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Asymptotic expansions of
logarithmic-exponential functions

Rémi Soufflet

Abstract. The aim of this paper is to study the asymptotic expansion of real func-
tions which are finite compositions of globally subanalytic maps with the exponential
function and the logarithmic function. This is done thanks to a preparation theorem in
the spirit of those that exist for analytic functions (Weierstrass) or subanalytic functions
(Parusiski). The main consequence is that logarithmic-exponential functions admit
convergent asymptotic expansion in the scale of real power functions. We also deduce
a partial answer to a conjecture of van den Dries and Miller.
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1 Introduction
Before stating the definitions, let us briefly introduce and motivate this study.

Theglobally subanalytic functionare real functions whose graphs are glob-
ally subanalytic subsets of the Euclidian spaRésn € N. From the works of
Lojasiewicz [Lo], Gabrielov [Ga] and Hironaka [Hi], we know that these func-
tions have very nice geometric properties. Moreover, they can be reduced to
some “normal forms” on suitable subanalytic cell decompositions. This re-
sult of Parugiski [Pa] (see also the preparation theorem of Lion and Rolin
[LR1]) allows us to understand the asymptotic behaviour of such functions.
If f:(x,y) —~ f(x,y)is a globally subanalytic function &®" x R, then it
admits finitely many reduced forms of the following type:

y—0@)l7  bx) )

fay) =1y —0@I7TAxV <01(X),---,ck(x), ; T
@)y =00
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where the functions aof € R” are globally subanalyticV is an analytic unit
(i.e. an analytic function with values in a compact subs@0pf-oo[) andp, g
are integers. Hence we get an “expansion’foin terms of functions such as
ly — 68(x)|"a(x) wherer € Q and#, a are globally subanalytic.

In the case of one variable, this implies that globally subanalytic functions
admit convergentasymptotic expansions in terms of/¢ wherep, € Z and
Pn —> +00.

A natural question is then: does there exist similar results for functions coming
from more general problems of real analytic geometry such as polynomial or
analytic differential equations? Such a question is very difficult even in the case
of a polynomial vector field in the plane: it leads to the asymptotic study of the
Poincaré return map and to Hilbert's 16th problem.

In order to simplify the problem, one can first consider elementary solutions of
some Pfaffian equations in addition to the subanalytic functions. As illustrated
in the two following examples, the real power functions and the exponential
function appear naturally.

Examplel. Considerthe Pfaffian 1-forms, = yydx —xdy withy € R;\Q.
The sef{(x, x”) | x > 0} is an integral curve ab,, = 0 but is not subanalytic at
the origin ofR2.

Example 2. The set{(x,exp(—1/x)) | x > 0} is an integral curve of the
Pfaffian equation®dy — ydx = 0. But this is not a subanalytic set at the origin
of R2.

This leads us to consider other classes of functions: the classfahctions
and the class ologarithmic-exponential functionsThe first one, introduced
by Miller [Mil1] and Tougeron [To], contains the globally subanalytic functions
and the real power functions but does not contain the exponential function. The
second one contains the-functions and the functions exp and log. From the
works of Miller [Mi1] in one hand, and the works of van den Dries, Macintyre and
Marker [DMM1] in the other hand, we know that these functions are definable
in someo-minimal structures This property gives them an intrinsic geometric
interest.

The x*-functions admit a preparation theorem [LR1] which is close to the
preparation theorem for subanalytic functions. Hence we can easily derive
asymptotic expansions of -functions of one variable. There also exists a prepa-
ration theorem for logarithmic-exponential functions. Unfortunately, this result
of Lion and Rolin [LR1] does not give any precise asymptotic informations. Our
aim in this paper is to give a preparation theorem for this class of functions which
allows us to derive theonvergencef some asymptotic expansions in certain
scales of real functions such as the scale of real power functions.

Bull Braz Math Soc, Vol. 33, No. 1, 2002



ASYMPTOTIC EXPANSIONS OF LOGARITHMIC-EXPONENTIAL FUNCTIONS 127

2 Notations and results

We denote byP; the real projective line with the standard analytic structure
coming from the standard analytic structur&of\We will consideR" as a subset

of P} embedded iP] and consequently, the subsetsRf will be considered

as subsets of the real n-dimensional torus. We suppose that the functions such
as log or power functions are defined Brand equal 0 out of0, +-oo[. A real

power mafd” : R?” — R?isthe data op real numbersy, ..., y,) andis defined
naturally byl" (x1, ..., x,) = (x{*, ..., xZ”). An elementaryog-expmapis a map

f = (f1,.... fp) : R" = R” such that each coordinaje is a coordinater; or

the logarithm of a coordinate or the exponential of a coordinate.

