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Abstract. We prove that if f1 is the time one map of a transitive and codimension
one Anosov flow φ and it is C1-approximated by Axiom A diffeomorphisms satisfying
a property called P, then the flow is topologically conjugated to the suspension of a
codimension one Anosov diffeomorphism.
A diffeomorphism f satisfies property P if for every periodic point inM the number of
periodic points in a fundamental domain of its central manifold is constant.

Keywords: Anosov flow, suspension ofAnosov diffeomorphisms, time one map, Axiom
A.

Mathematical subject classification: 37D20, 37D30, 37D05.

Introduction

Throughout this paperM denotes a smooth compact Riemannian manifold with-
out boundary, and φ : M × R → M a Cr flow, with r ≥ 1.

Recall that the suspension of an Anosov diffeomorphism is an Anosov flow
in the corresponding manifold. Let us consider a transitive Anosov vector field
X and let fτ = Xτ be the flow of X at time τ . Although fτ is not an Anosov
diffeomorphism, there exists a Dfτ -invariant splitting of TM

TM = Es ⊕ Ec ⊕ Eu,

such thatDfτ |Es is uniformly contracting,Dfτ |Eu is uniformly expanding, and
Ec is a nonhyperbolic central direction.

The object of our study are transitiveAnosov flows ( i.e. the case when the
non-wandering set is the whole manifold).
A codimension one Anosov flow defined on an n-manifoldM is an Anosov flow
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76 NANCY GUELMAN

such that for all x ∈ M , dimEs(x) = 1 and dimEu(x) = n− 2 or dimEs(x) =
n− 2 and dimEu(x) = 1.

An interesting question is what kind of dynamical system can appear under
perturbations of a time one map of a transitive Anosov flow.

Palis and Pugh (see [9]) wondered whether the time one map of a transitive
Anosov flow could be approximated by hyperbolic orAxiomA diffeomorphisms.
It is a well known fact that in the case when the flow arises from the suspension
of an Anosov diffeomorphism g : N → N such an approximation can be carried
out with Axiom A diffeomorphisms.

The suspension manifold Ng is obtained from the direct product N × [0, 1]
by identifying pairs of points of the form (x, 0) and (g(x), 1) for x ∈ N . The
suspension flow ϕ(x, t) is determined by the vector field ∂

∂t
. The manifold Ng

is fibered over S1 and the projection of ϕ(x, 1) onto S1 is the identity map.
Let f be a diffeomorphism preserving fibers, C1- close to ϕ(x, 1) such that the
projection of f over S1 is a Morse-Smale map. We have that f is an Axiom A
diffeomorphism.

In this spirit, Bonatti and Díaz ( see [2]) proved that if τ is a period of a
periodic orbit of a transitive Anosov flow, then there exist an open set U of
nonhyperbolic and transitive diffeomorphisms, and a sequence (gn)n∈N, gn ∈ U
such that gn → fτ in the C1- topology.

Throughout this paper τ will be 1.
Our aim is to give a partial answer to the Palis-Pugh question. We will say that

a diffeomorphism f satisfies property P if for any periodic point x the number
of periodic points between x and f (x) in the connected component of its central
manifold is constant (see Section 1).

This property is not so strange. It is, for instance, verified in the case when f
is a convenient C1-perturbation of the time one map of a transitive Anosov flow
arising from the suspension of an Anosov diffeomorphism. In fact, the above
example verifies that the number of periodic points between x and f (x) in the
connected component of its central manifold is constant, if x is a periodic point
of f .

We will show that, in the general case there is an open dense set V ⊂ M such
that the number of periodic points between x and f (x) is constant for all the f -
periodic points in V . Here, as before, f is aC1-perturbation of the time one map
of a transitive Anosov flow.

We will prove the following:
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APPROXIMATION OF TIME ONE MAP OF ANOSOV FLOWS 77

Theorem 1. LetM a smooth compact riemannian manifold without boundary,
dim(M) ≥ 3. If the time one map of a transitive codimension one Anosov flow
isC1-approximated by Axiom A diffeomorphisms satisfying propertyP, then the
flow is topologically conjugated to a suspension of a codimension one Anosov
diffeomorphism.

Perhaps it is worthwhile to note that Verjovsky ( see [10]) proved that if n > 3
any codimension one Anosov flow is transitive (see [5] for a counterexample in
dimension 3). Then the hypothesis of transitivity can be omitted if the dimension
is higher than 3.

From Theorem 1 follows the next corollary.

Corollary 1. LetM be a negative curvature closed surface. The time one map
of the geodesic flow can not beC1-approximated by Axiom A diffeomorphisms
verifying propertyP.

In Section 1 we prove that Property P is a “reasonable property” and we study
some properties of attractors of Axiom A diffeomorphism close to the time one
map of a transitive Anosov flow. In Section 2 we introduce maps which will play
an important role in the proofs of the theorems and we examine some basic facts
about them. Section 3 deals with the continuity of the above mentioned maps.
In Section 4 we prove that there is a repeller basic set which is a hypersurface
and we complete the proofs of the Theorem in Section 5.

1 Properties of basic sets

We begin recalling some basic definitions about flows and diffeomorphisms.

Definition 1. A compactφt−invariant set,� ⊂ M, is called ahyperbolic set
for the flow φ if there exist a Riemannian metric on an open neighborhoodU
of�, andλ < 1 < µ such that for allx ∈ � there is a decomposition

Tx(M) = Esx ⊕ Eux ⊕ E0
x

such that∂tφ(x, t)|t=0 ∈ E0
x − {0}, dim(E0(x)) = 1, Dxφt(x)(E

i
x) ⊂ Eiφ(x,t),

with i = s, u, and
‖Dxφ(x, t)|Es(x)‖ ≤ λt with t ≥ 0

‖Dxφ(x, t)|Eu(x)‖ ≤ µt with t ≤ 0.

