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Abstract. The aim of this paper is to study the asymptotic expansion of real func-
tions which are finite compositions of globally subanalytic maps with the exponential
function and the logarithmic function. This is done thanks to a preparation theorem in
the spirit of those that exist for analytic functions (Weierstrass) or subanalytic functions
(Parusinśki). The main consequence is that logarithmic-exponential functions admit
convergent asymptotic expansion in the scale of real power functions. We also deduce
a partial answer to a conjecture of van den Dries and Miller.
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1 Introduction

Before stating the definitions, let us briefly introduce and motivate this study.

Theglobally subanalytic functionsare real functions whose graphs are glob-
ally subanalytic subsets of the Euclidian spacesRn, n ∈ N. From the works of
Lojasiewicz [Lo], Gabrielov [Ga] and Hironaka [Hi], we know that these func-
tions have very nice geometric properties. Moreover, they can be reduced to
some “normal forms” on suitable subanalytic cell decompositions. This re-
sult of Parusi´nski [Pa] (see also the preparation theorem of Lion and Rolin
[LR1]) allows us to understand the asymptotic behaviour of such functions.
If f : (x, y) �→ f (x, y) is a globally subanalytic function ofRn × R, then it
admits finitely many reduced forms of the following type:

f (x, y) = |y − θ(x)| pq A(x)V
(
c1(x), ..., ck(x),

|y − θ(x)| 1
q

a(x)
,

b(x)

|y − θ(x)| 1
q

)
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where the functions ofx ∈ Rn are globally subanalytic,V is an analytic unit
(i.e. an analytic function with values in a compact subset of]0,+∞[) andp, q
are integers. Hence we get an “expansion” off in terms of functions such as
|y − θ(x)|ra(x) wherer ∈ Q andθ, a are globally subanalytic.

In the case of one variable, this implies that globally subanalytic functions
admit convergentasymptotic expansions in terms ofxpn/q wherepn ∈ Z and
pn → +∞.

A natural question is then: does there exist similar results for functions coming
from more general problems of real analytic geometry such as polynomial or
analytic differential equations? Such a question is very difficult even in the case
of a polynomial vector field in the plane: it leads to the asymptotic study of the
Poincaré return map and to Hilbert’s 16th problem.

In order to simplify the problem, one can first consider elementary solutions of
some Pfaffian equations in addition to the subanalytic functions. As illustrated
in the two following examples, the real power functions and the exponential
function appear naturally.

Example 1. Consider the Pfaffian 1-formsωγ = γydx−xdy with γ ∈ R+\Q.
The set{(x, xγ ) | x > 0} is an integral curve ofωγ = 0 but is not subanalytic at
the origin ofR2.

Example 2. The set{(x,exp(−1/x)) | x > 0} is an integral curve of the
Pfaffian equationx2dy − ydx = 0. But this is not a subanalytic set at the origin
of R2.

This leads us to consider other classes of functions: the class ofxλ-functions
and the class oflogarithmic-exponential functions. The first one, introduced
by Miller [Mi1] and Tougeron [To], contains the globally subanalytic functions
and the real power functions but does not contain the exponential function. The
second one contains thexλ-functions and the functions exp and log. From the
works of Miller [Mi1] in one hand, and the works of van den Dries, Macintyre and
Marker [DMM1] in the other hand, we know that these functions are definable
in someo-minimal structures. This property gives them an intrinsic geometric
interest.

The xλ-functions admit a preparation theorem [LR1] which is close to the
preparation theorem for subanalytic functions. Hence we can easily derive
asymptotic expansions ofxλ-functions of one variable. There also exists a prepa-
ration theorem for logarithmic-exponential functions. Unfortunately, this result
of Lion and Rolin [LR1] does not give any precise asymptotic informations. Our
aim in this paper is to give a preparation theorem for this class of functions which
allows us to derive theconvergenceof some asymptotic expansions in certain
scales of real functions such as the scale of real power functions.
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2 Notations and results

We denote byP1 the real projective line with the standard analytic structure
coming from the standard analytic structure ofR. We will considerRn as a subset
of Pn1 embedded inPn1 and consequently, the subsets ofRn will be considered
as subsets of the real n-dimensional torus. We suppose that the functions such
as log or power functions are defined onR and equal 0 out of]0,+∞[. A real
power map� : Rp → Rp is the data ofp real numbers(γ1, ..., γp) and is defined
naturally by�(x1, ..., xp) = (x

γ1
1 , ..., x

γp
p ). An elementarylog-exp-mapis a map

f = (f1, ..., fp) : Rn → Rp such that each coordinatefi is a coordinatexj or
the logarithm of a coordinate or the exponential of a coordinate.

A subsetX of Rn is aglobally semianalytic setif it is defined, in a neighbour-
hood of any point ofPn1, by a finite number of equalities and inequalities satisfied
by analytic functions. Aglobally subanalytic setof Rn is the image of a globally
semianalytic set ofRn × Rm by the canonical projection fromRn × Rm to Rn.