A subsetX of R" is aglobally semianalytic sétit is defined, in a neighbour-
hood of any point oP}, by a finite number of equalities and inequalities satisfied
by analytic functions. Aglobally subanalytic seif R" is the image of a globally
semianalytic set oR" x R™ by the canonical projection frofR” x R™ to R".

Afunction f : R" — Ris said to be globally subanalytic functioifits graph
is a globally subanalytic subset B x R. We will note S, the collection of
all such functions oR” and® = J,.,S,. Amap f : R* — R? is aglobally
subanalytic mayif its coordinate functions are globally subanalytic functions.

Let us recall the definition of aa-minimal structurgsee [Dr] and [DM] for
more informations).

Definition 2.1. Let 2, be a collection of subsets B* and = .y 2. We
say thatl is an o-minimal structure if:

1. %, is a boolean subalgebra &f(R") for all n € N.

2. The real semialgebraic subsets of the spdR&s: € N, belong to2l.

3. The elements &f are stable under linear projection and cartesian product.
4. A subset oR which belongs tal is a finite union of points and intervals.

If 2 is an o-minimal structure, a subserins called &(-setor a sedefinable
in 2. A A-map fromR" to R” is a map whose graph is definableIn

To each o-minimal structurdf corresponds the class 8ffunctions. Such a
class is stable under the elementary algebraic operat@amnd-, under composi-
tion and contains the semialgebraic functions. Conversely, given a class of real
functions which is stable unde¥, - and the composition, which contains the
semialgebraic functions, we can define a structure by taking the graphs of all the
functions of the class. If this structure is o-minimal then we say that this class
of functions is als@m-minimal In the sequel, we always deal with o-minimal
structures or o-minimal classes of functions.
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From Gabrielov's Theorem [Ga], the globally subanalytic sets form an
o-minimal structure. When we add the graphs of the functions x*, A > 0,
or the graph of the exponential function, we still obtain o-minimal structures. Let
us first define the class of-functions and of logarithmic-exponential functions
introduced in the preceding paragraph.

Definition 2.2. A x*-map f : R* — RP? is finite composition of globally
subanalytic maps and power mapsxAfunctionis a x*-map fromR” to R.

Definition 2.3. A 8¢&-map f : R — RP? is a finite composition of globally
subanalytic maps with elementdg-expmaps. ALE-functionis a {&-map
fromR" to R.

The result of Miller can then be stated as follows.

Theorem 2.1 ([Mi1]). The class of*-functions is o-minimal. The correspond-
ing o-minimal structure iS(RR).

The o-minimality of the class d#€-functions is due to van den Dries, Mac-
intyre and Marker (following the works of Wilkie [Wi]).

Theorem 2.2 ((DMM1]). The class of2€¢-functions is o-minimal. The corre-
sponding o-minimal structure i8 (R, exp)-

As we are interested in the asymptotic behaviour of functions definable in
some o-minimal structure, we introduce the following definition.

Definition 2.4. Let?l be a collection of functions oR”, n € N. A functiong is
said to be2(-comparablevith the functiongy, ..., g, on a setk if g has no root
on E and if there exists dl-functionG such thatG (g4, ..., g,)/g| has values
in a compact subset ¢0, +ool.

In this paper, most of the asymptotic studies will be made at the origin. Thus
we define the iterates of the function log as follows.

Definition 2.5. We putfq(x) = x. We define by induction the functiéni > 0,
in the following way: for allx, £;(x) = log|£;_1(x)|. We say that; is thei-th
iterate of the functiorog.

We now define two scales of real functions:

Rational scale. LetEq be the collection of functions of the forfif;— [£; (x) |7,
where they;’s are rational and equal to 0 except for a finite number of indices
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Real scale. Let G be the collection of functions of the forfr;>, [¢; (x)|*,
where theay;’s are real and equal to 0 except for a finite number of indices

In [LR1] the class of¢-functionsis introduced: in the case of one vari-
able, they are finite compositions of globally subanalytic maps and the function
log. There exists a preparation theorem for such functions [LR1] which implies
that they admit convergent asymptotic expansions in the scgleAs we deal
with o-minimal structures containing(RR ), we first introduce another class

n

of functions admitting convergent asymptotic expansions in the §gale
Definition 2.6. Let f be a function fronR” x R toR.

1. The functionf is a ¥X-function of type0 in the variabley if f(x, y) =
F(a(x), y) whereF is ax*-function andz = (ay, ..., a,) is aLE-map of
R".

2. The functionf is a ¥X-function of type- in the variabley if

f(x’ y) = F(fl(xv y)v cees fm(—x’ )7), |ngm+l(x, )’), cey Iogfm+€(xa )’))

where F is a x*-function and thef;’s are LX-functions of type less or
equaltor — 1in y.