ACr flowφ : M × R → M, is called anAnosov flow if M is a hyperbolic set
for φ.

Let f : M → M be a Cr diffeomorphism .
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78 NANCY GUELMAN

Definition 2. An f -invariant set� is calledhyperbolic if there exists aDf -
invariant decomposition ofT�M such that

T�M = Es ⊕ Eu

andDf |Es is uniformly contracting andDf |Eu is uniformly expanding. More
precisely, there arec > 0 , λ, with 0 < λ < 1 such that for allx ∈ �

‖Dxf
n|Es(x)‖ < cλn

and
‖Dxf

−n|Eu(x)‖ < cλn.

A diffeomorphismf : M → M is called anAnosov diffeomorphism if M is a
hyperbolic set forf .

Let f1 : M → M, the time one diffeomorphism of φ defined as

f1(x) = φ(x, 1), ∀x ∈ M,
where φ : M × R → M is a codimension one Anosov flow if dim(M) > 3 (In
the case that dim(M) = 3, codimension one property is replaced by transitivity.)
Without loss of generality we may assume dimEs(x) = n−2 and dimEu(x) =
1 for all x ∈ M.

Since φ has no singularities, it follows that there exist f1-invariant foliations
F cs , F cu, F ss , Fuu and F c. Notice that the leaf of F c through x is the same as
the φ-orbit of x, and we denote it by Fc(x) or Wc

φ(x).
By well known properties of transitive Anosov flows, we have that

{Fc(x)|Fc(x) is a closed set } is dense in M.

{Fc(x)|Fc(x) is dense in M} is a residual set.

If O is a periodic orbit of φ, then Ws(O) consists of all points whose foward
φ orbits never stay far from O and Wu(O) of all points whose reverse φ orbits
never stay far from O. Both of them are dense in M , and so are Fcs(x) and
Fcu(x) ∀x ∈ O.

Since f1 is Cr , we have that the leaves of F cs , F cu and F c are Cr . Let
f : M → M be a diffeomorphism C1-close to f1. The map f is plaque
expansive (see [7] ), there existF cs

f ,F cu
f andF c

f and there is a homeomorphism
h : M → M close to the identity such that if h(x) = x ′, then Fcf (x´) is C1-close
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APPROXIMATION OF TIME ONE MAP OF ANOSOV FLOWS 79

to Fcf1
(x) in compact sets and the manifolds Fcsf (x

′) and Fcsf1
(x) are C1-close in

compact sets. In addition,

hof1(F
c
f1
(x)) = f oh(F cf1

(x)).

The map f is normally hyperbolic at F c
f , therefore every leaf of F c

f is invariant
and every periodic point of f is in a closed leaf of F c

f .
According to what was mentioned above we have that

{Fcf (x)|Fcf (x) is a closed set} is dense in M

and
{F c

f (x)|Fcf (x) is dense in M} is a residual set.

Let us denote by Fcf (x) or by Wc(x) the leaf of the central foliation through the
point x.

We recall that a diffeomorphism f : M → M satisfies Axiom A if the non-
wandering set�(f ) is hyperbolic and the set of periodic points is dense in�(f ).

From now on we will assume that f is an Axiom A diffeomorphism C1−
close to f1. Moreover, we will make the following assumption: the number of
periodic points in the connected component of Wc(x), between x and f (x) is
constant, for all f -periodic point inM . We will consider the number of periodic
points inWc(x), between x and f (x), in such a way that the length of this curve
is almost of the same length of the trajectory φ(x̂, t) of the Anosov flow, with t
varying between 0 and 1, and x̂ being a f1 periodic point near x. Sometimes we
have to consider the number of periodic points when the segment of the curve
between x and f (x) winds around itself more than once. The last property will
be called property P. We will prove that this property is verified in an open and
dense set of the manifold.

Let O = Fcf (x) where Fcf (x) is a closed curve.
The rotation number of f must be rational, because if it were irrational, there

would be an hyperbolic minimal set I ⊂ O and it would be included in a basic
set �.
If O ⊂ �(f ) then O would be in a basic set and f |O would be expansive which
leads to a contradiction with the nonexistence of one dimensional expansive
diffeomorphism. Let y ∈ O then α(y) = ω(y) = I , hence

y ∈ Ws(I) ∩Wu(I) ⊂ Ws(�) ∩Wu(�),

therefore y ∈ �(f ) which is a contradiction.
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Then, there exist at least two periodic points in O because f is an Axiom A
diffeomorphism. All the points in �(f ) ∩ O must be periodic because if there
were a nonperiodic point, x ∈ �(f )∩O then the invariance of�(f )∩O implies
that α(x) and ω(x) would be periodic points of different indices so they would
be in different basic sets.

From now on, we choose an orientation for F c, and denote Cab the curve
included in a central foliation leaf, between a and b. We will consider the
connected component of F c(a) between a and b in the positive direction from
a, in the case that F c(a) is a closed curve.

Proposition 1.1. There exists an open and dense setV ⊂ M such that property
P is verified forf |V i.e. all periodic points inV have the same number of
periodic points in the connected component ofWc(x), betweenx andf (x).

Proof. The metric induced by the Riemannian metric on the leaves of F c will
be denoted dc.

The lengths of the curves Cxf (x) are bounded away from 0, and as f is Axiom
A there exists κ such that dc(p, q) > κ , if p and q are periodic points in the
same leaf of F c. Then, there exists m ∈ N such that

m = min{n ∈ N : Wc(x) has exactly n periodic points in Cxf (x)}.
Let p a periodic point verifying that the number of periodic points in Cpf (p) ism.

We claim that there is an open neighborhood U of Cpf (p) such that for all
periodic point x in U the number of periodic points in Cxf (x) is m.