A functionf : Rn → R is said to be aglobally subanalytic functionif its graph
is a globally subanalytic subset ofRn × R. We will note�n the collection of
all such functions ofRn and� = ⋃

n≥0 �n. A mapf : Rn → Rp is aglobally
subanalytic mapif its coordinate functions are globally subanalytic functions.

Let us recall the definition of ano-minimal structure(see [Dr] and [DM] for
more informations).

Definition 2.1. Let �n be a collection of subsets ofRn and� = ⋃
n∈N �n. We

say that� is an o-minimal structure if:

1. �n is a boolean subalgebra ofP(Rn) for all n ∈ N.

2. The real semialgebraic subsets of the spacesRn, n ∈ N, belong to�.

3. The elements of� are stable under linear projection and cartesian product.

4. A subset ofR which belongs to� is a finite union of points and intervals.

If � is an o-minimal structure, a subset in� is called a�-setor a setdefinable
in �. A �-map fromRn to Rp is a map whose graph is definable in�.

To each o-minimal structure� corresponds the class of�-functions. Such a
class is stable under the elementary algebraic operation+ and·, under composi-
tion and contains the semialgebraic functions. Conversely, given a class of real
functions which is stable under+, · and the composition, which contains the
semialgebraic functions, we can define a structure by taking the graphs of all the
functions of the class. If this structure is o-minimal then we say that this class
of functions is alsoo-minimal. In the sequel, we always deal with o-minimal
structures or o-minimal classes of functions.
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From Gabrielov’s Theorem [Ga], the globally subanalytic sets form an
o-minimal structure. When we add the graphs of the functionsx �→ xλ, λ > 0,
or the graph of the exponential function, we still obtain o-minimal structures. Let
us first define the class ofxλ-functions and of logarithmic-exponential functions
introduced in the preceding paragraph.

Definition 2.2. A xλ-map f : Rn → Rp is finite composition of globally
subanalytic maps and power maps. Axλ-function is axλ-map fromRn to R.

Definition 2.3. A ��-mapf : Rn → Rp is a finite composition of globally
subanalytic maps with elementarylog-exp-maps. A��-function is a ��-map
from Rn to R.

The result of Miller can then be stated as follows.

Theorem 2.1 ([Mi1]). The class ofxλ-functions is o-minimal. The correspond-
ing o-minimal structure is�(RR

an).

The o-minimality of the class of��-functions is due to van den Dries, Mac-
intyre and Marker (following the works of Wilkie [Wi]).

Theorem 2.2 ([DMM1]). The class of��-functions is o-minimal. The corre-
sponding o-minimal structure is�(Ran,exp).

As we are interested in the asymptotic behaviour of functions definable in
some o-minimal structure, we introduce the following definition.

Definition 2.4. Let � be a collection of functions onRn, n ∈ N. A functiong is
said to be�-comparablewith the functionsg1, ..., gp on a setE if g has no root
onE and if there exists a�-functionG such that|G(g1, ..., gp)/g| has values
in a compact subset of]0,+∞[.

In this paper, most of the asymptotic studies will be made at the origin. Thus
we define the iterates of the function log as follows.

Definition 2.5. We put�0(x) = x. We define by induction the function�i , i > 0,
in the following way: for allx, �i(x) = log |�i−1(x)|. We say that�i is thei-th
iterate of the functionlog.

We now define two scales of real functions:

Rational scale. Let�Q be the collection of functions of the form
∏∞
i=0 |�i(x)|qi ,

where theqi ’s are rational and equal to 0 except for a finite number of indicesi.
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Real scale. Let �R be the collection of functions of the form
∏∞
i=0 |�i(x)|αi ,

where theαi ’s are real and equal to 0 except for a finite number of indicesi.

In [LR1] the class of��-functionsis introduced: in the case of one vari-
able, they are finite compositions of globally subanalytic maps and the function
log. There exists a preparation theorem for such functions [LR1] which implies
that they admit convergent asymptotic expansions in the scale�Q. As we deal
with o-minimal structures containing�(RR

an), we first introduce another class
of functions admitting convergent asymptotic expansions in the scale�R.

Definition 2.6. Letf be a function fromRn × R to R.

1. The functionf is a ��-functionof type0 in the variabley if f (x, y) =
F(a(x), y) whereF is axλ-function anda = (a1, ..., am) is a��-map of
Rn.

2. The functionf is a ��-function of typer in the variabley if

f (x, y) = F(f1(x, y), ..., fm(x, y), logfm+1(x, y), ..., logfm+�(x, y))

whereF is a xλ-function and thefi ’s are ��-functions of type less or
equal tor − 1 in y.

Following the ideas of [LR1], we can prove a preparation theorem for the
class of��-functions. It is based on a preparation theorem for the class of
xλ-functions. This is the following result.