Following the ideas of [LR1], we can prove a preparation theorem for the
class of¢X-functions. It is based on a preparation theorem for the class of
x*-functions. This is the following result.

Theorem 2.3. Let f be alX-function ofR"*. There exists a finite partition of
R" x R into ¥&-cylinders such that, on each cylind€ér f admits the following
expression:

fic(xe, y) = yg°. " A) V(91(x), oy @i (x), ma(x, y), ..., me(x, y))

whereyo = |y — 6o(x)], y1 = [10g yo — O1(x)|,..., y, = |l0gy,_1 — 6,(x)[, the
functionsy; being€-functions oR” identically equal td or comparable with
yi—1 foralli. The functiom is a¥E-function, the functiong; are E-fonctions
with values in—1, 1], them ;’s have values ifi—1, 1] and are of the form

aé af
mj(x»y)=y0 “‘yrraj(-x)
where thes;’s are ¢@-functions. The exponenis ande; are real. At last,V

is an analytic unit in a neighbourhood pf1, 1]**¢. The functionf is said to
bereducedn the system of variablgsy, ..., y,).
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As the proof of Theorem 2.3 is very close to the proof of the preparation
theorem fork2l-functions [LR1], we do not give the details here. The following
corollary will be used in the sequel.

Corollary 2.1. Let f be akX-function on]0, 1[. Thenf admits a convergent
asymptotic expansion at the origin in the scélg. Moreover, the monomials
satisfy:

1. There existV € N such that, for everyn = [, |¢;(x)|*% of the expan-
sionoff,o; =0ifi > N.

2. The exponents af in the monomials can accumulate only4aso.

The main result of this paper is the following preparation theorenifdr
functions of one variable. It was annouced in [SQ].

Theorem 2.4. Let f : R — R be a%E-function. There exists a partition &
into finitely many intervalg, such that, or,,, f admits the following expression:

£ =2(0). [ [31)" V(2a(x), ..o 2p(x), ma(x), ... my (x))

i=1
where
1. y; = exph;, h; being akE-function of one variable for all andé; € R.

2. The functiory is a £X-function.

k
3. my(x) = yil...y;x?ak(x), a; being a ¥X-function for all k¥ and
(¥, ...,af) € R*\ {0}). The functions;; are ¥Xx-functions for all ;.
Moreover, the functions,, andz; have values in—1, 1].

4. Forall i, for all finite family (g, ..., g») of RX-functions, the functiom; is
not x*-comparable with the functions, ..., Yi—_1, Yi+1, «--» Vs, &1 --s &h-

5. V is an analytic unit in a neighbourhood pf 1, 1179,

Remark. The condition 4 in the statement of the theorem implies that the
functionsy; admit very different asymptotic behaviours on each intehaithe
partition. In particular, a function

ak Otk
mi(x) =yt yst ag(x)

can not be comparable with a real powewrasn /.

Bull Braz Math Soc, Vol. 33, No. 1, 2002



ASYMPTOTIC EXPANSIONS OF LOGARITHMIC-EXPONENTIAL FUNCTIONS 131

The main practicle consequence of Theorem 2.4 is the following result.

Theorem 2.5. Let f :]0, e[~ R be akE-function. Assumg admits a formal
asymptotic expansion in the scabe. Then this expansion is convergent.

Some results in the same spirit appear in [DMM2] with proofs based on Model
Theory. Here, we only use arguments from analytic geometry. As a direct
application of Theorem 2.5, we can prove the following result on the integrals
of x*-functions.

Proposition 2.1. There exist a*-function f :]0, 1[>— R and twox*-functions
o, ¥ :]0, 1[— [0, 1] such that the function

¥(x)
Flx) = / £, y)dy
@(x)

does not belong to the class®€-functions.

This negative result completes the study of the integraig dtinctions made
in [So]. In particular, it shows that there are strong differencies between the
integrals of globally subanalytic functions amd-functions. Indeed, as it is
shown in [LR2], the integration of a globally subanalytic function on the fibers
of a globally subanalytic function leads to a real function definable in the o-
minimal class of¢€-functions. Proposition 2.1 shows that real ramifications
of the globally subanalytic functions imply a great change of behaviour under
integration.

The paper is organized as follows. In the next section, we give the proof
of Theorem 2.4. In section 4, we derive two consequences: Theorem 2.5 and
Proposition 2.1. As an other application, the last section is devoted to a par-
tial answer to a conjecture of van den Dries and Miller concerning o-minimal
structures lying betwee® (RR ) andS (R exp)-

3 Preparation Theorem for XE€-functions of one variable

The proof of Theorem 2.4 is based on tt@mbinatorialidea of the proof of
Proposition 3 in [LR1]. Indeed, we proceed by induction on the exponential
complexity of the functionf and we add the condition of non-comparability.
Let us first recall some definitions.

