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Abstract. We prove Cardy’s formula for rectangular crossing probabilitieddpen-
dentsite percolation models that arise from a deterministic cellular automaton with a
random initial state. The cellular automaton corresponds to the zero-temperature case
of Domany’s stochastic Ising ferromagnet on the hexagonal |diti¢with alternating
updates of two sublattices) [7]; it may also be realized on the triangular lattwith

flips when a site disagrees with six, five and sometimes four of its six neighbors.
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1 Introduction

It was understood by physicists since the early seventies that critical statistical
mechanics models should possess continuum scaling limits with a global con-
formal invariance that goes beyond pure scale invariance. The phenomenon is
particularly interesting in two dimensions, where every analytic function gives
rise to a conformal transformation and the local conformal transformations form
an infinite dimensional group; in that context, it was first studied by Belavin,
Polyakov and Zamolodchikov [1, 2]. For an introduction to the methods of
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conformal field theory as applied to two-dimensional critical percolation, see
[6].

Until recently, however, there was no rigorous mathematical proof of this
phenomenon, with the exception of the Simple Symmetric Random Walk, whose
continuum scaling limit is Brownian Motion. Then, S. Smirnov managed to
prove [20, 21] existence, unigueness and conformal invariance of the continuum
scaling limit of critical site percolation on the triangular lattice, obtaining in
particular conformal invariance of crossing probabilities and Cardy’s formula
for rectangular crossings [5, 6].

Inthis paperwe show that there are some natlependenpercolation models
for which conformal invariance of the crossing probabilities and Cardy’s formula
can be proved. Our proof relies on Smirnov’s result and on properties of the
dependent percolation models which make them, in a sense to be specified later,
“small perturbations” of the independent model treated by Smirnov.

The dependent percolation models we consider are the distributions at time
n > 1 (including the final state as — oc¢) of a discrete time deterministic
dynamical process” with state spacé—1, +1}" consisting of assignments of
—1 or +1 to a regular latticd.. The initial 6° is “uniformly random”, i.e.,
the distribution ofo® is a Bernoulli(1/2) product measure. The dynamics are
those of Domany'’s stochastic Ising ferromagnet [7] at zero temperature. There
are two essentially equivalent versions — one wHeie the hexagonal lattice
H and one where it is the triangular lattife We takeH andT to be regular
lattices embedded iR? so that the elementary cells Hf (resp.,T) are regular
hexagons (resp., equilateral triangles). Inthe first verdipas a bipartite graph,
is partitioned into two subsetd andB which are alternately updated so that
eacho, is forced to agree with a majority of its three neighbors (which are in
the other subset). In the second version, all sites are updated simultaneously
according to a rule based on a deterministic pairing of the six neighbors of every
site into three pairs (see the end of Section 2 for a complete explanation). The
rule is thato, flips if and only if it disagrees (after the previous update) with both
sites in two or more of its three neighbor pairs; thus there is (resp., is not) a flip
if the numberD, of disagreeing neighborsis 5 (resp.,< 3) and there is also a
flip for some cases ab, = 4. We note that Cardy’s formula can also be verified
for a modified rule in which there is a flip if and only 1, > 5; the case of a
modified rule where there is a flip if and only 1, > 4 is an interesting open
problem.
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2 Definition of the model(s) and results

In this section we give a more detailed description of the dependent percolation
models and results.

Consider the homogeneous ferromagnet on the hexagonal [dttidn states
denoted by = {0, }xcn, 0, = £1, and with (formal) Hamiltonian

H=-) o0, Q)
)

(x,y

wherez(x’” denotes the sum over all pairs of neighbor sites, each pair counted
once. The variables,, o, are called spins. We writdf (x) for the set of three
neighbors ofc, and indicate with

AH (o) =2 Z 0.0y 2)

yeNH(x)

the change in the Hamiltonian when the spjrat sitex is flipped (i.e., changes
sign).

Notice that the hexagonal lattice can be partitioned into two sub%etsd B
in such a way that all three neighbors of any sitedir(resp.,B) are inB (resp.,
A). By placing an edge between any two sitesf(resp.,B) that are next-
nearest neighborsifi, the subsefd (resp.,B) becomes atriangular lattice. (This
relation between the hexagonal lattice and its triangular “sublattice,” sometimes
expressed in terms of a “star-triangle transformation,” will be used again in
Remark 2.1 below.) We now consider the discrete time Markov praeckss
N, with state spacé = {—1, +1}, which is the zero temperature limit of a
model of Domany [7], constructed as follows:

« Theinitial states° is chosen from a symmetric Bernoulli product measure.