If not, there exists a sequence of periodic points pn → p such that the number
of periodic points in Cpnf (pn) is greater than m, so there exist more than m limit
points in Cpf (p). Since these limit points must be periodic, this contradicts our
assumption.

Therefore, there exists a curve included in a dense leaf of central foliation in
U . So, if we saturate U by the central foliation we have an open and dense set
such that any periodic point q in it has exactly m periodic points in Cqf (q). �

Let us recall that there exists a finite number of attractors (repellers) whose
basin of attraction (repulsion) are open since f is Axiom A.

Here are some elementary properties of attractor basic sets.
LetA denote an attractor basic set of the spectral decomposition of f . Notice

thatA �= M because f can not be an Anosov diffeomorphism. There is no loss
of generality if we consider that A is connected.
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Lemma 1.1. Dim(Ws(x)) = n− 1,∀x ∈ A.

Proof. We have assumed that dim(Esφ) = n − 2, then as f is C1-close to f1

we have that dim(Ws(x)) = n− 1 or dim(Ws(x)) = n− 2 for all x ∈ �(f ).
Let x ∈ A ∩ per(f ), where per(f ) is the set of f -periodic points.
Suppose that dim(Ws(x)) = n− 2.
Since A is an attractor, Wu(x) ⊂ A; hence Fcloc(x) ⊂ Wu(x) ⊂ A. The set

A is closed and f -invariant so there exists x ′ ∈ Fc(x) ∩A ∩ per(f ).
But dim(Ws(x ′)) = n − 1 since dim(Ws(x)) = n − 2. It follows that there

exist two periodic points of different indices in A, which is impossible. �

Lemma 1.2. For every closed curveO in F c there exists a periodic point
p ∈ A ∩ O.

Proof. Since O is closed, Ws(O) is dense in M and Ws(A) is an open set,
there exist y in Ws(O) ∩Ws(A) and y ′ ∈ Wss(y) ∩ O such that y ′ ∈ Ws(A).

As y ′ ∈ O, y ′ ∈ Ws(p) for a periodic point p ∈ O. Then p ∈ A ∩ O. �
Let K = maxx∈M length(Cxf (x)). K is finite because M is compact and the

map g : M → R such that every x ∈ M is mapped into the length of Cxf (x) is
continuous.

The previous lemma asserts that in every segment γ of central closed curve
with length(γ ) ≥ K , there exists a periodic point p ∈ γ ∩A.

Corollary 1.1. Every leaf ofF c intersectsA.

Proof. Let γ ⊂ F c with length(γ ) ≥ K . Since

{Fcf (x)|Fcf (x) is a closed set} is dense in M,

we can choose arcs γn such that γn are included in closed leaves ofF c, γn → γ ,
and length(γn) ≥ K . Then, there exists a sequence (pn) such that pn ∈ A∩γn,
and any of its limit points p ∈ γ ∩A. �

Lemma 1.3. In every leaf ofF c
f there exists at least one point outside ofWs(A).
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Proof. If Fcf (x) is closed, by Lemma 1.2 we have that there exists a periodic
pointp ∈ A∩Fcf (x) and by Lemma 1.1 dim(Ws(p)) = n−1. The hyperbolicity
off implies that there exists a periodic point q ∈ Fcf (x) such that dim(Ws(q)) =
n − 2, hence q ∈ � where � is a basic set of f , � �= A. So we proved the
claim in the case that Fcf (x) is closed.

In the case that C0 = Fcf (x) is a future-dense curve, this is, if f (x) > x in
the chosen orientation, then Wc+(x) = {y ∈ Wc(x)/y ≥ x} is dense, and if
f (x) < x then Wc−(x), with the obvious definition, is dense.

Clearly we have that C0 ∩Ws(A) �= ∅.
We only need to show thatC0 is not included inWs(A), i.e. C0∩∂(Ws(A)) �=

∅.
Suppose that for every y in Cxf (x), we have that y ∈ Ws(A). There exists an

open and nondense set U , such that A ⊂ U , f (U) ⊂ U and Cxf (x) ⊂ U ; then
if C0 intersects U , C0 would be included in U in the future. This contradicts the
nondensity of U , so there exists y ∈ Cxf (x) such that y /∈ Ws(A).

It still remains to prove the claim in the case that C = Fcf (x) is any curve.
Recall that K = maxx∈M length(Cxf (x)).
Suppose that there exists a curve γ ⊂ Fcf (x) such that γ ⊂ Ws(A) and

length(γ ) ≥ K + 1.
Then there exists an open set V , V ⊂ Ws(A) and γ ⊂ V . There exists y ∈ V

such that Wc(y) is dense in M , and Wc(y) ∩ V has length greater or equal than
K . This gives the existence of a fundamental domain inWc(y)∩V , and then in
Ws(A). This contradicts the previous case. �

Note that we have proved that every leaf of the central foliation “goes away”
from the basin of attraction of any attractor.

Lemma 1.4. No curveγ , γ included inFcf (x) for anyx, satisfiesγ ⊂ A.

Proof. Suppose the statement is false, i.e. there exists γ ⊂ Wc
loc(x) such that

γ ⊂ A. Since γ ⊂ A ⊂ Ws(A), then the negative iterates of γ are included
in A and the length of them grow exponentially.

Let z ∈ α(x) then z ∈ A and by the proof of Lemma 1.3Wc(z) has to intersect
∂(Ws(A)), but Wc(z) ⊂ A ⊂ Ws(A), which yields a contradiction. �

All the above lemmas admit versions for repeller basic sets and the proofs are
analogous. In fact, if � is a repeller basic set, then for x ∈ �, Dim(Ws(x)) =
n − 2, every leaf of F c

f intersects �, in every leaf of F c
f there exists a point

outside of Wu(�), and no γ included in Fcf (x) satisfies γ ⊂ �.
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2 Properties of the projection along the central foliation

In this section, we will introduce some maps which are important from the
technical point of view.