Thetreeof a ¥E-function on aninterval. Let f beE-function ofR. Itis a
finite composition ofc*-maps with the functions exp and log. To all expression
of f on an interval, we associatetr@e which describes the way the functions
log and exp are composed.
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a. If fisalX-function, we associate to it a vertex.
b. If f has the following form:

f = F(exphy, ..., exphy, loggs, ..., l0g g, z1, ..., 2;)

where ther;’s and theg;'s arelE-functions, they’s areX-functions andr is
ax*-function, we notef; the tree associated tg and7; the tree associated to
h;. Then we associate tf the following tree:

Ty Ty Ty T,

The full edges correspond to the exponentials and the dotted edges correspond

to the logarithms. This way, we get a tree whose vertices correspond ¥&the
functions which appear in the expressionffthe dotted edges to the function
log and the full edges to the function exp.

A tree (corresponding to an expressionfobn an interval) isimpleif its full
egdes form a tree with the sarmaot as the entire tree. We will also say théat
admits asimple expressian

Now, we associate three integers to the expressighari an interval:

1. If fis a¥X-function, we say that itexponential chains empty. If f
has the formf = F(expha, ..., exphy, log gy, ...,l100g,, 71, ..., 2;), IS
exponential chain is the union of the §ekphy, ..., exph,} with the ex-
ponential chains of thi;’s and theg;’s. Theexponential numbes(f) is
the cardinal of the exponential chain ff

2. Thedepthof a vertex is the length of the edge which joins the root of the
tree and the vertex. Aaximal vertexs a vertex of maximal depth among

those whose ascending edge is dotted and at least one of the descending
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edgeisfull. The numbeér(f) is equal to the depth of the maximal vertices
or 0 if there are no such vertices.

3. The number(f) is equal to the total number of full edges which descend
from the maximal vertices or O if there are no such vertices.

Let us now turn to the proof of the theorem.

Proof. We split the proof in two steps. In the first one, we show that we can
always find a partition oR into finitely many intervals such that admits a
simple expression on each interval. In the second step, we show how to get the
reduced form off using the preparation theorem for-functions.

In the sequel, we will use several times the following result [Wi],[DMM1]:
if C is ax*-subset oR" and if g is alE-map fromR to R then the inverse
image ofC by g, g71(C), is a finite union of points and intervals.

Step 1. We proceed by induction on the 3-tuplés 4, ¢) ordered with the
lexicographic order.

— If e = 0 then f is a¥X-function and its tree is clearly simple. Af= 0
thenc = 0 and the tree of is also simple.

— Let! be aninterval on whiclf admits an expression given by the 3-tuple
(e, h, c). We can assume that> 0. Let us consider a maximal vert&x
of the tree associated {o. It corresponds to aub-expressionf f of the
form:

1(x) =109 T (x) =109 F(y1(x), ..., ys (%), 21(x), ..., 2(x))

where F(vi, ..., vs, u1, ..., u,) is a x*-function of R**", thez;’s are
LX-functions,y; = exph; and the trees associated to th& are simple.

We can always assume that exps not a sub-expression ofany exp k > 1.
Let us prepare the functiof with respect to the variablg (see [Pa] or [LR1]).
The spac®**" splits into finitely many*-cylinders on whichF is reduced. Let
C be one of these cylinders. From the remark of the beginning of the proof, the
LE-subset

D={xel| (i), .. yx),ux),. . zx)eC)

is a finite union of intervals (sub-intervals ¢j. Let J be one these intervals.
There are two possibilities for the-cylinder C:
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a. There exists two positive constants<Ok < K and ax*-functiond such
that the following inequalities hold ofi:

kO(vo, ..., Vs, U1, ..., ;) <v1 < KO(vo, ..., U, U1, ..., U;).

This means thab; is comparable with9 on C. It implies thaty; must be
comparable with the functiof(ys, ..., y,, 21, ..., ) on the interval/. Then it
comes:

exphy = 6. exp(hy — log|0])

where the functiork; — log|0| has values in a compact subsetRaf We can
then replace each expression éxpy the functiond. exp(h1 — log|6]) in the
expression off. As the exponential function is analytic in a neighbourhood of
the closure of the image @f; — log|f|, we get a new expression gfwith an
exponential number strictly less thaton J. We can then use the hypothesis of
induction to conclude.

b. The functionF admits a reduction off without translation term. It comes:
F(ylv sy yS7 Zl! ceey Zr) = y;_‘lA(y27 ey y_Yy le ceey Zr)U
whereA is ax*-function andU is ax*-unit. The expression afbecomes:

t =oh1 + |OgA(y2, s Vs» 205 oees Zr) + Iog U.