» At odd timesn = 1, 3,..., the spins in the sublatticél are updated
according to the following rulews,, x € A, is flipped if and only if
A H (o) < 0.

» At even timesn = 2,4, ..., the spins in the sublatticB are updated
according to the same rule as for those of the sublatlice

In order to present the main result of this paper, let us denote*bthe final
state of the process’ defined aboves ™ = lim,,_, , o exists with probability
one, as was proved in [15], and, like¢ for 1 < n < oo, defines a dependent
percolation model ofil. These are the the main objects of our investigation.
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We will call § the “mesh” of the lattice and consider the continuum scaling
limit of the dependent percolation model on §H ass — 0. For simplicity
of exposition, we will prove Cardy’s formula in the special case of a rectangle,
aligned with the coordinate axes and of given aspect ratgosimilar approach
would work for any domain with a “regular” boundary, but it would involve
dealing with more complex deformations of the boundary). Consider a finite
rectangleR = R(a,b) = (—a/2,a/2) x (—b/2,b/2) C R? with sides of
lengthsa andb, such that the aspect ratigh is r. We say that there is (in") a
vertical plus-crossing iR N §H contains a path of1 spins frons” joining the
top and bottom sides of the rectan@leand callP;(r; n) the probability of such
a plus-crossing at time. More precisely, there is a vertical plus crossing if there
is apathxg, x1, ..., X, X1 in Hwith a;’j = +1forall j, withéxy, ..., dx,, all
in R, and with the line segmenésg, §x; andsx,,, 8x,,1 touching respectively
the top sidg—a/2, a/2] x {b/2} and the bottom sidg—a /2, a/2] x {—b/2}.
In the next section we will prove the following result:

Theorem 1. For all n € [1, oo], the limit P(r; n) = lims_.o Ps(r; n) exists and
is given by Cardy’s formula (whetgis an explicit function of [5]):

o _rée . 124
P(r;n) = Fc(r) :WU 2F1<§,§’§,77)- (3)

A stronger result than Theorem 1 can be obtained, i.e., it is possible to prove
existence, uniqueness and conformal invariance of the continuum scaling limit,
as proven by Smirnov [20, 21] for independent site percolation on the triangular
lattice. Such aresult, though, requires more work and will be pursued in a future
paper [22]. Here we just note that the proof is based on showing that the limit
for our dependent percolation models (on the hexagonal lattice) coincides with
that of Smirnov for independent percolation on the triangular lattice, i.e., that
the models belong to the same universality class.

The following observations are useful in understanding the behavior of the
model and will help in the proof of Theorem 1.

» The values of the spins in the sublatti@eat time zero are irrelevant, since
at time 1, after the first update, those values are uniquely determined by
the values of the spins in the sublattiBe

» Once the initial spin configuration in the sublattiBdas chosen, the dy-
namics is completely deterministic.
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A site can no longer flip once it belongs to either a loop or “barbell” of
constant sign iftl, where a loop means a simple loop (with no subloops)
and a barbell consists of two disjoint loops connected by a path (we regard
a loop as a degenerate barbell).

We also note that, by studying the percolation properties of the finalstatmn
the infinite latticeH, it can be shown that every site is in some barbell of constant
o *°-sign [4].

The discrete time Markov process defined above can be considered a simplified
version of a continuous time process where an independent (rate 1) Poisson
clock is assigned to each sitee H, and the spin at site is updated (with
the same rule as in our discrete time process) when the corresponding clock
rings. The percolation properties of the final stat€ of that process were
studied, both rigorously and numerically, in [13]; the results there (about critical
exponents rather than critical crossing probabilities) strongly suggest that that
dependent percolation model is also in the same universality class as independent
percolation. Similar stochastic processes on different types of lattices have been
studied in various papers. See, for example, [3, 8, 10, 15, 16, 17, 18] for models
on Z¢ and [12] for a model on the homogeneous tree of degree three. Such
models are also discussed extensively in the physics literature, usuafl§ on
(see, for example, [7] and [14]). On the hexagonal lattice, the discrete time
dynamics is the zero-temperature case of Domany’s dynamics [7]. Numerical
simulations have been done by Nienhius [19] and rigorous results for both the
continuous and discrete dynamics have been obtained in [4], including a detailed
analysis of the discrete time (synchronous) case. The analysis of [4] is at the
heart of this paper, and we will refer to and heavily rely on it for the proof of
Theorem 1, which is given in the next section.