Theorem 2.3. Letf be a��-function ofRn+1. There exists a finite partition of
Rn× R into ��-cylinders such that, on each cylinderC, f admits the following
expression:

f|C(x, y) = y
α0
0 ...y

αr
r A(x)V (ϕ1(x), ..., ϕk(x),m1(x, y), ..., m�(x, y))

wherey0 = |y − θ0(x)|, y1 = | logy0 − θ1(x)|,...,yr = | logyr−1 − θr(x)|, the
functionsθi being��-functions ofRn identically equal to0 or comparable with
yi−1 for all i. The functionA is a��-function, the functionsϕj are��-fonctions
with values in[−1,1], themj ’s have values in[−1,1] and are of the form

mj(x, y) = y
α
j
0

0 ...y
α
j
r
r aj (x)

where theaj ’s are ��-functions. The exponentsαi andαji are real. At last,V
is an analytic unit in a neighbourhood of[−1,1]k+�. The functionf is said to
bereducedin the system of variables(y0, ..., yr).
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As the proof of Theorem 2.3 is very close to the proof of the preparation
theorem for��-functions [LR1], we do not give the details here. The following
corollary will be used in the sequel.

Corollary 2.1. Let f be a��-function on]0,1[. Thenf admits a convergent
asymptotic expansion at the origin in the scale�R. Moreover, the monomials
satisfy:

1. There existsN ∈ N such that, for everym = ∏∞
i=0 |�i(x)|αi of the expan-

sion off , αi = 0 if i > N .

2. The exponents ofx in the monomials can accumulate only at+∞.

The main result of this paper is the following preparation theorem for��-
functions of one variable. It was annouced in [So].

Theorem 2.4. Letf : R → R be a��-function. There exists a partition ofR
into finitely many intervalsIn such that, onIn,f admits the following expression:

f (x) = z(x).

s∏
i=1

yi(x)
δi .V (z1(x), ..., zp(x),m1(x), ..., mq(x))

where

1. yi = exphi , hi being a��-function of one variable for alli andδi ∈ R.

2. The functionz is a ��-function.

3. mk(x) = y
αk1
1 ...y

αks
s ak(x), ak being a ��-function for all k and

(αk1, ..., α
k
s ) ∈ Rs \ {0}. The functionszj are ��-functions for allj .

Moreover, the functionsmk andzj have values in[−1,1].
4. For all i, for all finite family(g1, ..., gh) of ��-functions, the functionyi is

notxλ-comparable with the functionsy1, ..., yi−1, yi+1, ..., ys, g1, ..., gh.

5. V is an analytic unit in a neighbourhood of[−1,1]p+q .

Remark. The condition 4 in the statement of the theorem implies that the
functionsyi admit very different asymptotic behaviours on each intervalI of the
partition. In particular, a function

mk(x) = y
αk1
1 ...y

αks
s ak(x)

can not be comparable with a real power ofx on I .
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The main practicle consequence of Theorem 2.4 is the following result.

Theorem 2.5. Letf :]0, ε[→ R be a��-function. Assumef admits a formal
asymptotic expansion in the scale�R. Then this expansion is convergent.

Some results in the same spirit appear in [DMM2] with proofs based on Model
Theory. Here, we only use arguments from analytic geometry. As a direct
application of Theorem 2.5, we can prove the following result on the integrals
of xλ-functions.

Proposition 2.1. There exist axλ-functionf :]0,1[2→ R and twoxλ-functions
ϕ,ψ :]0,1[→ [0,1] such that the function

F(x) =
∫ ψ(x)

ϕ(x)

f (x, y)dy

does not belong to the class of��-functions.

This negative result completes the study of the integrals ofxλ-functions made
in [So]. In particular, it shows that there are strong differencies between the
integrals of globally subanalytic functions andxλ-functions. Indeed, as it is
shown in [LR2], the integration of a globally subanalytic function on the fibers
of a globally subanalytic function leads to a real function definable in the o-
minimal class of��-functions. Proposition 2.1 shows that real ramifications
of the globally subanalytic functions imply a great change of behaviour under
integration.

The paper is organized as follows. In the next section, we give the proof
of Theorem 2.4. In section 4, we derive two consequences: Theorem 2.5 and
Proposition 2.1. As an other application, the last section is devoted to a par-
tial answer to a conjecture of van den Dries and Miller concerning o-minimal
structures lying between�(RR

an) and�(Ran,exp).

3 Preparation Theorem for ��-functions of one variable

The proof of Theorem 2.4 is based on thecombinatorialidea of the proof of
Proposition 3 in [LR1]. Indeed, we proceed by induction on the exponential
complexity of the functionf and we add the condition of non-comparability.
Let us first recall some definitions.

The tree of a ��-function on an interval. Let f be��-function ofR. It is a
finite composition ofxλ-maps with the functions exp and log. To all expression
of f on an interval, we associate atreewhich describes the way the functions
log and exp are composed.

Bull Braz Math Soc, Vol. 33, No. 1, 2002
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a. If f is a��-function, we associate to it a vertex.

b. If f has the following form:

f = F(exph1, ...,exphs, logg1, ..., loggr, z1, ..., zt )

where thehi ’s and thegj ’s are��-functions, thezk ’s are��-functions andF is
a xλ-function, we noteTj the tree associated togj andT̃i the tree associated to
hi . Then we associate tof the following tree:

�� ��
���

���

The full edges correspond to the exponentials and the dotted edges correspond
to the logarithms. This way, we get a tree whose vertices correspond to the��-
functions which appear in the expression off , the dotted edges to the function
log and the full edges to the function exp.

