

On the approximation of time one maps of Anosov flows by Axiom A diffeomorphisms

Nancy Guelman

Abstract. We prove that if f_1 is the time one map of a transitive and codimension one Anosov flow ϕ and it is C^1 -approximated by Axiom A diffeomorphisms satisfying a property called \mathcal{P} , then the flow is topologically conjugated to the suspension of a codimension one Anosov diffeomorphism.

A diffeomorphism f satisfies property \mathcal{P} if for every periodic point in M the number of periodic points in a fundamental domain of its central manifold is constant.

Keywords: Anosov flow, suspension of Anosov diffeomorphisms, time one map, Axiom A.

Mathematical subject classification: 37D20, 37D30, 37D05.

Introduction

Throughout this paper *M* denotes a smooth compact Riemannian manifold without boundary, and $\phi : M \times \mathbb{R} \to M$ a C^r flow, with $r \ge 1$.

Recall that the suspension of an Anosov diffeomorphism is an Anosov flow in the corresponding manifold. Let us consider a transitive Anosov vector field X and let $f_{\tau} = X_{\tau}$ be the flow of X at time τ . Although f_{τ} is not an Anosov diffeomorphism, there exists a Df_{τ} -invariant splitting of TM

$$TM = E^s \oplus E^c \oplus E^u,$$

such that $Df_{\tau}|E^s$ is uniformly contracting, $Df_{\tau}|E^u$ is uniformly expanding, and E^c is a nonhyperbolic central direction.

The object of our study are *transitive* Anosov flows (i.e. the case when the non-wandering set is the whole manifold).

A codimension one Anosov flow defined on an n-manifold M is an Anosov flow

Received 15 March 2001.

NANCY GUELMAN

such that for all $x \in M$, $dim E^{s}(x) = 1$ and $dim E^{u}(x) = n - 2$ or $dim E^{s}(x) = n - 2$ and $dim E^{u}(x) = 1$.

An interesting question is what kind of dynamical system can appear under perturbations of a time one map of a transitive Anosov flow.

Palis and Pugh (see [9]) wondered whether the time one map of a transitive Anosov flow could be approximated by hyperbolic or Axiom A diffeomorphisms. It is a well known fact that in the case when the flow arises from the suspension of an Anosov diffeomorphism $g: N \rightarrow N$ such an approximation can be carried out with Axiom A diffeomorphisms.

The suspension manifold N_g is obtained from the direct product $N \times [0, 1]$ by identifying pairs of points of the form (x, 0) and (g(x), 1) for $x \in N$. The suspension flow $\varphi(x, t)$ is determined by the vector field $\frac{\partial}{\partial t}$. The manifold N_g is fibered over S^1 and the projection of $\varphi(x, 1)$ onto S^1 is the identity map. Let f be a diffeomorphism preserving fibers, C^1 - close to $\varphi(x, 1)$ such that the projection of f over S^1 is a Morse-Smale map. We have that f is an Axiom A diffeomorphism.

In this spirit, Bonatti and Díaz (see [2]) proved that if τ is a period of a periodic orbit of a transitive Anosov flow, then there exist an open set \mathcal{U} of nonhyperbolic and transitive diffeomorphisms, and a sequence $(g_n)_{n \in \mathbb{N}}$, $g_n \in \mathcal{U}$ such that $g_n \to f_{\tau}$ in the C^1 - topology.

Throughout this paper τ will be 1.

Our aim is to give a partial answer to the Palis-Pugh question. We will say that a diffeomorphism f satisfies property \mathcal{P} if for any periodic point x the number of periodic points between x and f(x) in the connected component of its central manifold is constant (see Section 1).

This property is not so strange. It is, for instance, verified in the case when f is a convenient C^1 -perturbation of the time one map of a transitive Anosov flow arising from the suspension of an Anosov diffeomorphism. In fact, the above example verifies that the number of periodic points between x and f(x) in the connected component of its central manifold is constant, if x is a periodic point of f.

We will show that, in the general case there is an open dense set $V \subset M$ such that the number of periodic points between x and f(x) is constant for all the f-periodic points in V. Here, as before, f is a C^1 -perturbation of the time one map of a transitive Anosov flow.

We will prove the following:

Theorem 1. Let M a smooth compact riemannian manifold without boundary, $dim(M) \ge 3$. If the time one map of a transitive codimension one Anosov flow is C^1 -approximated by Axiom A diffeomorphisms satisfying property \mathcal{P} , then the flow is topologically conjugated to a suspension of a codimension one Anosov diffeomorphism.

Perhaps it is worthwhile to note that Verjovsky (see [10]) proved that if n > 3 any codimension one Anosov flow is transitive (see [5] for a counterexample in dimension 3). Then the hypothesis of transitivity can be omitted if the dimension is higher than 3.

From Theorem 1 follows the next corollary.

Corollary 1. Let M be a negative curvature closed surface. The time one map of the geodesic flow can not be C^1 -approximated by Axiom A diffeomorphisms verifying property \mathcal{P} .

In Section 1 we prove that Property \mathcal{P} is a "reasonable property" and we study some properties of attractors of Axiom A diffeomorphism close to the time one map of a transitive Anosov flow. In Section 2 we introduce maps which will play an important role in the proofs of the theorems and we examine some basic facts about them. Section 3 deals with the continuity of the above mentioned maps. In Section 4 we prove that there is a repeller basic set which is a hypersurface and we complete the proofs of the Theorem in Section 5.

1 Properties of basic sets

We begin recalling some basic definitions about flows and diffeomorphisms.

Definition 1. A compact ϕ_t -invariant set, $\Lambda \subset M$, is called a **hyperbolic set** for the flow ϕ if there exist a Riemannian metric on an open neighborhood \mathcal{U} of Λ , and $\lambda < 1 < \mu$ such that for all $x \in \Lambda$ there is a decomposition

$$T_x(M) = E_x^s \oplus E_x^u \oplus E_x^d$$

such that $\partial_t \phi(x, t)|_{t=0} \in E_x^0 - \{0\}$, $dim(E^0(x)) = 1$, $D_x \phi_t(x)(E_x^i) \subset E_{\phi(x,t)}^i$, with i = s, u, and

$$\|D_x\phi(x,t)|_{E^s(x)}\| \le \lambda^t \text{ with } t \ge 0$$

$$\|D_x\phi(x,t)|_{E^u(x)}\| \le \mu^t \text{ with } t \le 0.$$

A C^r flow $\phi : M \times \mathbb{R} \to M$, is called an **Anosov flow** if M is a hyperbolic set for ϕ .

Let $f: M \to M$ be a C^r diffeomorphism.

Definition 2. An *f*-invariant set Λ is called **hyperbolic** if there exists a D*f*-invariant decomposition of $T_{\Lambda}M$ such that

$$T_{\Lambda}M = E^s \oplus E^u$$

and $Df|E^s$ is uniformly contracting and $Df|E^u$ is uniformly expanding. More precisely, there are c > 0, λ , with $0 < \lambda < 1$ such that for all $x \in \Lambda$

$$\|D_x f^n | E^s(x) \| < c\lambda'$$

and

$$\|D_x f^{-n} | E^u(x) \| < c\lambda^n.$$

A diffeomorphism $f : M \to M$ is called an **Anosov diffeomorphism** if M is a hyperbolic set for f.

Let $f_1: M \to M$, the time one diffeomorphism of ϕ defined as

$$f_1(x) = \phi(x, 1), \ \forall x \in M,$$

where $\phi: M \times \mathbb{R} \to M$ is a codimension one Anosov flow if dim(M) > 3 (In the case that dim(M) = 3, codimension one property is replaced by transitivity.) Without loss of generality we may assume $dim E^s(x) = n - 2$ and $dim E^u(x) = 1$ for all $x \in M$.