Definition 2.1. Let SA : Ws(A) → ∂Ws(A) be a map such that, for every x
in the basin of the attractorA, SA(x) is the nearest point in its central leaf in the
positive direction verifying that it is not in the basin of attraction of A.

Definition 2.2. Let S̃A : Ws(A) → ∂Ws(A) be the map analogous to SA, but
in the negative direction of the central foliation .

Definition 2.3. Let S : A → ∂Ws(A) be the restriction of SA to A and
S̃ : A → ∂Ws(A) the restriction of S̃A to A.

Lemma (1.3) makes the preceding definitions possible.

Let W̃ c(x) denote the connected component ofWc(x)∩Ws(A)which contains
x.

Let l : A → R , l(x) = length(CxS(x)).

Lemma 2.1. l is lower semicontinuous.

Proof. Since CxS(x) −{S(x)} ⊂ Ws(A) andWs(A) is an open set, there exists
a neighborhood V such that CxS(x) − {S(x)} ⊂ V ⊂ Ws(A).
The central foliation is aC1- lamination becausef isC1-close to the time one map
of an Anosov flow (see [7]), hence for all ε > 0 there exists a neighborhood Ux
of x such that if y ∈ Ux then the curveCyy′ included inF c(y)with length(Cyy′) =
l(x) − ε is included in V , and hence in Ws(A). Then l(y) ≥ l(x) − ε which
proves that l is a semicontinuous map. �

Since l : A → R is semicontinuous, the set R of points of continuity of l is a
residual set. Let � : M × R≥0 → M such that �(x, l) = z, if z ∈ Wc(x), z is
in the positive direction of Wc(x) and length(Cxz ) = l. � is a continuous map
then

S(x) = �(x, l(x))

is continuous over R.
Without loss of generality we can assume that R is a residual set of continuity

for both S and S̃.
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Analogously there exists a residual set Q in Ws(A) such that Q is a set of
continuity for SA and S̃A.

Following, we prove some properties of the map S. They are verified by S̃ and
the proofs are analogous.

Lemma 2.2. S(R) is f -invariant.

Proof. Let x ∈ R, y = S(x). For all z ∈ Cxy − {y}, we have that z ∈ Ws(A),
f (z) ∈ Wc(f (x)) and f (z) ∈ Ws(A). From f (y) ∈ ∂Ws(A) it follows that
f (y) = S(f (x)). Replacing f by f −1 we conclude that

f (S(R)) = S(R). �

Lemma 2.3. For all y ∈ S(R), dim(Ws(y)) = n− 2.

Proof. Let y = S(x) with x ∈ A; since dim(Wss(y)) = n − 2 and
dim(Wuu(y)) = 1, dim(Ws(y)) = n − 1 or n − 2, but by Lemma (1.1) if
z ∈ Cxy − {y} then z ∈ Ws(x). Then

Wc
ε (y) = {z ∈ Wc(y) such that dc(z, y) < ε}

can not be included in Ws(y) and we can assert that dim(Ws(y)) = n− 2. �

Lemma 2.4. The set of periodic points inA \ R is nowhere dense inA.

Proof. In order to prove the lemma it is enough to prove:
Let (pn)n∈N be a sequence of periodic points such thatS is not continuous at

pn andpn → x. ThenS is not continuous atx.
Let qn = S(pn).
Since pn is a point of discontinuity, there exist α > 0 and (rnk ) ⊂ A such that
limk→∞ rnk = pn and

length(C
rnk
S(rnk )

) > length(C
pn
S(pn)

)+ α

and for any ε with 0 < ε < α
2 there exist (snk ) ⊂ R such that limk→∞ snk = pn

and
length(C

snk
S(snk )

) ≥ length(C
rnk
S(rnk )

)− ε > length(C
pn
S(pn)

).
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It follows that there exists a periodic limit point of S(snk ), q
′
n, in Wc(pn).

Both qn and q ′
n are in Wc(pn) ∩ S(R), are periodic and

dim(Ws(qn)) = dim(Ws(q ′
n)) = n− 2.

Since qn and q ′
n are in the same closed leaf of F c, it follows that there exists a

periodic point p′
n, such that p′

n ∈ Cqnq ′
n

and dim(Ws(p′
n)) = n− 1.

Suppose, contrary to our claim, that S is continuous at x.
From pn → x we conclude that qn → S(x) by the continuity of S at x.
Besides q ′

n → S(x) because there exist (snk ) ⊂ R such that limk→∞ snk = pn
and limk→∞ S(snk ) = q ′

n. Letting a convenient subsequence k(n), we can assert
that

lim
n→∞ snk(n) = x and lim

n→∞ S(snk(n)) = S(x)

by the continuity of S at x. This gives q ′
n → S(x).

Then dist (qn, q ′
n) → 0 when n → ∞ and dc(qn, q ′

n) → 0 when n → ∞.
But dc(qn, q ′

n) > min{dc(p′
n, q

′
n), d

c(pn, q
′
n)} and this leads to a contradiction

because p′
n and q ′

n (or pn and q ′
n ) are in different basic sets because they have

different indices.
We have proved that S is not continuous at x.

p

q

p’

q’

n

n

n

n

x

S(x)

Figure 1

�
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Observe that as a consequence we have that for all x ∈ A there exists a
sequence of periodic points (pn)n∈N ⊂ R such that pn → x.

Lemma 2.5. S(R) is transitive andS(R) ⊆ �(f ).

Proof. Since F c is continuous, the set of periodic points is dense in R and
S(p) is periodic if p is periodic, then the set of periodic points is dense in S(R),
hence

S(R) ⊆ �(f ).

Analogously the image of a dense orbit is dense in S(R). �

Corollary 2.1. From the above properties we conclude thatS(R) is included
in �, a basic set of the spectral decomposition off .