A tree (corresponding to an expression off on an interval) issimpleif its full
egdes form a tree with the sameroot as the entire tree. We will also say thatf
admits asimple expression.

Now, we associate three integers to the expression off on an interval:

1. If f is a ��-function, we say that itsexponential chainis empty. Iff
has the formf = F(exph1, ...,exphs, logg1, ..., loggr, z1, ..., zt ), its
exponential chain is the union of the set{exph1, ...,exphs} with the ex-
ponential chains of thehi ’s and thegj ’s. Theexponential numbere(f ) is
the cardinal of the exponential chain off .

2. Thedepthof a vertex is the length of the edge which joins the root of the
tree and the vertex. Amaximal vertexis a vertex of maximal depth among
those whose ascending edge is dotted and at least one of the descending

Bull Braz Math Soc, Vol. 33, No. 1, 2002
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edge is full. The numberh(f ) is equal to the depth of the maximal vertices
or 0 if there are no such vertices.

3. The numberc(f ) is equal to the total number of full edges which descend
from the maximal vertices or 0 if there are no such vertices.

Let us now turn to the proof of the theorem.

Proof. We split the proof in two steps. In the first one, we show that we can
always find a partition ofR into finitely many intervals such thatf admits a
simple expression on each interval. In the second step, we show how to get the
reduced form off using the preparation theorem forxλ-functions.

In the sequel, we will use several times the following result [Wi],[DMM1]:
if C is axλ-subset ofRN and if g is a��-map fromR to RN then the inverse
image ofC by g, g−1(C), is a finite union of points and intervals.

Step 1. We proceed by induction on the 3-tuples(e, h, c) ordered with the
lexicographic order.

– If e = 0 thenf is a��-function and its tree is clearly simple. Ifh = 0
thenc = 0 and the tree off is also simple.

– LetI be an interval on whichf admits an expression given by the 3-tuple
(e, h, c). We can assume thatc > 0. Let us consider a maximal vertexV
of the tree associated tof . It corresponds to asub-expressionof f of the
form:

t (x) = logT (x) = logF(y1(x), ..., ys(x), z1(x), ..., zr(x))

where F(v1, ..., vs, u1, ..., ur) is a xλ-function of Rs+r , thezj ’s are
��-functions,yi = exphi and the trees associated to thehi ’s are simple.

We can always assume that exph1 is not a sub-expression of any exphk, k > 1.
Let us prepare the functionF with respect to the variablev1 (see [Pa] or [LR1]).
The spaceRs+r splits into finitely manyxλ-cylinders on whichF is reduced. Let
C̃ be one of these cylinders. From the remark of the beginning of the proof, the
��-subset

D = {x ∈ I | (y1(x), ..., ys(x), z1(x), ..., zr(x)) ∈ C̃}
is a finite union of intervals (sub-intervals ofI ). Let J be one these intervals.
There are two possibilities for thexλ-cylinderC:

Bull Braz Math Soc, Vol. 33, No. 1, 2002
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a. There exists two positive constants 0< k < K and axλ-functionθ such
that the following inequalities hold onC:

kθ(v2, ..., vs, u1, ..., ur) ≤ v1 ≤ Kθ(v2, ..., vs, u1, ..., ur).

This means thatv1 is comparable withθ on C. It implies thaty1 must be
comparable with the functionθ(y2, ..., ys, z1, ..., zr) on the intervalJ . Then it
comes:

exph1 = θ.exp(h1 − log |θ |)
where the functionh1 − log |θ | has values in a compact subset ofR. We can
then replace each expression exph1 by the functionθ.exp(h1 − log |θ |) in the
expression off . As the exponential function is analytic in a neighbourhood of
the closure of the image ofh1 − log |θ |, we get a new expression off with an
exponential number strictly less thane onJ . We can then use the hypothesis of
induction to conclude.

b. The functionF admits a reduction onC without translation term. It comes:

F(y1, ..., ys, z1, ..., zr) = y
α1
1 A(y2, ..., ys, z1, ..., zr)U

whereA is axλ-function andU is axλ-unit. The expression oft becomes:

t = α1h1 + logA(y2, ..., ys, z1, ..., zr)+ logU.

As the functionU is axλ-unit, we can assume that it has values in[1/2,2].Hence
logU is a xλ-function in the variablesy1, ..., ys, z1, ..., zr . Consequently, we
have:

– If c > 1 then we describesf with a new expressioñf such thatc(f̃ ) < c.

– If c = 1 then we describesf with a new expressioñf such thath(f̃ ) < h.

In the two preceding cases, we use the hypothesis of induction to conclude.
We have then proved that, up to a finite decomposition ofI into intervals, we
can always get a simple expression off . This ends the first step.