There is an alternative, but equivalent, way of describing the discrete time
dynamics as a deterministic cellular automaton on the triangular |&tt{eéth
random initial state). The initial state is again chosen by assigning valuar
—1 independently, with equal probability, to each site of the triangular lattice.
Given some siter € T, group its sixT-neighborsy in three disjoint pairs
{31, 3}, {33, va}, {2, y&}, so thaty; andy; areT-neighbors, and so on for the
other two pairs. Translate this construction to all sites T, thus producing
three pairs of site$y;, v}, {3, v}, {35, y§} associated to each site € T.

(Note that this construction does not need to specify fiawembedded ifiR?.)
Site x is updated at times: = 1, 2, ... according to the following rule: the
spin at sitex is changed frona, to —o, if and only if at least two of its pairs of
neighbors have the same sign and this sigAds.
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Remark 2.1. This dynamics on the triangular lattiée is equivalent to the
alternating sublattice dynamics on the hexagonal latticeehen restricted to

the sublatticeB for even times: = 2m. To see this, start witfi' and construct

the hexagonal latticBl’ by means of a star-triangle transformation (see, for
example, p. 335 of [11]) such that a site is added at the center of each of the
triangles(x, y1, y3), (x, y3, y1), and (x, yz, y§). H may be partitioned into

two triangular sublatticesl” andB’ with B" = T. It is now easy to see that the
dynamics ol for m = 1, 2, ... and the alternating sublattice dynamicslin
restricted taB’ for even times: = 2m are the same.

Theorem 1 (and its generalizations) in this context means that, at all times
m > 0, the crossing probabilities for the state’ of this cellular automaton on
T have the same conformally invariant continuum scaling limit as that for critical
independent percolation di, despite the dependence induced by the cellular
automaton dynamics.

3 Proof of Theorem 1

In this final section of the paper we prove Theorem 1. We follow the notation of
[4] and start by giving some definitions. Let us consider a lpapthe triangular
sublatticeB, written as an ordered sequence of sit@s y1, . . ., y,) withn > 3,
which are distinct except that, = yo. Fori = 1,...,n, let¢; be the unique
site in A that is anH-neighbor of bothy;_; andy;. We call y ans-loopif

{1, ..., ¢, are all distinct. Similarly, a (site-self avoiding) pathy, y1, ..., y,)

in B, betweenyy andy,, is called ars-pathif ¢y, ..., ¢, are all distinct. Notice
that any path irB betweeny andy’ (seen as a collection of sites) contains an
s-path between andy’. An s-loop of constant sign is stable for the dynamics
since at the next update of the presence of the constant sign s-loo@Biwill
produce a stable loop of that sign in the hexagonal lattice. Similarly an s-path
of constant sign betweenandy’ will be stable ify andy’ are stable — e.g., if
they each belong to an s-loop. A triangular logpx,, x3 € B with a common
H-neighbor¢ € A is called astar; it is not an s-loop. A triangular loop i

that is not a star is an s-loop and will be calledaamistar, while any loop inB

that contains more than three sites contains an s-loop.

Before stating alemma, that will be a mainingredientin the proof of Theorem 1,
we need one more definition. For, x’) an ordered pair of neighbors #, we
define the “patrtial cIusterCf;x,) to be the set of siteg € B such that there is
a (site-self avoiding) patly = x’, x1, ..., x, = y in B of constant sign iw°,
with x; £ x and (xo = x/, x1, x) not forming a star. Combining the stability
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properties of s-loops and s-paths just discussed, we have the following lemma.

Lemma3.1. An s-path(yo, ..., y.) in B of constant sign im° is stable (i.e.,
retains that same sign ia” for all 0 < n < o) if Cf}, | andC{ . both
contain s-loops.