Lemma 2.6. S(Ws(x)) ⊂ Ws(S(x)).

Proof. Let x ∈ A, y ∈ Ws(x) ∩ A. Suppose that S(y) /∈ Ws(S(x)).
Since S(y) ∈ Fcs(x) there exists z = Ws(S(y)) ∩ Wc(x). We have that
∀w ∈ ∂(Ws(A)),Ws(w) ⊂ ∂(Ws(A)), thenWs(S(x)) ⊂ ∂(Ws(A)) ∀x ∈ A,
and z ∈ ∂(Ws(A)), but this contradicts the definition of S. �

Lemma 2.7. If x is a point of continuity ofS, then all the points inWs(x)∩A
are continuity points ofS.

Proof. Let x be a point of continuity of S, y ∈ Ws
loc(x) ∩A. We first prove

that y is a continuity point of S.
Let {yn}n∈N ⊂ A, such that limn→∞ yn = y. There existsxn = Ws

loc(yn)∩Wu(x)

and yn ∈ Ws(xn). By continuity of the stable foliation, we have limn→∞ xn = x,
and by continuity of S at x we conclude that limn→∞ S(xn) = S(x).
From yn ∈ Ws(xn), and the above lemma, it follows that S(yn) ∈ Ws(S(xn)),
hence S(yn) = Ws

loc(S(xn)) ∩Wc(yn).
By the continuity of Ws and Wc we have that:

lim
n→∞W

s
locS(xn) = Ws

locS(x) and lim
n→∞W

c(yn) = Wc(y);
hence

lim
n→∞ S(yn) = Ws

locS(x) ∩Wc(y) = S(y).
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We have proved that ∀y ∈ Ws
loc(x) ∩A, S is continuous at y i.e. S|Ws

loc(y)∩A is
continuous.
Now, if z ∈ Ws(x) ∩A there is N > 0 such that f N(z) ∈ Ws

loc(f
N(x)) ∩A

and the previous argument still applies. �

Remark. Note that Lemmas (2.6) and (2.7) are verified not only by S and S̃
but also by SA and S̃A. The proofs are analogous.

Lemma 2.8. If x ∈ A, thenx is a point of continuity ofS if and only ifx is a
point of continuity ofSA.

Proof. We only have to prove that if x ∈ A is a point of continuity of S then
it is a continuity point of SA.
Let y be a point close to x, then y ′ = Wu

loc(x)∩Ws
loc(y) is a point inA such that

S(y ′) is close to S(x) and

SA(y) = Ws(S(y ′)) ∩Wc(y) is close to SA(y
′) = S(y ′).

Hence SA(y) is close to SA(x) = S(x). �

Proposition 2.1. If f satisfies propertyP then for every periodic pointp, S is
continuous atp.

Proof. Let k denote the number of periodic points in Cxf (x), for all periodic
point x ∈ A. Suppose x is a periodic discontinuity point of S, then we have a
sequence (xn)n∈N of periodic points of continuity such that limn→∞ xn = x and
length(C

xn
S(xn)

) > length(CxS(x))+ α, with α > 0.
For every xn, there exist k periodic points x1

n < . . . < xkn in Cxnf (xn), ordered by
the chosen orientation.
Since limn→∞Wc(xn) = Wc(x) in compact sets, there exist xi , limit point of
xin in Wc(x), and xi must be periodic. Since the number of periodic points in
C
xn
f (xn)

and in Cxf (x) is the same, then there exists only a limit point of xin, i.e.
limn→∞ xin = xi .
In particular limn→∞ x1

n = x1, and this gives limn→∞ S(xn) = S(x); so
length(C

xn
S(xn)

) < length(CxS(x))+ α if n is big enough, which is absurd.
We have proved that S is continuous at every periodic point. �
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Lemma 2.9. Let� be a basic set andx ∈ �.

1. If dim(Ws(x)) = n− 1 then there is a finite number of points of� in the
connected component ofWc(x) ∩Ws(�) that containsx.

2. If dim(Ws(x)) = n− 2 then there is a finite number of points of� in the
connected component ofWc(x) ∩Wu(�) that containsx.

Proof. We will prove just the first statement.
Suppose that it is false. Then we can choose {xi} in � ∩Ws(�) ∩Wc(x), such
that x1 < x2 < . . . < xl < . . . in the given orientation of Wc(x). There exists
k > 0 such that f −1|Wc

k (x)
"expands", ∀x ∈ A. Then there exists n1 ∈ N

verifying that length(f −n1(Cxx1
)) > k, for all n ≥ n1. There exists n2 ∈ N such

that length(f −n2(Cx1
x2
)) > k, for all n ≥ n2. Let l0 such that kl0 > K+1, where

K = maxx∈M length(Cxf (x)). We continue in this way obtaining n3, . . . , nl0 .
Let N = max{n1, . . . , nl0}, then

length(f −N(Cxxl0 )) > kl0 > K + 1

Hence, as in the proof of Lemma 1.3 we conclude that there existsp ∈ f −N(Cxxl0 )
such that p ∈ ∂Ws(�) and therefore f N(p) ∈ ∂Ws(�) and f N(p) ∈ Cxxl0

⊆
Ws(�); which is a contradiction.
We have actually proved that there are no more than [K+1

k
] points of � in the

connected component of Ws(�) ∩Wc(x). �

3 Continuity of the map S.

Let us first prove the next lemma.

Lemma 3.1. Letx be a continuity point ofSA andS̃A, (i.e. x ∈ Q) then for all

y ∈ Ws(x), W̃ c(y) ∩A �= ∅.

Proof. Let ε > 0 be such that ∪x∈AWs
ε (x) ⊂ Ws(A).

Let x ∈ Q and Ux be a neighborhood of x such that for all y ∈ Ux we have

that length(W̃ c(y)) is close enough to length(W̃ c(x)), and let y ∈ Ux ∩Ws(x).

