) =

y', therefore there exists y” close to y’, such that X (f"/(z)) = y” with y" €
C;/’ ((qi because y isa continuity point of .
Then f7"i(y") € C; NA(WH(A)), but d(f(y"),q) < € s0 f"(y") must
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bein W“(A) which is acontradiction.
We have proved that if U. = U,cp(y,) WS (r) then

U NWi(y) C T'(y). (1)

Suppose that there existsw € W*(y) suchthat w ¢ I'(y). Thenthereexistsn €
Nsuchthat f " (w) € UA\I'(y). Besides, thereexistss suchthat B(f " (w), §)N
I'(y) =@, and B(f"(w), ) N W*(y) C Uk, but thereisno point of W*(y) in
B(f 7" (w), §) by (1), which contradicts the density of W*(y). Then, we have
proved that all the pointsin A N W*(y) must bein I'(y).

For all x € A thereexistsaperiodic point z € A closeto x. Let

F'x) = (UweF(z) Wli)g(w)) nw (x).

We have that I'(x) is a curve in W*(x) N A. We claim that every point of
W"(x) N A hastobeinT'(x).

Suppose, contrary to our claim that there were apoint v € A N W*(x), such
that v ¢ I"'(x) thenv = W (v) N W"(z) would beapointin A N W*(z), such
that v ¢ T'(z), whichisimpossible.

We have proved that Vx € A thereisauniquecurveT', € W*(x) N A. Then
D, = Uzer, W; (z) isalocal hypersurface of A. Let V. = U,cp, WS(r), then
Ve N A must be included in the local hypersurface D,..

Hence A isatopological hypersurface. O

5 End of the proof of the Theorem

Proposition 5.1. The Anosov flow is conjugated to a suspension.

Proof. The topological hypersurface A is compact, f-invariant and f|, is
hyperbalic. If x € A, f(x) € A thenthereexistsz € W¢(x) suchthat z € A,
andCINA=40.

By the version of Corollary 1.1 for repeller sets {F(x)}.ea is topologically
transversal to A.

Recall that as f is C* close to fi1, where fi(x) = ¢(x, 1) there exists a
homeomorphism 2 : M — M close to the identity such that 4(x) = x’, and
F}‘Q(x') isCl-closeto F;‘l(x) in compact sets. Moreover

h(F}, () = Fi(x).

Bull Braz Math Soc, Vol. 33, No. 1, 2002



96 NANCY GUELMAN

Since h~1(A) is a topological hypersurface we have that {Ff,(O)}een-1a) 1S
topologically transversal to 41 1(A), i.e. Vx € M thereexists T > 0 such that
o (x, T)Nh~Y(A) “transversally”.

Then ¢, may be reparametrized in such a way that it becomes a suspension,
i.e. the Anosov flow is conjugated to a suspension which is an Anosov flow, too.

Remark 5.1. Theflow ¢ isconjugate to a suspension of an Anosov diffeomor-
phism and the hypersurface A is homeomorphic to the torus 772,

We havethat f|A isahyperbolic diffeomorphism. If A were a smooth mani-
fold, f|A would be an Anosov codimension one diffeomorphism and we could
apply Frank”sresult to concludethat f|A istopologically conjugated to ahyper-
bolic toral automorphism (See [4]). Although A isjust atopological manifold,
the Frank”s proof remains valid but, in this case we need to use a C° version of
the classical theorem of Haefliger. This can be found in Chapter 7 of [6].

Let A: 7""1 — T"~1 bean Anosov diffeomorphism such that f|A isconju-
gated to A|T"~1, then if v isthe suspension of A, ¢ is conjugated to v. Hence
the flow ¢ is conjugated to a suspension of an Anosov diffeomorphism.

The above observation completes the proof of the Theorem.

Let M ariemannian, compact surfacewith negative curvature. Itiswell known
that geodesi ¢ flows can not be conjugated to asuspension flow. Then Corollary 1
holds.
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