As the functionU is ax”-unit, we can assume that it has valueglif2, 2].Hence
logU is ax*-function in the variablesy, ..., y;, z1, ..., z-. Consequently, we
have:

— If ¢ > 1 then we describeg with a new expressioff such that(f) < c.
— If ¢ = 1 then we describeg with a new expressioff such thati( f) < h.
In the two preceding cases, we use the hypothesis of induction to conclude.

We have then proved that, up to a finite decompositio ofto intervals, we
can always get a simple expressionfofThis ends the first step.

Step 2. From the first step, we can assume that there exists a partitRmdd
finitely many intervald on which f can be written:

f = F()’l, ceey Ys, L1y oees Zr) (*)

where F is a x*-function, y; = exph;, the h;’s being LE-functions and the
z;'s beingx-functions. The 3-tuple of is then of the form(e, 0, 0) and we
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have 0< s < e. We proceed now by induction an Let P, be the following
proposition:

P.: Let f, = F,(y1, ..., ¥s, 21, ..., Zr) be a finite family ofR€-functions with
exponential numbers less or equakton 1, the F,’s beingx*-functions for all

n. There exists a finite partition df into sub-intervals (possibly reduced to a
point) on which thef,’s are reduced as stated in the theorem.

Thecasee = 0. The f,’s areX-functions and it suffices to apply Theorem
2.3.

Step of induction. We assume that > 0 and we proceed by induction on the
integers < e.

s = 1. We havef, = F,(y1, 21, ..., 2r) WhereF, (v, u, ..., u,) is ax*-function
of RY™" for all n. Let us simultaneously prepare tlifg’s with respect to the
variablev;. We get a finite partition oR**” into x*-cylinders on which the,’s
are reduced. Le€ be one of these cylinders. lIts inverse image by the map
x = (y1(x), z1(x), ..., z-(x)) is afinite union of intervals. Lef be one of these
intervals.

There are two cases:

a. There exists a finite family afxX-functions(wy, ..., w,) and ax’-function
6 such thaty; is comparable witld (wy, ..., w,) onJ. As in the casa of
the first step, we deduce that tlfgs have exponential numbers strictly
less thare on J. Hence we apply the hypothesis of inductiBpn_ ; to
conclude.

b. There is no such*-comparability relation. Thus the functioR, are
reduced to the form:

Fo(y1, 210 oor 20) = Y10 An (220 oves 2) U

This gives the required expression for the functigis

Let us pass to the step of induction on the integeie notey = (yz, ..., y;)
andz = (zs, ..., z-) in such a way thaf,, = F,(y1, y, z). We prepare the&,’s
with respect to the variablg. We get a finite partition oR**" into x*-cylinders
C to which corresponds a finite partition pfinto sub-intervals/. We argue as
inthe case = 1. Each time we get&'-comparability relation o’ betweeny,
and some other variablég, w), w being alX-map, we can apply the hypothesis
of inductionP,_;. Consequently, we can assume that there is no such relation
of comparability. It comes:

Fo(y1, 3, 2) = 12405, DU, 2), Y1 oo 919
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where thed,’s arex”-functions and thé/,’s arex*-units of the form

it it by, 2) be(y, Z))
ar(y,2)" Tal(y. ) oyt T

Vn (Cl(_)_}’ Z)a ey Cm(.)_}a Z)v

In this expression, the,’s, a;'s andb;'s are x*-functions such that the,’s

and the quotients;” /a; andb;/y;’ have values in—1, 1]. The functionsV,

are analytic units. We apply the hypothesis of induction (on the integt
the family of functions of the variableg, z) constituted by thed,’s and the
functionscy, a; andb;. It comes:

An(3,2) = wa, () [ [ 5: )% Va, @a(x), ..o (x), ma(x), ..., mg (X)),
i=1

(¥, 2) = we, (x) Hy;(x)”tk Ve (x), ooy ttp(x), ma(x), ..., mgy(x)),
i=1

aj(yv Z) = wa_/(x) l—[}_}i(x)gij Va_/ (Ml(.x), sy up(x)’ ml(-x)’ sy mq(x))’
i=1

by, 2) = wi, () [ [ 50 Vi, (uax), oyt (), ma0), oy 1 (0)).
i=1

The functionsy; areZE-functions of the fornmy; = exph; and we can assume
one more time that there is no-comparability relation between and they;’s.