Since W̃ c(y) ⊂ Ws(A) and Ws(A) is open, there exists a neighborhood of

W̃ c(y), V , such that V ⊆ Ws(A) and V ⊂ ∪z∈Ux
(W̃ c(z)), in such a way that

if z ∈ V ∩A then length(W̃ c(z)) is close enough to length(W̃ c(y)).
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By the density of the closed leaves in the central foliation, there exists a curve ζ in
V , included in a closed leaf of the central foliation,O such that ζ = O∩Ws(A).

There exists a periodic point p such that p ∈ ζ ∩A, ζ = W̃ c(p) and since SA
and S̃A are continuous at y by the remark of Lemma 2.7, the lengths of W̃ c(y)

and ζ are close; and the lengths of the curves CpSA(p), and CS̃A(p)p are greater than
the ε previously defined.

Then, considering open sets Vn such that Vn → W̃ c(y), we can assert that
there exist curves ζn ⊂ Vn and periodic points pn ∈ ζn∩A such that the lengths

of W̃ c(y) and ζn are close; and the lengths of the curves CpnSA(pn), and CS̃A(pn)pn are
greater than ε.

Since ζn converges to W̃ c(y) and the distance of pn to ∂(Ws(A)) is bounded

away from 0, there exists a limit point p of pn such that p ∈ A ∩ W̃ c(y).
We have proved that if x ∈ Q then

∀y ∈ Ws
loc(x), ∃p ∈ W̃ c(y) ∩A.

Successive applications of this proceeding enables us to conclude that if x ∈ Q

∀y ∈ Ws(x), ∃p ∈ W̃ c(y) ∩A. �

Corollary 3.1. � = S(R) is a repeller set.

Proof. Let x ∈ Q ∩ A, z ∈ Ws(S(x)) and z′ = Wc(z) ∩ Wss(x). Since
z′ ∈ Ws(x)with x ∈ Q, then by Lemma 3.1 there exists q ∈ W̃ c(z′)∩A; hence
S(q) = z and z ∈ S(R). Then

∀x ∈ Q ∩A,Ws(S(x)) ⊆ S(R).

We have proved that S(R) is included in a basic set �. Now, if y = S(x) with
x ∈ A ∩Q then

Ws(y) ⊆ S(R) ⊆ S(R) ⊆ � ⊆ Ws(y).

It follows that S(R) is a basic set, and since it contains a stable manifold we have
that � = S(R) is a repeller set. �

Let us consider the following maps.
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Definition 3.1. Let�� : Wu(�) → ∂Wu(�) be a map such that, for everyx
in the basin of repulsion of�, ��(x) is the nearest point in its central leaf in
the positive direction verifying that it is not in the basin of repulsion of�.

Definition 3.2. Let �̃� : Wu(�) → ∂Wu(�) be the map analogous to��,
but in the negative direction of the central foliation.

Definition 3.3. Let � : � → ∂Wu(�) be the restriction of�� to � and
�̃ : � → ∂Wu(�) the restriction of�̃� to�.

The version of Lemma (1.3) for repeller sets makes the preceding definitions
possible.

As done after Definition 2.3 we define W̃ c(x) as the connected component of
Wc(x) ∩Wu(�) which contains x, if x ∈ Wu(�).

All the properties verified by S, S̃, SA and S̃A are verified by �, �̃, �� and
�̃� with the obvious modifications. In particular, there exists a residual set
� ⊂ Wu(�) such that �� and �̃� are continuous in �. Besides, if x ∈ � then
for all y ∈ Wu(x) we have that W̃ c(y) ∩ � �= ∅. Once again, if property P is
verified, all the periodic points of � are continuity points for all these maps.

Lemma 3.2. Letx ∈ �. Suppose thaty ∈ Wu(x). Then

W̃ c(y) ∩� �= ∅.

Proof. By the version of Lemma 3.1 for repeller sets and the continuity of ��
and �̃� restricted to�, we have that for all point x ∈ � there is a neighborhood

Ux such that if y ∈ Ux and z ∈ Wu
loc(y) then W̃ c(z) ∩� �= ∅.

Let
U = ∪x∈�Ux.

U is an open and dense set in Wu(�).
Let x ∈ � and suppose by contradiction that there exists y0 ∈ Wu(x) such that

W̃ c(y0) ∩� = ∅. In addition, there exists a neighborhood Vy0 of y0 such that if

z ∈ Vy0 ∩Wu(y0) then W̃ c(z) ∩� = ∅.
Since Wu(x) is dense in �, there exists v ∈ Wu(x) ∩ U, hence there exists
ṽ ∈ Wuu(x) ∩U.
Let C ⊆ Wuu(x) an arc such that is maximal with respect to the following

property: if y ∈ C, W̃ c(y) ∩� = ∅.
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Let r̃ be an extreme of C and r = W̃ c(r̃) ∩�.
If w ∈ C ∩Wuu

loc(r̃) then w = Wc(w)∩Wuu
loc(r) exists and verifies that W̃ c(w)∩

� = ∅; so we can define

Wu+(r) = connected component of {y ∈ Wu(r)|W̃ c(y) ∩� = ∅}
such that Wu+(r) ∩Wu

ε (r) �= ∅ for any ε > 0.
For all n ∈ N, f n(r) ∈ � andWu+(f n(r)) contains an arcDn ⊂ Wuu(f n(r))

whose length grows exponentially and it has an extreme in f n(r).
Let q ∈ ω(r), then Wu+(q) contains a “half plane” of Wu(q), i.e. with an
adequate orientation � on Wuu(q), we have

Wu+(q) = { v ∈ Wu(q)|Wc(v) ∩Wuu(q) � q}
We may also assume that f n(r) → q. Taking n and m big enough we obtain

that f n(r) and f m(r) are as close as we wish, then there is no possibility that
Ws(f n(r)) intersects Wu(f m(r)) in Wu+(f m(r)) because this point would be
in Wu+(f m(r)) ∩�.
In the same way there is no possibility that Ws(f m(r)) intersects Wu(f n(r)) in
Wu+(f n(r)).
It follows that if n and m are big enough then Ws(f n(r)) intersects Wu(f m(r))

in Wc(f m(r)) because the central-stable foliation locally separates M .
Then there are two possibilities:

1. There exist infinite many stable manifolds of f j (r), with j ∈ N. In this
case, there exist infinite many points in�∩Wc(f m(r)), but this contradicts
Lemma 2.9.