Since ϕ has no singularities, it follows that there exist f_1 -invariant foliations \mathcal{F}^{cs} , \mathcal{F}^{cu} , \mathcal{F}^{ss} , \mathcal{F}^{uu} and \mathcal{F}^c . Notice that the leaf of \mathcal{F}^c through x is the same as the ϕ -orbit of x, and we denote it by $F^c(x)$ or $W^c_{\phi}(x)$.

By well known properties of transitive Anosov flows, we have that

 $\{F^{c}(x)|F^{c}(x) \text{ is a closed set }\}$ is dense in M.

 $\{F^{c}(x)|F^{c}(x) \text{ is dense in } M\}$ is a residual set.

If \mathcal{O} is a periodic orbit of ϕ , then $W^s(\mathcal{O})$ consists of all points whose foward ϕ orbits never stay far from \mathcal{O} and $W^u(\mathcal{O})$ of all points whose reverse ϕ orbits never stay far from \mathcal{O} . Both of them are dense in M, and so are $F^{cs}(x)$ and $F^{cu}(x) \forall x \in \mathcal{O}$.

Since f_1 is C^r , we have that the leaves of \mathcal{F}^{cs} , \mathcal{F}^{cu} and \mathcal{F}^c are C^r . Let $f : M \to M$ be a diffeomorphism C^1 -close to f_1 . The map f is plaque expansive (see [7]), there exist \mathcal{F}_f^{cs} , \mathcal{F}_f^{cu} and \mathcal{F}_f^c and there is a homeomorphism $h: M \to M$ close to the identity such that if h(x) = x', then $F_f^c(x')$ is C^1 -close

to $F_{f_1}^c(x)$ in compact sets and the manifolds $F_f^{cs}(x')$ and $F_{f_1}^{cs}(x)$ are C^1 -close in compact sets. In addition,

$$hof_1(F_{f_1}^c(x)) = foh(F_{f_1}^c(x)).$$

The map f is normally hyperbolic at \mathcal{F}_{f}^{c} , therefore every leaf of \mathcal{F}_{f}^{c} is invariant and every periodic point of f is in a closed leaf of \mathcal{F}_{f}^{c} .

According to what was mentioned above we have that

$$\{F_{f}^{c}(x)|F_{f}^{c}(x)$$
 is a closed set} is dense in M

and

 $\{\mathcal{F}_{f}^{c}(x)|F_{f}^{c}(x) \text{ is dense in } M\}$ is a residual set.

Let us denote by $F_f^c(x)$ or by $W^c(x)$ the leaf of the central foliation through the point *x*.

We recall that a diffeomorphism $f : M \to M$ satisfies Axiom A if the nonwandering set $\Omega(f)$ is hyperbolic and the set of periodic points is dense in $\Omega(f)$.

From now on we will assume that f is an Axiom A diffeomorphism C^{1} close to f_{1} . Moreover, we will make the following assumption: the number of periodic points in the connected component of $W^{c}(x)$, between x and f(x) is constant, for all f-periodic point in M. We will consider the number of periodic points in $W^{c}(x)$, between x and f(x), in such a way that the length of this curve is almost of the same length of the trajectory $\phi(\hat{x}, t)$ of the Anosov flow, with tvarying between 0 and 1, and \hat{x} being a f_{1} periodic point near x. Sometimes we have to consider the number of periodic points when the segment of the curve between x and f(x) winds around itself more than once. The last property will be called property \mathcal{P} . We will prove that this property is verified in an open and dense set of the manifold.

Let $\mathcal{O} = F_f^c(x)$ where $F_f^c(x)$ is a closed curve.

The rotation number of f must be rational, because if it were irrational, there would be an hyperbolic minimal set $I \subset O$ and it would be included in a basic set Λ .

If $\mathcal{O} \subset \Omega(f)$ then \mathcal{O} would be in a basic set and $f|_{\mathcal{O}}$ would be expansive which leads to a contradiction with the nonexistence of one dimensional expansive diffeomorphism. Let $y \in \mathcal{O}$ then $\alpha(y) = \omega(y) = I$, hence

$$y \in W^{s}(I) \cap W^{u}(I) \subset W^{s}(\Lambda) \cap W^{u}(\Lambda),$$

therefore $y \in \Omega(f)$ which is a contradiction.

Then, there exist at least two periodic points in \mathcal{O} because f is an Axiom A diffeomorphism. All the points in $\Omega(f) \cap \mathcal{O}$ must be periodic because if there were a nonperiodic point, $x \in \Omega(f) \cap \mathcal{O}$ then the invariance of $\Omega(f) \cap \mathcal{O}$ implies that $\alpha(x)$ and $\omega(x)$ would be periodic points of different indices so they would be in different basic sets.

From now on, we choose an orientation for \mathcal{F}^c , and denote C_b^a the curve included in a central foliation leaf, between *a* and *b*. We will consider the connected component of $\mathcal{F}^c(a)$ between *a* and *b* in the positive direction from *a*, in the case that $\mathcal{F}^c(a)$ is a closed curve.

Proposition 1.1. There exists an open and dense set $V \subset M$ such that property \mathcal{P} is verified for f | V i.e. all periodic points in V have the same number of periodic points in the connected component of $W^c(x)$, between x and f(x).

Proof. The metric induced by the Riemannian metric on the leaves of \mathcal{F}^c will be denoted d^c .

The lengths of the curves $C_{f(x)}^x$ are bounded away from 0, and as f is Axiom A there exists κ such that $d^c(p,q) > \kappa$, if p and q are periodic points in the same leaf of \mathcal{F}^c . Then, there exists $m \in \mathbb{N}$ such that

 $m = \min\{n \in \mathbb{N} : W^{c}(x) \text{ has exactly } n \text{ periodic points in } C_{f(x)}^{x}\}.$

Let p a periodic point verifying that the number of periodic points in $C_{f(p)}^{p}$ is m.

We claim that there is an open neighborhood U of $C_{f(p)}^p$ such that for all periodic point x in U the number of periodic points in $C_{f(x)}^x$ is m.

If not, there exists a sequence of periodic points $p_n \rightarrow p$ such that the number of periodic points in $C_{f(p_n)}^{p_n}$ is greater than *m*, so there exist more than *m* limit points in $C_{f(p)}^{p}$. Since these limit points must be periodic, this contradicts our assumption.

Therefore, there exists a curve included in a dense leaf of central foliation in U. So, if we saturate U by the central foliation we have an open and dense set such that any periodic point q in it has exactly m periodic points in $C_{f(q)}^q$. \Box

Let us recall that there exists a finite number of attractors (repellers) whose basin of attraction (repulsion) are open since f is Axiom A.

Here are some elementary properties of attractor basic sets.

Let \mathcal{A} denote an attractor basic set of the spectral decomposition of f. Notice that $\mathcal{A} \neq M$ because f can not be an Anosov diffeomorphism. There is no loss of generality if we consider that \mathcal{A} is connected.

Lemma 1.1. $Dim(W^s(x)) = n - 1, \forall x \in \mathcal{A}.$

Proof. We have assumed that $dim(E_{\phi}^s) = n - 2$, then as f is C^1 -close to f_1 we have that $dim(W^s(x)) = n - 1$ or $dim(W^s(x)) = n - 2$ for all $x \in \Omega(f)$.

Let $x \in \mathcal{A} \cap per(f)$, where per(f) is the set of f-periodic points.

Suppose that $dim(W^s(x)) = n - 2$.

Since \mathcal{A} is an attractor, $W^u(x) \subset \mathcal{A}$; hence $F_{loc}^c(x) \subset W^u(x) \subset \mathcal{A}$. The set \mathcal{A} is closed and *f*-invariant so there exists $x' \in F^c(x) \cap \mathcal{A} \cap per(f)$.