Proof of Lemma3.1. The original s-pathiyo, ..., y») is stable because either
yo andy,, both belong to s-loops of constant sigrvitior else there is a longer s-
path of constant sign in°, between someandy’ (with the original(yo, . . ., y)
as a subpath), such that botlandy’ belong to s-loops of constant signdf. O

With this preparation, we are now ready to start the proof of Theorem 1. What
we will prove, roughly speaking, is that, in the liniit> 0, there exists a vertical
plus-crossing ofR from o™ with n > 1, in R N §H, if and only if there exists a
vertical plus-crossing aR from ¢° in R N §B. SinceB is a triangular lattice
and the initial state-® is chosen from a symmetric Bernoulli product measure,
this implies that the limitP (r; n) = lims_,q Ps(r; n) exists forn > 1 and is the
same as in the case of the crossing probability for independent site percolation
on the triangular lattice, thus proving the theorem.

Consider two rectangle®’ = R(a’, b') with b’ slightly larger tharb anda’
slightly smaller tham, andR” = R(a”, b”) with b” slightly smaller tharb and
a” slightly larger tham. Call P{(a’, b') the probability of a vertical plus-crossing
from % in R’ N §B joining the top and bottom sides &' and Py’ (a”, b") the
probability of ahorizontal minuscrossing froms® in R” N 8B joining the left
and right sides oR”. Note that a vertical plus crossing (on the triangular lattice
3B) occurs if and only if a horizontal minus-crossing does not occur. Clearly,
from [20, 21] we have

P'(a’,b) = lim Pj(a’, b') = Fc(a'/b), (4)
, Ilrg/ bP/(a/, b/) = P’(a, b) = Fc(r), (5)
and

im lim P/(a",b") = 1— Fe(r). (6)

a’—a,b’'—b5—>0

Any vertical plus-crossing aR’ N §B at time 0 yields a vertical plus-crossing
by some s-pathyy, . .., y.), which then yields at tima 1 a \ertical plus-crossing
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of R N SH by a path(y,, {x+1s - - - » Ckos Yip)s Providinga’ < a, b’ > b andé
is sufficiently small. (The reason we first talke> b and then leb’ — b is to
handle the case of time> 1, as we shall see.) Therefore, for sn#all

Ps(r;n=1) > P{(d', D). (7

On the other hand, if there is a horizontal minus-crossing 6f B at time 0,
it produces a horizontal minus-crossing®m §H at time 1 (for small) which
blocks any possible vertical plus-crossingRm SH at that time; therefore, for
smalls,

Ps(rsn=1) <1— P{@",b"). (8)

Lettingé — 0 and thena’,a” — a andbd’,b” — b and using (5)-(8), we
conclude thafPs(r; n = 1) converges to Cardy’s formuld(r), asé — 0.

It remains to prove that the same is true for all times- 2. In order to
do that, we first have to show that our vertical plus-crossin@qRof sH by
(yo, C1, - - -, Cm» Ym) Created at time 1 doesn't “shrink” too much due to the effect
of the dynamics, so that at all later times, including= oo, there is a vertical
plus-crossing oR N SH bY (yi,, Cky+1s -« - » Skas Vio)-

To do this by extending the bound (7) toalb 1, at the cost of a correction to
the right hand side that tends to zero withwe apply Lemma 3.1. Noting that
each of the partial pathsy, - . ., yx,) and(y,, . . ., y») contains of the order of
(b’ — b) /85 sites, we see that the lemma implies that it suffices to show that there
is somes > 0 andK < oo such that for any deterministia, x’),

P(|C{. | = £andC ., contains no antistar< K e~ *. 9)

(x,x (x,x

To prove (9), we partitiorB into disjoint antistars and denote byhe collection

of these antistars. We do an algorithmic constructio(f@fx/) (asin, e.g., [9]),
where the order of checking the sign of sites is such that when the first site in
an antistar front is checked (and found to have the same sign’aghen the
other two sites in that antistar are checked next. Without loss of generality, we
assume thatB = +1. Then standard arguments show that the probability in (9)
is bounded byk (1 — (3)%)“/3.

To similarly extend the bound (8), one proceeds in the same way, but consider-
ing horizontal minus-crossings &’ N 3§38 at time zero which produce horizontal
minus-crossings aR N §H at timen > 1. Taking the limitss — 0, a’,a” —

a, b',b” — bconcludes the proof. O
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