Step 2. From the first step, we can assume that there exists a partition ofR into
finitely many intervalsI on whichf can be written:

f = F(y1, ..., ys, z1, ..., zr) (*)

whereF is a xλ-function, yi = exphi , the hi ’s being ��-functions and the
zj ’s being��-functions. The 3-tuple off is then of the form(e,0,0) and we
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have 0≤ s ≤ e. We proceed now by induction one. Let Pe be the following
proposition:

Pe : Let fn = Fn(y1, ..., ys, z1, ..., zr) be a finite family of��-functions with
exponential numbers less or equal toe on I , theFn’s beingxλ-functions for all
n. There exists a finite partition ofI into sub-intervals (possibly reduced to a
point) on which thefn’s are reduced as stated in the theorem.

The case e = 0. Thefn’s are��-functions and it suffices to apply Theorem
2.3.

Step of induction. We assume thate > 0 and we proceed by induction on the
integers ≤ e.

s = 1. We havefn = Fn(y1, z1, ..., zr) whereFn(v1, u1, ..., ur) is axλ-function
of R1+r for all n. Let us simultaneously prepare theFn’s with respect to the
variablev1. We get a finite partition ofR1+r into xλ-cylinders on which theFn’s
are reduced. Let̃C be one of these cylinders. Its inverse image by the map
x �→ (y1(x), z1(x), ..., zr(x)) is a finite union of intervals. LetJ be one of these
intervals.

There are two cases:

a. There exists a finite family of��-functions(w1, ..., wp) and axλ-function
θ such thaty1 is comparable withθ(w1, ..., wp) onJ . As in the casea of
the first step, we deduce that thefn’s have exponential numbers strictly
less thane on J . Hence we apply the hypothesis of inductionPe−1 to
conclude.

b. There is no suchxλ-comparability relation. Thus the functionFn are
reduced to the form:

Fn(y1, z1, ..., zr) = y
αn0
1 An(z1, ..., zr)Un.

This gives the required expression for the functionsfn.

Let us pass to the step of induction on the integers. We noteȳ = (y2, ..., ys)

andz = (z1, ..., zr) in such a way thatfn = Fn(y1, ȳ, z). We prepare theFn’s
with respect to the variablev1. We get a finite partition ofRs+r into xλ-cylinders
C̃ to which corresponds a finite partition ofI into sub-intervalsJ . We argue as
in the cases = 1. Each time we get axλ-comparability relation onJ betweeny1
and some other variables(ȳ, w),w being a��-map, we can apply the hypothesis
of inductionPe−1. Consequently, we can assume that there is no such relation
of comparability. It comes:

Fn(y1, ȳ, z) = y
µn0
1 An(ȳ, z)Un((ȳ, z), y

µ1
1 , ..., y

µ�
1 )

Bull Braz Math Soc, Vol. 33, No. 1, 2002



136 RÉMI SOUFFLET

where theAn’s arexλ-functions and theUn’s arexλ-units of the form

Vn

(
c1(ȳ, z), ..., cm(ȳ, z),

y
µ1
1

a1(ȳ, z)
, ...,

y
µ�
1

a�(ȳ, z)
,
b1(ȳ, z)

y
µ1
1

, ...,
b�(ȳ, z)

y
µ�
1

)
.

In this expression, theck ’s, aj ’s and bj ’s are xλ-functions such that theck ’s
and the quotientsy

µj
1 /aj andbj/y

µj
1 have values in[−1,1]. The functionsVn

are analytic units. We apply the hypothesis of induction (on the integers) to
the family of functions of the variables(ȳ, z) constituted by theAn’s and the
functionsck, aj andbj . It comes:

An(ȳ, z) = wAn(x)

t∏
i=1

ȳi(x)
δni VAn(u1(x), ..., up(x),m1(x), ..., mq(x)),

ck(ȳ, z) = wck(x)

t∏
i=1

ȳi(x)
νki Vck (u1(x), ..., up(x),m1(x), ..., mq(x)),

aj (ȳ, z) = waj (x)

t∏
i=1

ȳi(x)
ζ
j
i Vaj (u1(x), ..., up(x),m1(x), ..., mq(x)),

bj (ȳ, z) = wbj (x)

t∏
i=1

ȳi(x)
ξ
j
i Vbj (u1(x), ..., up(x),m1(x), ..., mq(x)).

The functions̄yi are��-functions of the form̄yi = exph̄i and we can assume
one more time that there is noxλ-comparability relation betweeny1 and theȳi ’s.

Moreover, in the preceding expressions, the functionswAn,wck , waj andwbj
are��-functions and the analytic units have values in[1/2,2]. The functions
ck having values in[−1,1], the functionswck

∏t
i=1 ȳi(x)

νki are bounded (with
values in[−2,2]). If we put

c̃k = 1

2
wck(x)

t∏
i=1

ȳi(x)
νki ,

we can write the functionsck under the following form:

ck = Ṽck (c̃k, u1(x), ..., up(x),m1(x), ..., mq(x))

where theṼck ’s are analytic units in a neighbourhood of[−1,1]1+p+q . The
functionsc̃k have the same form as the functionsui ormi .