But $dim(W^s(x')) = n - 1$ since $dim(W^s(x)) = n - 2$. It follows that there exist two periodic points of different indices in A, which is impossible.

Lemma 1.2. For every closed curve \mathcal{O} in \mathcal{F}^c there exists a periodic point $p \in \mathcal{A} \cap \mathcal{O}$.

Proof. Since \mathcal{O} is closed, $W^s(\mathcal{O})$ is dense in M and $W^s(\mathcal{A})$ is an open set, there exist y in $W^s(\mathcal{O}) \cap W^s(\mathcal{A})$ and $y' \in W^{ss}(y) \cap \mathcal{O}$ such that $y' \in W^s(\mathcal{A})$. As $y' \in \mathcal{O}, y' \in W^s(p)$ for a periodic point $p \in \mathcal{O}$. Then $p \in \mathcal{A} \cap \mathcal{O}$.

Let $K = \max_{x \in M} length(C_{f(x)}^x)$. *K* is finite because *M* is compact and the map $g : M \to \mathbb{R}$ such that every $x \in M$ is mapped into the length of $C_{f(x)}^x$ is continuous.

The previous lemma asserts that in every segment γ of central closed curve with $length(\gamma) \ge K$, there exists a periodic point $p \in \gamma \cap A$.

Corollary 1.1. Every leaf of \mathcal{F}^c intersects \mathcal{A} .

Proof. Let $\gamma \subset \mathcal{F}^c$ with $length(\gamma) \geq K$. Since

 $\{F_f^c(x)|F_f^c(x) \text{ is a closed set}\}$ is dense in M,

we can choose arcs γ_n such that γ_n are included in closed leaves of \mathcal{F}^c , $\gamma_n \to \gamma$, and $length(\gamma_n) \ge K$. Then, there exists a sequence (p_n) such that $p_n \in \mathcal{A} \cap \gamma_n$, and any of its limit points $p \in \gamma \cap \mathcal{A}$.

Lemma 1.3. In every leaf of \mathcal{F}_{f}^{c} there exists at least one point outside of $W^{s}(\mathcal{A})$.

Proof. If $F_f^c(x)$ is closed, by Lemma 1.2 we have that there exists a periodic point $p \in \mathcal{A} \cap F_f^c(x)$ and by Lemma 1.1 $dim(W^s(p)) = n-1$. The hyperbolicity of f implies that there exists a periodic point $q \in F_f^c(x)$ such that $dim(W^s(q)) = n-2$, hence $q \in \Sigma$ where Σ is a basic set of f, $\Sigma \neq \mathcal{A}$. So we proved the claim in the case that $F_f^c(x)$ is closed.

In the case that $C_0 = F_f^c(x)$ is a future-dense curve, this is, if f(x) > x in the chosen orientation, then $W^{c+}(x) = \{y \in W^c(x)/y \ge x\}$ is dense, and if f(x) < x then $W^{c-}(x)$, with the obvious definition, is dense.

Clearly we have that $C_0 \cap W^s(\mathcal{A}) \neq \emptyset$.

We only need to show that C_0 is not included in $W^s(\mathcal{A})$, i.e. $C_0 \cap \partial(W^s(\mathcal{A})) \neq \emptyset$.

Suppose that for every y in $C_{f(x)}^x$, we have that $y \in W^s(\mathcal{A})$. There exists an open and nondense set U, such that $\mathcal{A} \subset U$, $f(U) \subset U$ and $C_{f(x)}^x \subset U$; then if C_0 intersects U, C_0 would be included in U in the future. This contradicts the nondensity of U, so there exists $y \in C_{f(x)}^x$ such that $y \notin W^s(\mathcal{A})$.

It still remains to prove the claim in the case that $C = F_f^c(x)$ is any curve.

Recall that $K = \max_{x \in M} length(C_{f(x)}^x)$.

Suppose that there exists a curve $\gamma \subset F_f^c(x)$ such that $\gamma \subset W^s(\mathcal{A})$ and $length(\gamma) \geq K + 1$.

Then there exists an open set $V, V \subset W^s(\mathcal{A})$ and $\gamma \subset V$. There exists $y \in V$ such that $W^c(y)$ is dense in M, and $W^c(y) \cap V$ has length greater or equal than K. This gives the existence of a fundamental domain in $W^c(y) \cap V$, and then in $W^s(\mathcal{A})$. This contradicts the previous case.

Note that we have proved that every leaf of the central foliation "goes away" from the basin of attraction of any attractor.

Lemma 1.4. No curve γ , γ included in $F_f^c(x)$ for any x, satisfies $\gamma \subset A$.

Proof. Suppose the statement is false, i.e. there exists $\gamma \subset W_{loc}^c(x)$ such that $\gamma \subset \mathcal{A}$. Since $\gamma \subset \mathcal{A} \subset W^s(\mathcal{A})$, then the negative iterates of γ are included in \mathcal{A} and the length of them grow exponentially.

Let $z \in \alpha(x)$ then $z \in \mathcal{A}$ and by the proof of Lemma 1.3 $W^c(z)$ has to intersect $\partial(W^s(\mathcal{A}))$, but $W^c(z) \subset \mathcal{A} \subset W^s(\mathcal{A})$, which yields a contradiction. \Box

All the above lemmas admit versions for repeller basic sets and the proofs are analogous. In fact, if Λ is a repeller basic set, then for $x \in \Lambda$, $Dim(W^s(x)) = n - 2$, every leaf of \mathcal{F}_f^c intersects Λ , in every leaf of \mathcal{F}_f^c there exists a point outside of $W^u(\Lambda)$, and no γ included in $F_f^c(x)$ satisfies $\gamma \subset \Lambda$.

2 Properties of the projection along the central foliation

In this section, we will introduce some maps which are important from the technical point of view.

Definition 2.1. Let $S_A : W^s(\mathcal{A}) \to \partial W^s(\mathcal{A})$ be a map such that, for every x in the basin of the attractor \mathcal{A} , $S_A(x)$ is the nearest point in its central leaf in the positive direction verifying that it is not in the basin of attraction of \mathcal{A} .

Definition 2.2. Let $\tilde{S}_A : W^s(\mathcal{A}) \to \partial W^s(\mathcal{A})$ be the map analogous to S_A , but in the negative direction of the central foliation.

Definition 2.3. Let $S : \mathcal{A} \to \partial W^s(\mathcal{A})$ be the restriction of S_A to \mathcal{A} and $\tilde{S} : \mathcal{A} \to \partial W^s(\mathcal{A})$ the restriction of \tilde{S}_A to \mathcal{A} .

Lemma (1.3) makes the preceding definitions possible.

Let $W^c(x)$ denote the connected component of $W^c(x) \cap W^s(\mathcal{A})$ which contains x.

Let $l : \mathcal{A} \to \mathbb{R}$, $l(x) = length(C_{S(x)}^{x})$.

Lemma 2.1. *l is lower semicontinuous.*

Proof. Since $C_{S(x)}^x - \{S(x)\} \subset W^s(\mathcal{A})$ and $W^s(\mathcal{A})$ is an open set, there exists a neighborhood V such that $C_{S(x)}^x - \{S(x)\} \subset V \subset W^s(\mathcal{A})$.

The central foliation is a C^1 -lamination because f is C^1 -close to the time one map of an Anosov flow (see [7]), hence for all $\epsilon > 0$ there exists a neighborhood U_x of x such that if $y \in U_x$ then the curve $C_{y'}^y$ included in $\mathcal{F}^c(y)$ with $length(C_{y'}^y) =$ $l(x) - \epsilon$ is included in V, and hence in $W^s(\mathcal{A})$. Then $l(y) \ge l(x) - \epsilon$ which proves that l is a semicontinuous map.