Moreover, in the preceding expressions, the functiogs w,,, w,; andwy,
are &X-functions and the analytic units have valuegip2, 2]. The functions
¢x having values if—1, 1], the functionsw,, ]_[j:l yi(x)vf are bounded (with
values in[—2, 2]). If we put

| L
& = e, (x) i]‘!yl-oc)

we can write the functiong, under the following form:
Ck = ‘7{,’/((5](7 ul(x)7 AR u[?(x)v ml(x)7 ceey mq(x))

where thef/Ck’s are analytic units in a neighbourhood pf1, 1]**7*4. The
functionsc, have the same form as the functiansor m;.
Moreover, we have:

Wy . _
Y1 7 iTT = =0/ v
aj(;;’ 2) = Wy, (x)ylf' il:!yi(X) g Vajl(ul(x), v Up(X), my(x), ..., my(x))

Bull Braz Math Soc, Vol. 33, No. 1, 2002



ASYMPTOTIC EXPANSIONS OF LOGARITHMIC-EXPONENTIAL FUNCTIONS 137

wherew,; is the inverse ofu,,. The function

aj = wa,<x>y 1_[y1<x)4

has values iri—1, 1] and, as before, it comes:

!
aj(y,z)

= Vo, (@5, ug(x), ooy up(x), ma(x), ..., my(x))

where thef/a_, 's are analytic units in a neighbourhood[efl, 1]**7*+4. A similar
argument allows us to write the quotielbt,s/yf-" under the form:
b] (y’ Z)

I
Y1

= Vi, (b, ur(x), ey up(x), my(x), ..., my(x)).

If we renameu 1, ..., 1 OF myy1, ..., myy, the functions?,, a; andb;, we
get:

Fu @) =wa, () y1(0)*8 [ ] 5 )%V, (ua x), ...

i=1
. up+p’(x)a my(x), ..., mq+q’(x))~
This ends the induction anand show thaP, is true. O

From Theorem 2.4 we can derive the following corollary. It will be used in
the last section.

Corollary 3.1. Letg(x) = V(z1(x), ..., 2,(x), m1(x), ..., my(x)) be a reduced
LE&-function on an intervall =]0, ¢[. We haveg = g1 + g» Whereg; is a
LX-function andgz = ), .\ k. Where the sum} _, _ |A,| uniformly converges
on [ and theh,’s are ¥E-functions of the following form:

B (x) = @, (x) y1(x)L...y5 ()% .

In such an expression, thg’s are LX-functions and«f, ..., o)) € R* \ {0}.
Moreover, for alln € N, we havei, 1(x) = o(h,(x)) asx — 0. In particular,
the set of the functions, is totally ordered and has a greatest elemagtt 0.
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Proof. Let us write the functiorV under the form
V(X]_,.-., Xp,Yl,...,Yq) = Z alxilxg)y:(lyq/q

I=(i1,erips j1sees jq) ENPFE

The components functions, of V are of the form:

k
mic(x) = y1007 .y () ().
We define the set& = {I € NPT | Vk = 1l...q, Y ,_, jeyf = O} andF =
NP+4 \ E, and the corresponding analytic functions

Vi(X,Y) = Za,xf Y/
IeE

Vo(X,Y) = Za,X"Yf.

leF

The functionsg; andg, are then given by

g1(x) = Vi(za(x), ..., mq (x))
g2(x) = Va(z1(x), ..., mq (x)).

The functiong, is a¥X-function and we can writg, = ) t, where the sum
> nen Il is uniformly convergent o and ther,’s are of the form:

12 (X) = b () y1 (X)L ...y, ()% .

In this expression, thé,’s are ¢X-functions andef, ...,@!) € R*\ {0}. As
>, It.] uniformly converges, we can group by packs thé& for which
the exponentsuy, ..., ) are the same. It comes:

g2(x) = Y hy(x)
neN

where . )
hu(x) = a, (x)y1(X)*L...ys(x)% .

The functionsa, are ¥X-functions and, ifn # m then («f, ..., o)) #
(@], ...,a’). Moreover we have

;Icanoh”(x) =0.

Indeed, these functions are bounded and if we assumé thet — h # 0 as
x — 0, we deduce that, is comparable with the constant functibn Hence
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there exists & E-functiond, having value in a compact sub-intervall6f 4o/,
such that, for alk € I:

() y1(X)“1 .35 ()% = hO(x).

As(d], ..., a") € R*\{0}, we deduce that one of the functionss x*-comparable
with the functionsy,, k # i anda, which gives a contradiction. Now we have

hy (x)
B (x)

where(By, ..., Bs) # (0, ..., 0). Thus, by a similar argument, the limit at zero of
the quotient:,,/ h,, is infinite or equal to zero. This proves that thés are totally
ordered. The fact that there exists a greatest element among them is olwious.