Moreover, we have:

y
µj
1

aj (ȳ, z)
= w̃aj (x)y

µj
1

t∏
i=1

ȳi(x)
−ζ ji V −1

aj
(u1(x), ..., up(x),m1(x), ..., mq(x))

Bull Braz Math Soc, Vol. 33, No. 1, 2002



ASYMPTOTIC EXPANSIONS OF LOGARITHMIC-EXPONENTIAL FUNCTIONS 137

wherew̃aj is the inverse ofwaj . The function

ãj = 1

2
w̃aj (x)y

µj
1

t∏
i=1

ȳi(x)
−ζ ji

has values in[−1,1] and, as before, it comes:

y
µj
1

aj (ȳ, z)
= Ṽaj (ãj , u1(x), ..., up(x),m1(x), ..., mq(x))

where theṼaj ’s are analytic units in a neighbourhood of[−1,1]1+p+q . A similar
argument allows us to write the quotientsbj/y

µj
1 under the form:

bj (ȳ, z)

y
µj
1

= Ṽbj (b̃j , u1(x), ..., up(x),m1(x), ..., mq(x)).

If we renameup+1, ..., up+p′ ormq+1, ..., mq+q ′ the functionsc̃k, ãj andb̃j , we
get:

fn(x) =wAn(x)y1(x)
µn0

t∏
i=1

ȳi(x)
δni Ṽn(u1(x), ...

..., up+p′(x),m1(x), ..., mq+q ′(x)).

This ends the induction ons and show thatPe is true. �
From Theorem 2.4 we can derive the following corollary. It will be used in

the last section.

Corollary 3.1. Let g(x) = V (z1(x), ..., zp(x),m1(x), ..., mq(x)) be a reduced
��-function on an intervalI =]0, ε[. We haveg = g1 + g2 whereg1 is a
��-function andg2 = ∑

n∈N hn where the sum
∑

n∈N |hn| uniformly converges
on I and thehn’s are ��-functions of the following form:

hn(x) = an(x)y1(x)
αn1 ...ys(x)

αns .

In such an expression, thean’s are ��-functions and(αn1, ..., α
n
s ) ∈ Rs \ {0}.

Moreover, for alln ∈ N, we havehn+1(x) = o(hn(x)) asx → 0. In particular,
the set of the functionshn is totally ordered and has a greatest elementh0 at 0.
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Proof. Let us write the functionV under the form

V (X1, ..., Xp, Y1, ..., Yq) =
∑

I=(i1,...,ip,j1,...,jq )∈Np+q
aIX

i1
1 ...X

ip
p Y

j1
1 ...Y

jq
q .

The components functionsmk of V are of the form:

mk(x) = y1(x)
γ k1 ...ys(x)

γ ks ck(x).

We define the setsE = {I ∈ Np+q | ∀k = 1...q,
∑s

�=1 j�γ
k
� = 0} andF =

Np+q \ E, and the corresponding analytic functions

V1(X, Y ) =
∑
I∈E

aIX
iY j

V2(X, Y ) =
∑
I∈F

aIX
iY j .

The functionsg1 andg2 are then given by

g1(x) = V1(z1(x), ..., mq(x))

g2(x) = V2(z1(x), ..., mq(x)).

The functiong1 is a��-function and we can writeg2 = ∑
n tn where the sum∑

n∈N |tn| is uniformly convergent onI and thetn’s are of the form:

tn(x) = bn(x)y1(x)
αn1 ...ys(x)

αns .

In this expression, thebn’s are��-functions and(αn1, ..., α
n
s ) ∈ Rs \ {0}. As∑

n |tn| uniformly converges, we can group by packs thetn’s for which
the exponents(αn1, ..., α

n
s ) are the same. It comes:

g2(x) =
∑
n∈N

hn(x)

where
hn(x) = an(x)y1(x)

αn1 ...ys(x)
αns .

The functions an are ��-functions and, if n 	= m then (αn1, ..., α
n
s ) 	=

(αm1 , ..., α
m
s ). Moreover we have

lim
x→0

hn(x) = 0.

Indeed, these functions are bounded and if we assume thathn(x) → h 	= 0 as
x → 0, we deduce thathn is comparable with the constant functionh. Hence
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there exists a��-functionθ , having value in a compact sub-interval of]0,+∞[,
such that, for allx ∈ I :

an(x)y1(x)
αn1 ...ys(x)

αns = hθ(x).

As(αn1, ..., α
n
s ) ∈ Rs\{0}, we deduce that one of the functionsyi isxλ-comparable

with the functionsyk, k 	= i andan which gives a contradiction. Now we have

hn(x)

hm(x)
= a(x)y1(x)

β1...ys(x)
βs

where(β1, ..., βs) 	= (0, ...,0). Thus, by a similar argument, the limit at zero of
the quotienthn/hm is infinite or equal to zero. This proves that thehn’s are totally
ordered. The fact that there exists a greatest element among them is obvious.�

4 Consequences

The first consequence of the preparation theorem for��-functions deals with
their asymptotic expansions in the scale�R. Theorem 2.5 follows directly from
Corollary 3.1 of the previous section, that is why we omit its proof.