Since $l : A \to \mathbb{R}$ is semicontinuous, the set *R* of points of continuity of *l* is a residual set. Let $\Phi : M \times \mathbb{R}_{\geq 0} \to M$ such that $\Phi(x, l) = z$, if $z \in W^c(x)$, *z* is in the positive direction of $W^c(x)$ and $length(C_z^x) = l$. Φ is a continuous map then

$$S(x) = \Phi(x, l(x))$$

is continuous over R.

Without loss of generality we can assume that *R* is a residual set of continuity for both *S* and \tilde{S} .

Analogously there exists a residual set Q in $W^{s}(\mathcal{A})$ such that Q is a set of continuity for S_{A} and \tilde{S}_{A} .

Following, we prove some properties of the map S. They are verified by \tilde{S} and the proofs are analogous.

Lemma 2.2. S(R) is f-invariant.

Proof. Let $x \in R$, y = S(x). For all $z \in C_y^x - \{y\}$, we have that $z \in W^s(\mathcal{A})$, $f(z) \in W^c(f(x))$ and $f(z) \in W^s(\mathcal{A})$. From $f(y) \in \partial W^s(\mathcal{A})$ it follows that f(y) = S(f(x)). Replacing f by f^{-1} we conclude that

$$f(S(R)) = S(R).$$

Lemma 2.3. For all $y \in S(R)$, $dim(W^{s}(y)) = n - 2$.

Proof. Let y = S(x) with $x \in A$; since $dim(W^{ss}(y)) = n - 2$ and $dim(W^{uu}(y)) = 1$, $dim(W^{s}(y)) = n - 1$ or n - 2, but by Lemma (1.1) if $z \in C_y^x - \{y\}$ then $z \in W^s(x)$. Then

$$W^c_{\epsilon}(y) = \{z \in W^c(y) \text{ such that } d^c(z, y) < \epsilon\}$$

can not be included in $W^{s}(y)$ and we can assert that $dim(W^{s}(y)) = n - 2$. \Box

Lemma 2.4. The set of periodic points in $A \setminus R$ is nowhere dense in A.

Proof. In order to prove the lemma it is enough to prove:

Let $(p_n)_{n \in \mathbb{N}}$ be a sequence of periodic points such that S is not continuous at p_n and $p_n \to x$. Then S is not continuous at x. Let $q_n = S(p_n)$.

Since p_n is a point of discontinuity, there exist $\alpha > 0$ and $(r_{n_k}) \subset \mathcal{A}$ such that $\lim_{k\to\infty} r_{n_k} = p_n$ and

$$length(C_{S(r_{n_k})}^{r_{n_k}}) > length(C_{S(p_n)}^{p_n}) + \alpha$$

and for any ϵ with $0 < \epsilon < \frac{\alpha}{2}$ there exist $(s_{n_k}) \subset R$ such that $\lim_{k \to \infty} s_{n_k} = p_n$ and

$$length(C_{S(s_{n_k})}^{s_{n_k}}) \ge length(C_{S(r_{n_k})}^{r_{n_k}}) - \epsilon > length(C_{S(p_n)}^{p_n}).$$

Bull Braz Math Soc, Vol. 33, No. 1, 2002

It follows that there exists a periodic limit point of $S(s_{n_k})$, q'_n , in $W^c(p_n)$. Both q_n and q'_n are in $W^c(p_n) \cap \overline{S(R)}$, are periodic and

$$dim(W^{s}(q_{n})) = dim(W^{s}(q_{n}')) = n - 2.$$

Since q_n and q'_n are in the same closed leaf of \mathcal{F}^c , it follows that there exists a periodic point p'_n , such that $p'_n \in C^{q_n}_{q'_n}$ and $dim(W^s(p'_n)) = n - 1$.

Suppose, contrary to our claim, that S is continuous at x.

From $p_n \to x$ we conclude that $q_n \to S(x)$ by the continuity of S at x. Besides $q'_n \to S(x)$ because there exist $(s_{n_k}) \subset R$ such that $\lim_{k\to\infty} s_{n_k} = p_n$ and $\lim_{k\to\infty} S(s_{n_k}) = q'_n$. Letting a convenient subsequence k(n), we can assert that

$$\lim_{n \to \infty} s_{n_{k(n)}} = x \text{ and } \lim_{n \to \infty} S(s_{n_{k(n)}}) = S(x)$$

by the continuity of S at x. This gives $q'_n \to S(x)$.

Then $dist(q_n, q'_n) \to 0$ when $n \to \infty$ and $d^c(q_n, q'_n) \to 0$ when $n \to \infty$. But $d^c(q_n, q'_n) > \min\{d^c(p'_n, q'_n), d^c(p_n, q'_n)\}$ and this leads to a contradiction because p'_n and q'_n (or p_n and q'_n) are in different basic sets because they have different indices.

We have proved that *S* is not continuous at *x*.

 \square

Observe that as a consequence we have that for all $x \in A$ there exists a sequence of periodic points $(p_n)_{n \in \mathbb{N}} \subset R$ such that $p_n \to x$.

Lemma 2.5. $\overline{S(R)}$ is transitive and $\overline{S(R)} \subseteq \Omega(f)$.

Proof. Since \mathcal{F}^c is continuous, the set of periodic points is dense in *R* and *S*(*p*) is periodic if *p* is periodic, then the set of periodic points is dense in *S*(*R*), hence

$$S(R) \subseteq \Omega(f).$$

Analogously the image of a dense orbit is dense in S(R).

Corollary 2.1. From the above properties we conclude that $\overline{S(R)}$ is included in Λ , a basic set of the spectral decomposition of f.

Lemma 2.6. $S(W^{s}(x)) \subset W^{s}(S(x))$.

Proof. Let $x \in A$, $y \in W^{s}(x) \cap A$. Suppose that $S(y) \notin W^{s}(S(x))$. Since $S(y) \in F^{cs}(x)$ there exists $z = W^{s}(S(y)) \cap W^{c}(x)$. We have that $\forall w \in \partial(W^{s}(A)), W^{s}(w) \subset \partial(W^{s}(A))$, then $W^{s}(S(x)) \subset \partial(W^{s}(A)) \forall x \in A$, and $z \in \partial(W^{s}(A))$, but this contradicts the definition of *S*.

Lemma 2.7. If x is a point of continuity of S, then all the points in $W^{s}(x) \cap A$ are continuity points of S.

Proof. Let *x* be a point of continuity of *S*, $y \in W_{loc}^{s}(x) \cap A$. We first prove that *y* is a continuity point of *S*.

Let $\{y_n\}_{n \in \mathbb{N}} \subset \mathcal{A}$, such that $\lim_{n \to \infty} y_n = y$. There exists $x_n = W^s_{loc}(y_n) \cap W^u(x)$ and $y_n \in W^s(x_n)$. By continuity of the stable foliation, we have $\lim_{n \to \infty} x_n = x$, and by continuity of *S* at *x* we conclude that $\lim_{n \to \infty} S(x_n) = S(x)$.

From $y_n \in W^s(x_n)$, and the above lemma, it follows that $S(y_n) \in W^s(S(x_n))$, hence $S(y_n) = W^s_{loc}(S(x_n)) \cap W^c(y_n)$.