= a(x)y1(x)? .y (x)P

4 Consequences

The first consequence of the preparation theorenifésfunctions deals with
their asymptotic expansions in the scélg. Theorem 2.5 follows directly from
Corollary 3.1 of the previous section, that is why we omit its proof.

The second consequence deals with the integrafs-fnctions on the fibers of
ax*-function. From [So], we know that for almost all real exponents occuring in
the definition of ac*-function, its integral on the fibers ofxd-function belongs
to the class ofkX-functions. In order to prove Proposition 2.1, it suffices to
produce a*-function f of R? such that its integral admitshvergentasymptotic
expansion in the scalég. We argue as follows.

Proof. We fix an analytic function of two variable$ (X, ¥Y) = 3_, ; a; ; X'Y/

where we assume that the coefficientsare positive and such thit, ; a; ;2'*/
converges. In particulacl, 1) is a polyradius of convergence ibfl For all
y € R*, we define

X
fy(-xv }’) =V (ya y_y>

if (x, y) belongs to ther*-cylinder
¢, = {012y > 7},

and f, (x, y) = 0 if not. We denoteb,, the map(x, y) — (y,x/y"). Then
fy =V oW, when restricted to the cylind&r,. Under this form, the function
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f, is a bounded and reduced-function on thex*-cylinderC, . Its expression
is the following:

frx,y) = Zai,jxjyi_yj- 1)
iJ

Let us now choos¢ > 0 andirrational. To get the functionF,, we integrate
f, onthe cylinder

Coy = {(x,y) €10, 12 y > x%}.

As L

1
5, < 3 we haveCy, C C,. We can then denote

1
Fy(x)=| 1 fy(x.y)dy.

The functionF, is bounded orR and equal to zero out g0, 1[. It is then not
difficult to get the following expression:

Fy(x) = Za,,x xz_xzy. (@)

Under this form, we clearly see thatifis very well approximated by the rational
numbers, then the expansion Bf in the scaleCr will be divergent. As it is
always possible to find such an irrationalthe proof is completed. O

Remark. In the above proof, we make explicit the appearence of so-called
small divisors It appears that the expression of the integrated fundtionan

be given in term of compensators of “Ecalle-Roussarie”. Recall that such a
compensator is a function of the forgs (x) = (x* — x#)/(a — B) wherex and

B are non negative. Then it comes:

1 .
Fy() = =523 Jaiwtey g (o). (3)
iJj

5 On aconjecture of van den Driesand Miller

In this last section, we give a partial answer to the following conjecture of van
den Dries and Miller [DM].
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Conjecture. There is no o-minimal structure lying strictly betwegRR ) and
S(Ran,exp)-
From Theorem 2.4 and its consequences, we can prove the following:

Proposition 5.1. Let 2 be an o-minimal structure such tha®(RR) c
A & S(Ranexp)- Then any one variable function definable?ins definable in
SRR).

In order to prove the conjecture, one would need a multidimensional version
of Proposition 5.1. Unfortunately, the multidimensional version of Theorem 2.4
is not so accurate.

Let us begin with the proof of Corollary 2.1.

Proof. From Theorem 2.3, we can assume tfias reduced orj0, 1[: for all
x €]0, 1],
f(x) =axg’..x"V(my(x), ..., mp(x)).
In such an expression, € R, theq;’s are real and
J j

mj(x) = xg0..x%

where thea/’s are real exponents. Moreover we haxe= |x — g, x1 =
|logxg — 61],..., x» = |logx,_1 — 6], thed;’s being real constants. A% is
comparable withx on 10, 1[, it comesfy = 0. By induction, we easily deduce
thatall thep;’'s are equalto 0. Henoe = |¢;(x)| foralli. As them ;’s have values

in [—1, 1], we have necessarityé > 0 for all j. Letus putm(x) = xg°...x%.
The functionsn andm ; are functions of the scalég and we have:

f =am@x). Y amix).myx)".
I=(i1,....ip)

Thus we can write

f) =" aymy(x)

neN

where the sun} _, _\ la,m,(x)| is uniformly convergent and the,’s are func-
tions of &g and are ordered: for all € N,

lim mn+1(x) _
x=0p my, ()C)
Now, the exponent af in any monomialn,, is of the form:
Qo + i10g + ... + ipal
wherei; € Nandthexg's are non negative. Thus these exponents can accumulate
only at+oo. O
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The proof of Proposition 5.1 is then the following.