2. There exists a finite number of different stable manifolds of f j (r), with
j ∈ N.
We can suppose thatWs(f n(r)) is the same for all n ∈ N. Since f n(r) →
q, we have that q is periodic point; and since Wu+(q) ∩� = ∅, q is not
a continuity point of �� and �̃�, because it would contradict the version
of Lemma 3.1 for repeller sets.
On the other hand, the version of proposition 2.1 for repeller sets asserts
that all periodic points in � are continuity points of �, and �̃, and hence
of ��, and �̃�, which yields a contradiction.

We notice that it is at this point where Property P is used.

We have proved that for all x ∈ �, and for all y ∈ Wu(x)

W̃ c(y) ∩� �= ∅. �
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Proposition 3.1. S, S̃ : R → ∂Ws(A) can be extended continuously toA.

Proof. We will just prove the proposition for S.
We recall that there exists a residual set R such that S : R → ∂Ws(A) is
continuous.
If for all y ∈ A\R, and for all sequence (xn)n∈N ⊂ R with limn→∞ xn = y,
we have that there exists limn→∞ S(xn) and it is unique, then we can extend
continuously S, in such a way that S(y) = limn→∞ S(xn).

We will show that if (xn)n∈N ⊂ R with limn→∞ xn = y, and (wn)n∈N ⊂ R

with limn→∞wn = y, then every subsequence verifies that

lim
i→∞ S(xni ) = lim

j→∞ S(wnj ).

SinceWc(xn) → Wc(y) in compact sets, and the lengths of the curvesCxnS(xn) are
bounded, there exists y ′ = lim S(xni ), y

′ ∈ F c(y), y ′ ∈ �. Identical argument
shows that there exists y ′′ such that y ′′ = lim S(wnj ), y

′′ ∈ F c(y), and y ′′ ∈ �.

We suppose that y ′ �= y ′′ and there is no point in Cy
′
y′′ ∩ � but the extremes of

C
y′
y′′ , because in the connected component of Wc(y ′) ∩ � there is only a finite

number of points by Lemma 2.9.
In order to prove the proposition we need the next lemma:

Lemma 3.3. There exists ∈ A, r, r ′ ∈ �, andq such thatq ∈ �, where�
is a basic set� �= �; all these points are in the same leaf ofF c; r ∈ Csq , and
q ∈ Crr ′ .

Proof. Let s ∈ ω(y). There exist (mk)k∈N such that

lim
k→∞ lim

i→∞ f
mk(xni ) = s and lim

k→∞ lim
j→∞ f

mk(wnj ) = s.

Since the central foliation is continuous (in compact sets) and the length of the

curves C
fmk (xni )

S(f mk (xni ))
and C

fmk (wnj )

S(f mk (wnj ))
are bounded, there exist

lim
k→∞ f

mk(y ′) = r and lim
k→∞ f

mk(y ′′) = r ′,

with r, r ′ ∈ �, r, r ′ ∈ F c(s) and r ∈ Csr ′ .
Since length(CzS(z)) ≤ K + 1 for all z ∈ A (see the proof of Lemma 1.3) and

S(f (z)) = f (S(z)) we have that f m(CzS(z)) = C
fm(z)

f m(S(z)) for all m ∈ N, and

therefore f mk(Cy
′
y′′) → Crr ′ .
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Since Cy
′
y′′ is not included in � by the version of Lemma 1.4 for repeller sets,

there exists z ∈ Cy′
y′′ such that z /∈ �. There existsu ∈ �(f ) such that z ∈ Ws(u),

with u ∈ �, where � is a basic set � �= �. It follows that ω(z) = ω(u), hence
ω(z) ⊆ �.
Since f mk(Cy

′
y′′) → Crr ′ , there exists a point q ∈ Crr ′ ∩ω(z), therefore q ∈ Crr ′ ∩�

and the lemma is proved. �
Let us continue with the proof of Proposition 3.1.
Let s, r, q and r ′ be as in the Lemma 3.3.
Since s ∈ A, there exists a sequence (zn)n∈N such that zn ∈ A, zn is a

continuity point of S and S̃ , zn → s and S(zn) → r ′.
Let n0 be big enough in order to have

α = Wu(s) ∩Ws(zn0), and β = Wu(q) ∩Ws(zn0)

close to s and q respectively. It follows that α and β are in the same leaf of the
central foliation. Let

ρ = Wu(r) ∩Wc(α).

SinceWu(r) has dimension 2, there exists a curve C, such that C is the connected
component of Wc(ρ) ∩Wu(�).

Zn0

S Zn( )0

α

β

r

s

q

r

ρ

Figure 2

Since α ∈ A and β is such that β ∈ Wu(�) where � is a basic set such that
q ∈ � with � �= �, α and β are not in C. Hence C ⊂ Cαβ .
From Lemma 3.2 we have that there exists x ∈ C ∩ �. But x ∈ Ws(zn0) ⊆
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Ws(A) and it yields to a contradiction because there is no points inWs(A)∩�.
Then y ′ and y ′′ coincide, and S is continuous at y. �

Corollary 3.2. S (or its continuous extension):A → � is onto.