By the continuity of W^s and W^c we have that:

$$\lim_{n\to\infty} W^s_{loc}S(x_n) = W^s_{loc}S(x) \text{ and } \lim_{n\to\infty} W^c(y_n) = W^c(y);$$

hence

$$\lim_{n\to\infty} S(y_n) = W^s_{loc}S(x) \cap W^c(y) = S(y).$$

Bull Braz Math Soc, Vol. 33, No. 1, 2002

We have proved that $\forall y \in W^s_{loc}(x) \cap \mathcal{A}$, *S* is continuous at *y* i.e. $S|_{W^s_{loc}(y) \cap \mathcal{A}}$ is continuous.

Now, if $z \in W^s(x) \cap \mathcal{A}$ there is N > 0 such that $f^N(z) \in W^s_{loc}(f^N(x)) \cap \mathcal{A}$ and the previous argument still applies.

Remark. Note that Lemmas (2.6) and (2.7) are verified not only by *S* and \tilde{S} but also by S_A and \tilde{S}_A . The proofs are analogous.

Lemma 2.8. If $x \in A$, then x is a point of continuity of S if and only if x is a point of continuity of S_A .

Proof. We only have to prove that if $x \in A$ is a point of continuity of *S* then it is a continuity point of S_A .

Let y be a point close to x, then $y' = W_{loc}^u(x) \cap W_{loc}^s(y)$ is a point in \mathcal{A} such that S(y') is close to S(x) and

$$S_A(y) = W^s(S(y')) \cap W^c(y)$$
 is close to $S_A(y') = S(y')$.

Hence $S_A(y)$ is close to $S_A(x) = S(x)$.

Proposition 2.1. If f satisfies property P then for every periodic point p, S is continuous at p.

Proof. Let *k* denote the number of periodic points in $C_{f(x)}^x$, for all periodic point $x \in \mathcal{A}$. Suppose *x* is a periodic discontinuity point of *S*, then we have a sequence $(x_n)_{n \in \mathbb{N}}$ of periodic points of continuity such that $\lim_{n\to\infty} x_n = x$ and $length(C_{S(x_n)}^{x_n}) > length(C_{S(x)}^{x}) + \alpha$, with $\alpha > 0$.

For every x_n , there exist k periodic points $x_n^1 < \ldots < x_n^k$ in $C_{f(x_n)}^{x_n}$, ordered by the chosen orientation.

Since $\lim_{n\to\infty} W^c(x_n) = W^c(x)$ in compact sets, there exist x^i , limit point of x_n^i in $W^c(x)$, and x^i must be periodic. Since the number of periodic points in $C_{f(x_n)}^{x_n}$ and in $C_{f(x)}^x$ is the same, then there exists only a limit point of x_n^i , i.e. $\lim_{n\to\infty} x_n^i = x^i$.

In particular $\lim_{n\to\infty} x_n^1 = x^1$, and this gives $\lim_{n\to\infty} S(x_n) = S(x)$; so $length(C_{S(x_n)}^{x_n}) < length(C_{S(x)}^{x}) + \alpha$ if *n* is big enough, which is absurd.

We have proved that S is continuous at every periodic point.

Lemma 2.9. Let Λ be a basic set and $x \in \Lambda$.

- 1. If $dim(W^s(x)) = n 1$ then there is a finite number of points of Λ in the connected component of $W^c(x) \cap W^s(\Lambda)$ that contains x.
- 2. If $dim(W^s(x)) = n 2$ then there is a finite number of points of Λ in the connected component of $W^c(x) \cap W^u(\Lambda)$ that contains x.

Proof. We will prove just the first statement.

Suppose that it is false. Then we can choose $\{x_i\}$ in $\Lambda \cap W^s(\Lambda) \cap W^c(x)$, such that $x_1 < x_2 < \ldots < x_l < \ldots$ in the given orientation of $W^c(x)$. There exists k > 0 such that $f^{-1}|_{W_k^c(x)}$ "expands", $\forall x \in \mathcal{A}$. Then there exists $n_1 \in \mathbb{N}$ verifying that $length(f^{-n_1}(C_{x_1}^x)) > k$, for all $n \ge n_1$. There exists $n_2 \in \mathbb{N}$ such that $length(f^{-n_2}(C_{x_2}^x)) > k$, for all $n \ge n_2$. Let l_0 such that $kl_0 > K + 1$, where $K = \max_{x \in M} length(C_{f(x)}^x)$. We continue in this way obtaining n_3, \ldots, n_{l_0} . Let $N = max\{n_1, \ldots, n_{l_0}\}$, then

$$length(f^{-N}(C^{x}_{x_{l_0}})) > kl_0 > K + 1$$

Hence, as in the proof of Lemma 1.3 we conclude that there exists $p \in f^{-N}(C_{x_{l_0}}^x)$ such that $p \in \partial W^s(\Lambda)$ and therefore $f^N(p) \in \partial W^s(\Lambda)$ and $f^N(p) \in C_{x_{l_0}}^x \subseteq W^s(\Lambda)$; which is a contradiction.

We have actually proved that there are no more than $[\frac{K+1}{k}]$ points of Λ in the connected component of $W^{s}(\Lambda) \cap W^{c}(x)$.

3 Continuity of the map *S*.

Let us first prove the next lemma.

Lemma 3.1. Let x be a continuity point of S_A and \tilde{S}_A , (i.e. $x \in Q$) then for all $y \in W^s(x)$, $\widetilde{W^c(y)} \cap \mathcal{A} \neq \emptyset$.

Proof. Let $\epsilon > 0$ be such that $\bigcup_{x \in \mathcal{A}} W^s_{\epsilon}(x) \subset W^s(\mathcal{A})$.

Let $x \in Q$ and U_x be a neighborhood of x such that for all $y \in U_x$ we have that $length(\widetilde{W^c}(y))$ is close enough to $length(\widetilde{W^c}(x))$, and let $y \in U_x \cap W^s(x)$. Since $\widetilde{W^c}(y) \subset W^s(\mathcal{A})$ and $W^s(\mathcal{A})$ is open, there exists a neighborhood of $\widetilde{W^c}(y)$, \mathcal{V} , such that $\mathcal{V} \subseteq W^s(\mathcal{A})$ and $\mathcal{V} \subset \bigcup_{z \in U_x} (\widetilde{W^c}(z))$, in such a way that if $z \in \mathcal{V} \cap \mathcal{A}$ then $length(\widetilde{W^c}(z))$ is close enough to $length(\widetilde{W^c}(y))$. By the density of the closed leaves in the central foliation, there exists a curve ζ in \mathcal{V} , included in a closed leaf of the central foliation, \mathcal{O} such that $\zeta = \mathcal{O} \cap W^s(\mathcal{A})$.

There exists a periodic point p such that $p \in \zeta \cap A$, $\zeta = W^c(p)$ and since S_A and \tilde{S}_A are continuous at y by the remark of Lemma 2.7, the lengths of $\widetilde{W^c(y)}$ and ζ are close; and the lengths of the curves $C_{S_A(p)}^p$, and $C_p^{\tilde{S}_A(p)}$ are greater than the ϵ previously defined.

Then, considering open sets \mathcal{V}_n such that $\mathcal{V}_n \to \widetilde{W^c(y)}$, we can assert that there exist curves $\zeta_n \subset \mathcal{V}_n$ and periodic points $p_n \in \zeta_n \cap \mathcal{A}$ such that the lengths of $\widetilde{W^c(y)}$ and ζ_n are close; and the lengths of the curves $C_{S_A(p_n)}^{p_n}$, and $C_{p_n}^{\tilde{S}_A(p_n)}$ are greater than ϵ .

Since ζ_n converges to $W^c(y)$ and the distance of p_n to $\partial(W^s(\mathcal{A}))$ is bounded away from 0, there exists a limit point p of p_n such that $p \in \mathcal{A} \cap \widetilde{W^c(y)}$.