The second consequence deals with the integrals ofxλ-functions on the fibers of
axλ-function. From [So], we know that for almost all real exponents occuring in
the definition of axλ-function, its integral on the fibers of axλ-function belongs
to the class of��-functions. In order to prove Proposition 2.1, it suffices to
produce axλ-functionf of R2 such that its integral admits adivergentasymptotic
expansion in the scale�R. We argue as follows.

Proof. We fix an analytic function of two variables:V (X, Y ) = ∑
i,j ai,jX

iY j

where we assume that the coefficientsai,j are positive and such that
∑

i,j ai,j2
i+j

converges. In particular,(1,1) is a polyradius of convergence ofV . For all
γ ∈ R∗+, we define

fγ (x, y) = V

(
y,

x

yγ

)

if (x, y) belongs to thexλ-cylinder

Cγ =
{
(x, y) ∈]0,1[2| y > x

1
γ

}
,

andfγ (x, y) = 0 if not. We denote�γ the map(x, y) �→ (y, x/yγ ). Then
fγ = V ◦�γ when restricted to the cylinderCγ . Under this form, the function
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fγ is a bounded and reducedxλ-function on thexλ-cylinderCγ . Its expression
is the following:

fγ (x, y) =
∑
i,j

ai,j x
jyi−γj . (1)

Let us now chooseγ > 0 andirrational. To get the functionFγ , we integrate
fγ on the cylinder

C2γ =
{
(x, y) ∈]0,1[2| y > x

1
2γ

}
.

As 1
2γ <

1
γ

, we haveC2γ ⊂ Cγ . We can then denote

Fγ (x) =
∫ 1

x
1

2γ
fγ (x, y)dy.

The functionFγ is bounded onR and equal to zero out of]0,1[. It is then not
difficult to get the following expression:

Fγ (x) =
∑
i,j

ai,j x
j
2
x
j
2 − x

1+i
2γ

1 + i − γj
. (2)

Under this form, we clearly see that ifγ is very well approximated by the rational
numbers, then the expansion ofFγ in the scale�R will be divergent. As it is
always possible to find such an irrationalγ , the proof is completed. �

Remark. In the above proof, we make explicit the appearence of so-called
small divisors. It appears that the expression of the integrated functionFγ can
be given in term of compensators of “Ecalle-Roussarie”. Recall that such a
compensator is a function of the form�α,β(x) = (xα −xβ)/(α−β)whereα and
β are non negative. Then it comes:

Fγ (x) = − 1

2γ

∑
i,j

ai,j x
j
2 � j

2 ,
1+i
2γ
(x). (3)

5 On a conjecture of van den Dries and Miller

In this last section, we give a partial answer to the following conjecture of van
den Dries and Miller [DM].
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Conjecture. There is no o-minimal structure lying strictly between�(RR
an) and

�(Ran,exp).

From Theorem 2.4 and its consequences, we can prove the following:

Proposition 5.1. Let � be an o-minimal structure such that�(RR
an) ⊂

� � �(Ran,exp). Then any one variable function definable in� is definable in
�(RR

an).

In order to prove the conjecture, one would need a multidimensional version
of Proposition 5.1. Unfortunately, the multidimensional version of Theorem 2.4
is not so accurate.

Let us begin with the proof of Corollary 2.1.

Proof. From Theorem 2.3, we can assume thatf is reduced on]0,1[: for all
x ∈]0,1[,

f (x) = ax
α0
0 ...x

αr
r V (m1(x), ..., mp(x)).

In such an expression,a ∈ R, theαi ’s are real and

mj(x) = x
α
j
0

0 ...x
α
j
r
r

where theαji ’s are real exponents. Moreover we havex0 = |x − θ0|, x1 =
| logx0 − θ1|,..., xr = | logxr−1 − θr |, the θi ’s being real constants. Asθ0 is
comparable withx on ]0,1[, it comesθ0 = 0. By induction, we easily deduce
that all theθi ’s are equal to 0. Hencexi = |�i(x)| for all i. As themj ’s have values
in [−1,1], we have necessarilyαj0 ≥ 0 for all j . Let us putm(x) = x

α0
0 ...x

αr
r .

The functionsm andmj are functions of the scale�R and we have:

f (x) = am(x).
∑

I=(i1,...,ip)
aIm1(x)

i1...mp(x)
ip .

Thus we can write
f (x) =

∑
n∈N

anmn(x)

where the sum
∑

n∈N |anmn(x)| is uniformly convergent and themn’s are func-
tions of�R and are ordered: for alln ∈ N,

lim
x→0+

mn+1(x)

mn(x)
= 0.

Now, the exponent ofx in any monomialmn is of the form:

α0 + i1α
1
0 + ...+ ipα

p

0

whereik ∈ N and theαk0’s are non negative. Thus these exponents can accumulate
only at+∞. �
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The proof of Proposition 5.1 is then the following.

Proof. Let � be an o-minimal structure such that�(RR
an) ⊂ � � �(Ran,exp).

From the Theorem of Miller [Mi2], we know that, either� is polynomially
bounded, or it contains the graph of the exponential function exp. As�(Ran,exp)

is the smallest o-minimal structure containing the globally subanalytic sets and
the graph of the exponential, it follows that� is necessarily polynomially
bounded.