Proof. We have that

� = S(R) ⊆ S(A) = S(A)

The last equality holds since S is continuous, then S(A) is a compact set. �

4 Existence of a repelling topological hypersurface

Proposition 4.1. � is a topological hypersurface.

Proof. Since S (or its extension) is onto, for every k-periodic point y ∈ � there
exists x ∈ A, k-periodic such that S(x) = y. Let us denote �(y) = S(Wu(x)).

Since Wu(x) ⊂ A, then �(y) ⊂ �, and �(y) is a curve in F cu(y) = Wu(y).
The curve is f k invariant and y belongs to it.

We claim that any point inWu(y)∩� has to be in �(y), if y is a periodic point
in �.

Let r ∈ �(y). Since Ws(y) is dense in �, there exists z ∈ Wu(y) ∩Ws(y)

such that du(z, r) < ε/2 where du is the restriction of the Riemannian metric of
M to the leaves of Fu and ε verifies that ∪x∈�Wu

ε (x) ⊂ Wu(�).
Suppose that z /∈ �(y), then there existsq ∈ Wc(z)∩�(y) such thatdc(z, q) < ε.
Since z ∈ Ws(y) there exist (nj )j∈N such that

lim
j→∞ nj = ∞ and lim

j→∞ f
nj (z) = y.

Since
lim
j→∞ f

nj (Czq) ⊆ Fc(y), and lim
j→∞ f

nj (Czq)

is not included inWu(�), there exists y ′ ∈ ∂(Wu(�))∩Wc(y) such that�(y) =
y ′, therefore there exists y ′′ close to y ′, such that �(f nj (z)) = y ′′ with y ′′ ∈
C
f
nj (z)

f
nj (q)

because y is a continuity point of �.

Then f −nj (y ′′) ∈ Czq ∩ ∂(Wu(�)), but dc(f −nj (y ′′), q) < ε so f −nj (y ′′) must

Bull Braz Math Soc, Vol. 33, No. 1, 2002



APPROXIMATION OF TIME ONE MAP OF ANOSOV FLOWS 95

be in Wu(�) which is a contradiction.
We have proved that if Uε = ∪r∈�(y)Wc

ε (r) then

Uε ∩Ws(y) ⊂ �(y). (1)

Suppose that there exists w ∈ Wu(y) such that w /∈ �(y). Then there exists n ∈
N such thatf −n(w) ∈ Uε\�(y). Besides, there exists δ such thatB(f −n(w), δ)∩
�(y) = ∅, and B(f −n(w), δ) ∩Wu(y) ⊂ Uε , but there is no point of Ws(y) in
B(f −n(w), δ) by (1), which contradicts the density of Ws(y). Then, we have
proved that all the points in � ∩Wu(y) must be in �(y).

For all x ∈ � there exists a periodic point z ∈ � close to x. Let

�(x) = (∪w∈�(z)Ws
loc(w)) ∩Wu(x).

We have that �(x) is a curve in Wu(x) ∩ �. We claim that every point of
Wu(x) ∩� has to be in �(x).

Suppose, contrary to our claim that there were a point v ∈ � ∩Wu(x), such
that v /∈ �(x) then ṽ = Ws

loc(v) ∩Wu(z) would be a point in � ∩Wu(z), such
that ṽ /∈ �(z), which is impossible.

We have proved that ∀x ∈ � there is a unique curve �x ⊂ Wu(x) ∩�. Then
Dx = ∪z∈�xWs

loc(z) is a local hypersurface of �. Let Vε = ∪r∈DxWc
ε (r), then

Vε ∩� must be included in the local hypersurface Dx .
Hence � is a topological hypersurface. �

5 End of the proof of the Theorem

Proposition 5.1. The Anosov flowφ is conjugated to a suspension.

Proof. The topological hypersurface � is compact, f -invariant and f |� is
hyperbolic. If x ∈ �, f (x) ∈ � then there exists z ∈ Wc(x) such that z ∈ �,
and Cxz ∩� = ∅.

By the version of Corollary 1.1 for repeller sets {Fcf (x)}x∈� is topologically
transversal to �.

Recall that as f is C1 close to f1, where f1(x) = φ(x, 1) there exists a
homeomorphism h : M → M close to the identity such that h(x) = x ′, and
Fcf (x´) is C1-close to Fcf1

(x) in compact sets. Moreover

h(F cf1
(x)) = Fcf (x

′).
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Since h−1(�) is a topological hypersurface we have that {Fcf1
(x)}x∈h−1(�) is

topologically transversal to h−1(�), i.e. ∀x ∈ M there exists T > 0 such that
φ(x, T ) ∩ h−1(�) “transversally”.

Then φ, may be reparametrized in such a way that it becomes a suspension,
i.e. the Anosov flow is conjugated to a suspension which is an Anosov flow, too.

Remark 5.1. The flow φ is conjugate to a suspension of an Anosov diffeomor-
phism and the hypersurface � is homeomorphic to the torus T n−1.

We have that f |� is a hyperbolic diffeomorphism. If� were a smooth mani-
fold, f |� would be an Anosov codimension one diffeomorphism and we could
apply Frank´s result to conclude that f |� is topologically conjugated to a hyper-
bolic toral automorphism (See [4]). Although � is just a topological manifold,
the Frank´s proof remains valid but, in this case we need to use a C0 version of
the classical theorem of Haefliger. This can be found in Chapter 7 of [6].

Let A : T n−1 → T n−1 be an Anosov diffeomorphism such that f |� is conju-
gated to A|T n−1, then if ψ is the suspension of A, φ is conjugated to ψ . Hence
the flow φ is conjugated to a suspension of an Anosov diffeomorphism.

The above observation completes the proof of the Theorem.
LetM a riemannian, compact surface with negative curvature. It is well known

that geodesic flows can not be conjugated to a suspension flow. Then Corollary 1
holds.
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