We have proved that if $x \in Q$ then

$$\forall y \in W^s_{loc}(x), \exists p \in W^c(y) \cap \mathcal{A}.$$

Successive applications of this proceeding enables us to conclude that if $x \in Q$

 $\forall y \in W^s(x), \exists p \in \widetilde{W^c(y)} \cap \mathcal{A}.$

Corollary 3.1. $\Lambda = \overline{S(R)}$ is a repeller set.

Proof. Let $x \in Q \cap A$, $z \in W^s(S(x))$ and $z' = W^c(z) \cap W^{ss}(x)$. Since $z' \in W^s(x)$ with $x \in Q$, then by Lemma 3.1 there exists $q \in W^c(z') \cap A$; hence S(q) = z and $z \in S(R)$. Then

$$\forall x \in Q \cap \mathcal{A}, W^s(S(x)) \subseteq S(R).$$

We have proved that $\overline{S(R)}$ is included in a basic set Λ . Now, if y = S(x) with $x \in \mathcal{A} \cap Q$ then

$$W^{s}(y) \subseteq S(R) \subseteq \overline{S(R)} \subseteq \Lambda \subseteq \overline{W^{s}(y)}.$$

It follows that $\overline{S(R)}$ is a basic set, and since it contains a stable manifold we have that $\Lambda = \overline{S(R)}$ is a repeller set.

Let us consider the following maps.

Definition 3.1. Let $\Sigma_{\Lambda} : W^{u}(\Lambda) \to \partial W^{u}(\Lambda)$ be a map such that, for every x in the basin of repulsion of Λ , $\Sigma_{\Lambda}(x)$ is the nearest point in its central leaf in the positive direction verifying that it is not in the basin of repulsion of Λ .

Definition 3.2. Let $\tilde{\Sigma}_{\Lambda}$: $W^{u}(\Lambda) \to \partial W^{u}(\Lambda)$ be the map analogous to Σ_{Λ} , but in the negative direction of the central foliation.

Definition 3.3. Let $\Sigma : \Lambda \to \partial W^u(\Lambda)$ be the restriction of Σ_{Λ} to Λ and $\tilde{\Sigma} : \Lambda \to \partial W^u(\Lambda)$ the restriction of $\tilde{\Sigma}_{\Lambda}$ to Λ .

The version of Lemma (1.3) for repeller sets makes the preceding definitions possible.

As done after Definition 2.3 we define $W^c(x)$ as the connected component of $W^c(x) \cap W^u(\Lambda)$ which contains x, if $x \in W^u(\Lambda)$.

All the properties verified by S, \tilde{S} , S_A and \tilde{S}_A are verified by Σ , $\tilde{\Sigma}$, Σ_{Λ} and $\tilde{\Sigma}_{\Lambda}$ with the obvious modifications. In particular, there exists a residual set $\Theta \subset W^u(\Lambda)$ such that Σ_{Λ} and $\tilde{\Sigma}_{\Lambda}$ are continuous in Θ . Besides, if $x \in \Theta$ then for all $y \in W^u(x)$ we have that $\widetilde{W^c(y)} \cap \Lambda \neq \emptyset$. Once again, if property \mathcal{P} is verified, all the periodic points of Λ are continuity points for all these maps.

Lemma 3.2. Let $x \in \Lambda$. Suppose that $y \in W^u(x)$. Then

$$\widetilde{W^c(\mathbf{y})} \cap \Lambda \neq \emptyset.$$

Proof. By the version of Lemma 3.1 for repeller sets and the continuity of Σ_{Λ} and $\tilde{\Sigma}_{\Lambda}$ restricted to Θ , we have that for all point $x \in \Theta$ there is a neighborhood U_x such that if $y \in U_x$ and $z \in W^u_{loc}(y)$ then $\widetilde{W^c(z)} \cap \Lambda \neq \emptyset$. Let

$$U = \cup_{x \in \Theta} U_x.$$

U is an open and dense set in $W^u(\Lambda)$.

Let $x \in \Lambda$ and suppose by contradiction that there exists $y_0 \in W^u(x)$ such that $\widetilde{W^c(y_0)} \cap \Lambda = \emptyset$. In addition, there exists a neighborhood V_{y_0} of y_0 such that if $z \in V_{y_0} \cap W^u(y_0)$ then $\widetilde{W^c(z)} \cap \Lambda = \emptyset$.

Since $W^{u}(x)$ is dense in Λ , there exists $v \in W^{u}(x) \cap \mathcal{U}$, hence there exists $\tilde{v} \in W^{uu}(x) \cap \mathcal{U}$.

Let $\mathbf{C} \subseteq W^{uu}(x)$ an arc such that is maximal with respect to the following property: if $y \in \mathbf{C}$, $\widetilde{W^c(y)} \cap \Lambda = \emptyset$.

Let \tilde{r} be an extreme of **C** and $r = W^c(\tilde{r}) \cap \Lambda$. If $w \in \mathbf{C} \cap W^{uu}_{loc}(\tilde{r})$ then $\overline{w} = W^c(w) \cap W^{uu}_{loc}(r)$ exists and verifies that $\widetilde{W^c(w)} \cap \Lambda = \emptyset$; so we can define

 $W^{u+}(r) = \text{ connected component of } \{y \in W^{u}(r) | \widetilde{W^{c}(y)} \cap \Lambda = \emptyset\}$

such that $W^{u+}(r) \cap W^{u}_{\epsilon}(r) \neq \emptyset$ for any $\epsilon > 0$.

For all $n \in \mathbb{N}$, $f^n(r) \in \Lambda$ and $W^{u+}(f^n(r))$ contains an arc $D_n \subset W^{uu}(f^n(r))$ whose length grows exponentially and it has an extreme in $f^n(r)$.

Let $q \in \omega(r)$, then $W^{u+}(q)$ contains a "half plane" of $W^{u}(q)$, i.e. with an adequate orientation \succ on $W^{uu}(q)$, we have

$$W^{u+}(q) = \{ v \in W^{u}(q) | W^{c}(v) \cap W^{uu}(q) \succ q \}$$

We may also assume that $f^n(r) \to q$. Taking *n* and *m* big enough we obtain that $f^n(r)$ and $f^m(r)$ are as close as we wish, then there is no possibility that $W^s(f^n(r))$ intersects $W^u(f^m(r))$ in $W^{u+}(f^m(r))$ because this point would be in $W^{u+}(f^m(r)) \cap \Lambda$.

In the same way there is no possibility that $W^s(f^m(r))$ intersects $W^u(f^n(r))$ in $W^{u+}(f^n(r))$.

It follows that if *n* and *m* are big enough then $W^s(f^n(r))$ intersects $W^u(f^m(r))$ in $W^c(f^m(r))$ because the central-stable foliation locally separates *M*. Then there are two possibilities:

- 1. There exist infinite many stable manifolds of $f^{j}(r)$, with $j \in \mathbb{N}$. In this case, there exist infinite many points in $\Lambda \cap W^{c}(f^{m}(r))$, but this contradicts Lemma 2.9.
- 2. There exists a finite number of different stable manifolds of $f^{j}(r)$, with $j \in \mathbb{N}$.

We can suppose that $W^s(f^n(r))$ is the same for all $n \in \mathbb{N}$. Since $f^n(r) \rightarrow q$, we have that q is periodic point; and since $W^{u+}(q) \cap \Lambda = \emptyset$, q is not a continuity point of Σ_{Λ} and $\tilde{\Sigma}_{\Lambda}$, because it would contradict the version of Lemma 3.1 for repeller sets.

On the other hand, the version of proposition 2.1 for repeller sets asserts that all periodic points in Λ are continuity points of Σ , and $\tilde{\Sigma}$, and hence of Σ_{Λ} , and $\tilde{\Sigma}_{\Lambda}$, which yields a contradiction.