Consider a�-functionf : R → R and assume that it is bounded on]0, ε[ for
sufficiently smallε > 0 (this can always be assumed up to an inversion) and not
identically equal to zero (ultimately at zero). Assume that, for all 0< ε′ ≤ ε,
the functionf|]0,ε′[ is not axλ-function (i.e.f is not agermof xλ-function near
zero). We will now derive a contradiction.

As� is a substructure of�(Ran,exp),f is also a��-function. Up to a reduction
of ε, we can preparef on ]0, ε[ to the following form:

f (x) = z(x).

s∏
i=1

yi(x)
δi .V (z1(x), ..., zp(x),m1(x), ..., mq(x)).

From [Mi2], eitherf is identically equal to zero on]0, ε[, or there exist
c0, λ0 ∈ R, c0 	= 0, such thatf (x) = c0x

λ0 +o(xλ0) asx → 0. Asf is bounded
near zero, we haveλ0 ≥ 0. From the reduced expression off , we get:

z(x).

s∏
i=1

yi(x)
δi = c0x

λ0 + o(xλ0).

And thus
1

xλ0
.z(x).

s∏
i=1

yi(x)
δi = c0 + o(1).

In this equality,c0 + o(1) is a��-function which has value in a compact subset
of ]0,+∞[ on ]0, ε[ (one more time up to a reduction ofε). If one of theδi ’s is
not equal to zero, we can express the correspondingyi has the product of axλ-
function in the other variables byc0+o(1). This implies thatyi isxλ-comparable
with axλ-function in the other variables and this is a contradiction. Henceδi = 0
for all i and we can apply Corollary 3.1 to get the following expression forf :

f = g +
∑
n∈N

mn

whereg is a bounded��-function and themn’s are��-functions satisfying the
conclusion of the corollary.
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From the identityf (x)−c0x
λ0 = o(xλ0), λ0 ≥ 0, we can apply again the The-

orem of Miller for the�-functionx �→ o(xλ0). If this function is not ultimately
identically equal to zero, it comes:

f1(x) = f (x)− c0x
λ0 = c1x

λ1 + o(xλ1)

wherec1 	= 0 andλ1 > λ0. If we continue this process inductively, we can get
3 different cases.

a. After a finite number of steps, we get a function which is identically zero
on ]0, ε′[, ε′ > 0.

b. We get an increasing sequence of positive real numbers(λi)i∈N such that
λi → +∞ asi → +∞.

c. We get an increasing sequence of positive real numbers(λi)i∈N such that
λi → λ asi → +∞ with λ ≥ 0.

Case a. In this case, we havef (x) = ∑k
i=0 cix

λi on a interval]0, ε′[. Hence
f is xλ-function near zero and this is a contradiction.

Case b. Assume that there existsi0 ∈ N such thatxλi0 = o(m0(x)) asx → 0.
If we make an expansion off at the “order"m0, it comes:

f (x) =
∑
i<i0

cix
λi + o(m0(x))

= g0(x)+m0(x)+ o(m0(x))

whereg0 is the functiong truncated at the orderm0. This is still a��-function
and the preceding equalities impliy thatm0 is a ��-function too, which is a
contradicion. Thus, necessarily the functionm0 (and also themn’s, n > 0)
is smaller than any positive power ofx at zero: for alli, m0(x) = o(xλi ).
Identifying the two preceding expansions at all orderxλi asi → +∞, we deduce
thatg(x) = ∑

i∈N cix
λi . Asg is a��-function and no function log appear in its

expansion,g is in fact axλ-function. Consequently,f − g belongs to� and:

(f − g)(x) = m0(x)+ o(m0(x)).

If m0 is not ultimately identically equal to zero, this equation implies thatf −g is
not equivalent to a positive power ofx at the origin and this contradicts the Growth
dichotomy Theorem of Miller. Hencem0 is equal to zero on a certain]0, η[,
η > 0, andf = g on this interval which gives one more time a contradiction.
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Case c. We use Corollary 2.1 to show that this case is not possible. Like
in the preceding case, if there existsi0 such thatxλi0 = o(m0(x)) we get a
contradiction. Hence we have:m0(x) = o(xλi ) for all i asx → 0. As the
powers ofx in the expansion ofg do not accumulate atλ, there existsη > 0 such
that, if xα0�1(x)

α1...�p(x)
αp andxβ0�1(x)

α1...�p(x)
βp are two monomials ofg,

then we have

|β0 − α0| > η. (**)

Let us choosei0 such that|λi0+1 − λi0| < η/2. If we truncate the expansion of
f at the orderλi0+1, we get:

f (x) =
i0+1∑
i=0

cix
λi + o(xλi0+1)

= ḡ(x)+ o(xλi0+1)

whereḡ is the functiong truncated at the orderλi0+1. This is a��-function.
The preceding equality implies that there are two monomials in the expansion
of ḡ such that(∗∗) is not satisfied. This contradiction completes the proof.�
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