Proof. Let ¥ be an o-minimal structure such thatRR) C % ¢ S(Ruy.exp)-

From the Theorem of Miller [Mi2], we know that, eith€f is polynomially
bounded, or it contains the graph of the exponential function exg® @, exp)

is the smallest o-minimal structure containing the globally subanalytic sets and
the graph of the exponential, it follows that is necessarily polynomially

bounded.

Consider &I-function f : R — R and assume that it is bounded @ e[ for
sufficiently smalle > O (this can always be assumed up to an inversion) and not
identically equal to zero (ultimately at zero). Assume that, for at @' < e,
the functionfijo . is not ax*-function (i.e. f is not agermof x*-function near
zero). We will now derive a contradiction.

As?isasubstructure G (R exp), f is also &E-function. Up to areduction
of ¢, we can prepar¢ on]0, [ to the following form:

£ =20). [ [ 3@V (21(x), ..o 2p(x). ma(x), ... my (x)).

i=1

From [Mi2], either f is identically equal to zero of0, [, or there exist
co, Mo € R, cg # 0, such thatf (x) = cox*® +o(x*°) asx — 0. As f is bounded
near zero, we haviy > 0. From the reduced expression fafwe get:

z(x). l_[ Vi ()% = cox™ + o(x™).
i=1
And thus '
1 ° N

W.z(x>.'1_£yl-<x> = co+o(D).
In this equalityco + 0(1) is alE-function which has value in a compact subset
of 10, +oo[ on]0, e[ (one more time up to a reduction ©f. If one of thes;’s is
not equal to zero, we can express the correspongih@s the product of a*-
function in the other variables g+ o0(1). Thisimplies thay; is x*-comparable

with ax*-function in the other variables and this is a contradiction. Hénee0
for all i and we can apply Corollary 3.1 to get the following expressioryfor

f=g+zmn
neN

whereg is a boundedX-function and then,,'s areXE-functions satisfying the
conclusion of the corollary.
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From the identityf (x) — cox™® = o(x*?), 1o > 0, we can apply again the The-
orem of Miller for the2(-functionx +— o(x*?). If this function is not ultimately
identically equal to zero, it comes:

fx) = f(x) — cox™ = c1x™ + o(x™)

wherec; # 0 andi; > Ag. If we continue this process inductively, we can get
3 different cases.

a. After a finite number of steps, we get a function which is identically zero
on]o, &'[, ¢ > 0.

b. We get an increasing sequence of positive real numtgysy such that
Ai — 400 asi — +oo.

c. We get an increasing sequence of positive real numfeysy such that
Ai — A asi — +oowith A > 0.

Casea. Inthis case, we havg(x) = Zf;o c;x* on aintervall0, ¢'[. Hence
£ is x*-function near zero and this is a contradiction.

Caseb. Assume that there exists € N such thatc*o = o(mq(x)) asx — O.
If we make an expansion gf at the “order'my, it comes:

f) =) cx + o(mo(x))

= go(x) +mo(x) + o(mo(x))

wheregy is the functiong truncated at the ordet,. This is still aX-function
and the preceding equalities impliy that is a ¥X-function too, which is a
contradicion. Thus, necessarily the functiag (and also then,’s, n > 0)

is smaller than any positive power ofat zero: for alli, mg(x) = o(x*).
Identifying the two preceding expansions at all orderasi — +oo, we deduce
thatg(x) = Y, cix™. As g is alX-function and no function log appear in its
expansiong is in fact ax*-function. Consequentlyf — g belongs tQ®( and:

(f = &) x) = mo(x) + o(mo(x)).

If mq is not ultimately identically equal to zero, this equation implies thatg is
not equivalent to a positive power.oat the origin and this contradicts the Growth
dichotomy Theorem of Miller. Hencei is equal to zero on a certai, n[,

n > 0, andf = g on this interval which gives one more time a contradiction.

Bull Braz Math Soc, Vol. 33, No. 1, 2002



144 REMI SOUFFLET

Case c. We use Corollary 2.1 to show that this case is not possible. Like
in the preceding case, if there exiggssuch thatx™o = o(mo(x)) we get a
contradiction. Hence we haveng(x) = o(x*) for all i asx — 0. As the
powers ofx in the expansion of do not accumulate af, there existg > 0 such
that, if x®€1(x)*...¢,(x)* andx?¢y(x)*...¢,,(x)Pr are two monomials of,
then we have

|fo — a0l > 1. (*)

Let us choosé, such thaii;,.1 — 1| < n/2. If we truncate the expansion of
f atthe orden,,.1, we get:

io+1
F@) = )" x4 oo
i=0
= 2(x) + o(x*o*1)
whereg is the functiong truncated at the ordey;, 1. This is alX-function.

The preceding equality implies that there are two monomials in the expansion
of g such that(xx) is not satisfied. This contradiction completes the prodf]
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