We notice that it is at this point where Property \mathcal{P} is used.

We have proved that for all $x \in \Lambda$, and for all $y \in W^u(x)$

$$\widetilde{W^c(y)} \cap \Lambda \neq \emptyset.$$

Proposition 3.1. $S, \tilde{S} : R \to \partial W^s(\mathcal{A})$ can be extended continuously to \mathcal{A} .

Proof. We will just prove the proposition for *S*.

We recall that there exists a residual set R such that $S : R \to \partial W^s(\mathcal{A})$ is continuous.

If for all $y \in \mathcal{A} \setminus R$, and for all sequence $(x_n)_{n \in \mathbb{N}} \subset R$ with $\lim_{n \to \infty} x_n = y$, we have that there exists $\lim_{n \to \infty} S(x_n)$ and it is unique, then we can extend continuously *S*, in such a way that $S(y) = \lim_{n \to \infty} S(x_n)$.

We will show that if $(x_n)_{n \in \mathbb{N}} \subset R$ with $\lim_{n \to \infty} x_n = y$, and $(w_n)_{n \in \mathbb{N}} \subset R$ with $\lim_{n \to \infty} w_n = y$, then every subsequence verifies that

$$\lim_{i\to\infty}S(x_{n_i})=\lim_{j\to\infty}S(w_{n_j}).$$

Since $W^c(x_n) \to W^c(y)$ in compact sets, and the lengths of the curves $C_{S(x_n)}^{x_n}$ are bounded, there exists $y' = \lim S(x_{n_i}), y' \in \mathcal{F}^c(y), y' \in \Lambda$. Identical argument shows that there exists y'' such that $y'' = \lim S(w_{n_j}), y'' \in \mathcal{F}^c(y)$, and $y'' \in \Lambda$. We suppose that $y' \neq y''$ and there is no point in $C_{y''}^{y'} \cap \Lambda$ but the extremes of $C_{y''}^{y'}$, because in the connected component of $W^c(y') \cap \Lambda$ there is only a finite number of points by Lemma 2.9.

In order to prove the proposition we need the next lemma:

Lemma 3.3. There exist $s \in A$, $r, r' \in \Lambda$, and q such that $q \in \Delta$, where Δ is a basic set $\Delta \neq \Lambda$; all these points are in the same leaf of \mathcal{F}^c ; $r \in C_q^s$, and $q \in C_{r'}^r$.

Proof. Let $s \in \omega(y)$. There exist $(m_k)_{k \in \mathbb{N}}$ such that

$$\lim_{k\to\infty}\lim_{i\to\infty}f^{m_k}(x_{n_i})=s \quad \text{and} \quad \lim_{k\to\infty}\lim_{j\to\infty}f^{m_k}(w_{n_j})=s.$$

Since the central foliation is continuous (in compact sets) and the length of the curves $C_{S(f^{m_k}(x_{n_i}))}^{f^{m_k}(x_{n_j})}$ and $C_{S(f^{m_k}(w_{n_j}))}^{f^{m_k}(w_{n_j})}$ are bounded, there exist

$$\lim_{k \to \infty} f^{m_k}(y') = r \quad \text{and} \quad \lim_{k \to \infty} f^{m_k}(y'') = r',$$

with $r, r' \in \Lambda, r, r' \in \mathcal{F}^c(s)$ and $r \in C^s_{r'}$.

Since $length(C_{S(z)}^z) \leq K + 1$ for all $z \in \mathcal{A}$ (see the proof of Lemma 1.3) and S(f(z)) = f(S(z)) we have that $f^m(C_{S(z)}^z) = C_{f^m(S(z))}^{f^m(z)}$ for all $m \in \mathbb{N}$, and therefore $f^{m_k}(C_{y''}^{y'}) \to C_{r'}^r$.

Bull Braz Math Soc, Vol. 33, No. 1, 2002

Since $C_{y''}^{y'}$ is not included in Λ by the version of Lemma 1.4 for repeller sets, there exists $z \in C_{y''}^{y'}$ such that $z \notin \Lambda$. There exists $u \in \Omega(f)$ such that $z \in W^s(u)$, with $u \in \Delta$, where Δ is a basic set $\Delta \neq \Lambda$. It follows that $\omega(z) = \omega(u)$, hence $\omega(z) \subseteq \Delta$. Since $f^{m_k}(C_{y''}^{y'}) \rightarrow C_{r'}^r$, there exists a point $q \in C_{r'}^r \cap \omega(z)$, therefore $q \in C_{r'}^r \cap \Delta$ and the lemma is proved.

Let us continue with the proof of Proposition 3.1.

Let s, r, q and r' be as in the Lemma 3.3.

Since $s \in \mathcal{A}$, there exists a sequence $(z_n)_{n \in \mathbb{N}}$ such that $z_n \in \mathcal{A}$, z_n is a continuity point of *S* and \tilde{S} , $z_n \to s$ and $S(z_n) \to r'$. Let n_0 be big enough in order to have

$$\alpha = W^u(s) \cap W^s(z_{n_0}), \text{ and } \beta = W^u(q) \cap W^s(z_{n_0})$$

close to *s* and *q* respectively. It follows that α and β are in the same leaf of the central foliation. Let

$$\rho = W^u(r) \cap W^c(\alpha).$$

Since $W^{u}(r)$ has dimension 2, there exists a curve **C**, such that **C** is the connected component of $W^{c}(\rho) \cap W^{u}(\Lambda)$.

Figure 2

Since $\alpha \in \mathcal{A}$ and β is such that $\beta \in W^u(\Delta)$ where Δ is a basic set such that $q \in \Delta$ with $\Delta \neq \Lambda$, α and β are not in **C**. Hence $\mathbf{C} \subset C^{\alpha}_{\beta}$. From Lemma 3.2 we have that there exists $x \in \mathbf{C} \cap \Lambda$. But $x \in W^s(z_{n_0}) \subseteq$ $W^{s}(\mathcal{A})$ and it yields to a contradiction because there is no points in $W^{s}(\mathcal{A}) \cap \Lambda$. Then y' and y'' coincide, and S is continuous at y.

Corollary 3.2. *S* (*or its continuous extension*): $\mathcal{A} \to \Lambda$ *is onto.*

Proof. We have that

$$\Lambda = \overline{S(R)} \subseteq \overline{S(\mathcal{A})} = S(\mathcal{A})$$

The last equality holds since S is continuous, then $S(\mathcal{A})$ is a compact set. \Box

4 Existence of a repelling topological hypersurface

Proposition 4.1. Λ *is a topological hypersurface.*

Proof. Since *S* (or its extension) is onto, for every *k*-periodic point $y \in \Lambda$ there exists $x \in A$, *k*-periodic such that S(x) = y. Let us denote $\Gamma(y) = S(W^u(x))$.

Since $W^u(x) \subset A$, then $\Gamma(y) \subset \Lambda$, and $\Gamma(y)$ is a curve in $\mathcal{F}^{cu}(y) = W^u(y)$. The curve is f^k invariant and y belongs to it.

We claim that any point in $W^{u}(y) \cap \Lambda$ has to be in $\Gamma(y)$, if y is a periodic point in Λ .

Let $r \in \Gamma(y)$. Since $W^s(y)$ is dense in Λ , there exists $z \in W^u(y) \cap W^s(y)$ such that $d^u(z, r) < \epsilon/2$ where d^u is the restriction of the Riemannian metric of M to the leaves of \mathcal{F}^u and ϵ verifies that $\bigcup_{x \in \Lambda} W^u_{\epsilon}(x) \subset W^u(\Lambda)$.

Suppose that $z \notin \Gamma(y)$, then there exists $q \in W^c(z) \cap \Gamma(y)$ such that $d^c(z, q) < \epsilon$. Since $z \in W^s(y)$ there exist $(n_j)_{j \in \mathbb{N}}$ such that

$$\lim_{j\to\infty} n_j = \infty \quad \text{and} \quad \lim_{j\to\infty} f^{n_j}(z) = y.$$

Since

$$\lim_{j \to \infty} f^{n_j}(C_q^z) \subseteq F^c(y), \quad \text{and} \quad \lim_{j \to \infty} f^{n_j}(C_q^z)$$

is not included in $W^u(\Lambda)$, there exists $y' \in \partial(W^u(\Lambda)) \cap W^c(y)$ such that $\Sigma(y) = y'$, therefore there exists y'' close to y', such that $\Sigma(f^{n_j}(z)) = y''$ with $y'' \in C_{f^{n_j}(q)}^{f^{n_j}(z)}$ because y is a continuity point of Σ . Then $f^{-n_j}(y'') \in C_q^z \cap \partial(W^u(\Lambda))$, but $d^c(f^{-n_j}(y''), q) < \epsilon$ so $f^{-n_j}(y'')$ must be in $W^u(\Lambda)$ which is a contradiction. We have proved that if $U_{\epsilon} = \bigcup_{r \in \Gamma(y)} W^c_{\epsilon}(r)$ then

$$U_{\epsilon} \cap W^{s}(y) \subset \Gamma(y). \tag{1}$$

Suppose that there exists $w \in W^u(y)$ such that $w \notin \Gamma(y)$. Then there exists $n \in \mathbb{N}$ such that $f^{-n}(w) \in U_{\epsilon} \setminus \Gamma(y)$. Besides, there exists δ such that $B(f^{-n}(w), \delta) \cap \Gamma(y) = \emptyset$, and $B(f^{-n}(w), \delta) \cap W^u(y) \subset U_{\epsilon}$, but there is no point of $W^s(y)$ in $B(f^{-n}(w), \delta)$ by (1), which contradicts the density of $W^s(y)$. Then, we have proved that all the points in $\Lambda \cap W^u(y)$ must be in $\Gamma(y)$.

For all $x \in \Lambda$ there exists a periodic point $z \in \Lambda$ close to x. Let

$$\Gamma(x) = (\bigcup_{w \in \Gamma(z)} W^s_{loc}(w)) \cap W^u(x).$$

We have that $\Gamma(x)$ is a curve in $W^u(x) \cap \Lambda$. We claim that every point of $W^u(x) \cap \Lambda$ has to be in $\Gamma(x)$.

Suppose, contrary to our claim that there were a point $v \in \Lambda \cap W^u(x)$, such that $v \notin \Gamma(x)$ then $\tilde{v} = W^s_{loc}(v) \cap W^u(z)$ would be a point in $\Lambda \cap W^u(z)$, such that $\tilde{v} \notin \Gamma(z)$, which is impossible.

We have proved that $\forall x \in \Lambda$ there is a unique curve $\Gamma_x \subset W^u(x) \cap \Lambda$. Then $D_x = \bigcup_{z \in \Gamma_x} W^s_{loc}(z)$ is a local hypersurface of Λ . Let $V_{\epsilon} = \bigcup_{r \in D_x} W^c_{\epsilon}(r)$, then $V_{\epsilon} \cap \Lambda$ must be included in the local hypersurface D_x .

Hence Λ is a topological hypersurface.

5 End of the proof of the Theorem

Proposition 5.1. The Anosov flow ϕ is conjugated to a suspension.

Proof. The topological hypersurface Λ is compact, f-invariant and $f|_{\Lambda}$ is hyperbolic. If $x \in \Lambda$, $f(x) \in \Lambda$ then there exists $z \in W^c(x)$ such that $z \in \Lambda$, and $C_z^x \cap \Lambda = \emptyset$.

By the version of Corollary 1.1 for repeller sets $\{F_f^c(x)\}_{x \in \Lambda}$ is topologically transversal to Λ .

Recall that as f is C^1 close to f_1 , where $f_1(x) = \phi(x, 1)$ there exists a homeomorphism $h : M \to M$ close to the identity such that h(x) = x', and $F_f^c(x')$ is C^1 -close to $F_{f_1}^c(x)$ in compact sets. Moreover

$$h(F_{f_1}^c(x)) = F_f^c(x').$$

 \square

Since $h^{-1}(\Lambda)$ is a topological hypersurface we have that $\{F_{f_1}^c(x)\}_{x \in h^{-1}(\Lambda)}$ is topologically transversal to $h^{-1}(\Lambda)$, i.e. $\forall x \in M$ there exists T > 0 such that $\phi(x, T) \cap h^{-1}(\Lambda)$ "transversally".

Then ϕ , may be reparametrized in such a way that it becomes a suspension, i.e. the Anosov flow is conjugated to a suspension which is an Anosov flow, too.

Remark 5.1. The flow ϕ is conjugate to a suspension of an Anosov diffeomorphism and the hypersurface Λ is homeomorphic to the torus T^{n-1} .

We have that $f|\Lambda$ is a hyperbolic diffeomorphism. If Λ were a smooth manifold, $f|\Lambda$ would be an Anosov codimension one diffeomorphism and we could apply Frank's result to conclude that $f|\Lambda$ is topologically conjugated to a hyperbolic toral automorphism (See [4]). Although Λ is just a topological manifold, the Frank's proof remains valid but, in this case we need to use a C^0 version of the classical theorem of Haefliger. This can be found in Chapter 7 of [6].

Let $A: T^{n-1} \to T^{n-1}$ be an Anosov diffeomorphism such that $f | \Lambda$ is conjugated to $A | T^{n-1}$, then if ψ is the suspension of A, ϕ is conjugated to ψ . Hence the flow ϕ is conjugated to a suspension of an Anosov diffeomorphism.

The above observation completes the proof of the Theorem.

Let M a riemannian, compact surface with negative curvature. It is well known that geodesic flows can not be conjugated to a suspension flow. Then Corollary 1 holds.

References

- [1] Anosov D. *Geodesic flows on Riemann manifolds with negative curvature.* Proceedings of the Steklov Institute of Mathematics, vol **90** (1967).
- [2] Bonatti C. and Diaz L. *Persistent nonhypebolic transitive diffeomorphisms*. Annals of Mathematics, vol **143** (1995).
- [3] Cartan E. Lecons sur la géométrie des espaces de Riemann. Gautthier-Villars (1928).
- [4] Franks J. *Anosov diffeomorphisms*. Proceedings of the Symposium in Pure Math., vol **14** (1970).
- [5] Franks J. and Williams R. *Anomalous Anosov Flows*. Global theory and dynamical systems, SLN 819, Springer-Verlag (1980).
- [6] Hector G. and Hirsch U. *Introduction to the Geometry of Foliations*. Fiedr. Vieweg & Sohn, Braunschweig (1981).
- [7] Hirsch M., Pugh C. and Shub M. *Invariant manifolds*. Lecture Notes in Mathematics, Springer-Verlag, vol **583** (1977).

- [8] Katok A. and Hasselblat B. *Introduction to the Modern Theory of Dynamical Systems*. Cambridge University Press. (1995).
- [9] Palis J. and Pugh C. *Fifty problems in dynamical systems*. Lecture Notes in Mathematics, Springer-Verlag, vol **468** (1975).
- [10] Verjovsky A. Codimension one Anosov flows. Bol. Soc. Mat. Mexicana, vol 19 (1974).

Nancy Guelman

Universidad de La República Facultad de Ingeniería, IMERL J. Herrera y Reissig 565 Montevideo URUGUAY

E-mail: nguelman@fing.edu.uy