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Abstract. We prove Cardy’s formula for rectangular crossing probabilities indepen-
dentsite percolation models that arise from a deterministic cellular automaton with a
random initial state. The cellular automaton corresponds to the zero-temperature case
of Domany’s stochastic Ising ferromagnet on the hexagonal latticeH (with alternating
updates of two sublattices) [7]; it may also be realized on the triangular latticeT with
flips when a site disagrees with six, five and sometimes four of its six neighbors.
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1 Introduction

It was understood by physicists since the early seventies that critical statistical
mechanics models should possess continuum scaling limits with a global con-
formal invariance that goes beyond pure scale invariance. The phenomenon is
particularly interesting in two dimensions, where every analytic function gives
rise to a conformal transformation and the local conformal transformations form
an infinite dimensional group; in that context, it was first studied by Belavin,
Polyakov and Zamolodchikov [1, 2]. For an introduction to the methods of
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conformal field theory as applied to two-dimensional critical percolation, see
[6].

Until recently, however, there was no rigorous mathematical proof of this
phenomenon, with the exception of the Simple Symmetric Random Walk, whose
continuum scaling limit is Brownian Motion. Then, S. Smirnov managed to
prove [20, 21] existence, uniqueness and conformal invariance of the continuum
scaling limit of critical site percolation on the triangular lattice, obtaining in
particular conformal invariance of crossing probabilities and Cardy’s formula
for rectangular crossings [5, 6].

In this paper we show that there are some naturaldependentpercolation models
for which conformal invariance of the crossing probabilities and Cardy’s formula
can be proved. Our proof relies on Smirnov’s result and on properties of the
dependent percolation models which make them, in a sense to be specified later,
“small perturbations” of the independent model treated by Smirnov.

The dependent percolation models we consider are the distributions at time
n ≥ 1 (including the final state asn → ∞) of a discrete time deterministic
dynamical processσn with state space{−1, +1}L consisting of assignments of
−1 or +1 to a regular latticeL. The initial σ 0 is “uniformly random”, i.e.,
the distribution ofσ 0 is a Bernoulli(1/2) product measure. The dynamics are
those of Domany’s stochastic Ising ferromagnet [7] at zero temperature. There
are two essentially equivalent versions — one whereL is the hexagonal lattice
H and one where it is the triangular latticeT. We takeH andT to be regular
lattices embedded inR2 so that the elementary cells ofH (resp.,T) are regular
hexagons (resp., equilateral triangles). In the first version,H, as a bipartite graph,
is partitioned into two subsetsA andB which are alternately updated so that
eachσx is forced to agree with a majority of its three neighbors (which are in
the other subset). In the second version, all sites are updated simultaneously
according to a rule based on a deterministic pairing of the six neighbors of every
site into three pairs (see the end of Section 2 for a complete explanation). The
rule is thatσx flips if and only if it disagrees (after the previous update) with both
sites in two or more of its three neighbor pairs; thus there is (resp., is not) a flip
if the numberDx of disagreeing neighbors is≥ 5 (resp.,≤ 3) and there is also a
flip for some cases ofDx = 4. We note that Cardy’s formula can also be verified
for a modified rule in which there is a flip if and only ifDx ≥ 5; the case of a
modified rule where there is a flip if and only ifDx ≥ 4 is an interesting open
problem.
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2 Definition of the model(s) and results

In this section we give a more detailed description of the dependent percolation
models and results.

Consider the homogeneous ferromagnet on the hexagonal latticeH with states
denoted byσ = {σx}x∈H, σx = ±1, and with (formal) Hamiltonian

H = −
∑
〈x,y〉

σxσy, (1)

where
∑

〈x,y〉 denotes the sum over all pairs of neighbor sites, each pair counted
once. The variablesσx, σy are called spins. We writeNH(x) for the set of three
neighbors ofx, and indicate with

�xH (σ ) = 2
∑

y∈NH(x)

σxσy (2)

the change in the Hamiltonian when the spinσx at sitex is flipped (i.e., changes
sign).

Notice that the hexagonal lattice can be partitioned into two subsetsA andB
in such a way that all three neighbors of any site inA (resp.,B) are inB (resp.,
A). By placing an edge between any two sites ofA (resp.,B) that are next-
nearest neighbors inH, the subsetA (resp.,B) becomes a triangular lattice. (This
relation between the hexagonal lattice and its triangular “sublattice,” sometimes
expressed in terms of a “star-triangle transformation,” will be used again in
Remark 2.1 below.) We now consider the discrete time Markov processσn, n ∈
N, with state spaceS = {−1, +1}H, which is the zero temperature limit of a
model of Domany [7], constructed as follows:

• The initial stateσ 0 is chosen from a symmetric Bernoulli product measure.

• At odd timesn = 1, 3, . . . , the spins in the sublatticeA are updated
according to the following rule:σx, x ∈ A, is flipped if and only if
�xH (σ ) < 0.

• At even timesn = 2, 4, . . . , the spins in the sublatticeB are updated
according to the same rule as for those of the sublatticeA.

In order to present the main result of this paper, let us denote byσ∞ the final
state of the processσn defined above.σ∞ = limn→∞ σn exists with probability
one, as was proved in [15], and, likeσn for 1 ≤ n < ∞, defines a dependent
percolation model onH. These are the the main objects of our investigation.
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We will call δ the “mesh” of the lattice and consider the continuum scaling
limit of the dependent percolation modelσn on δH asδ → 0. For simplicity
of exposition, we will prove Cardy’s formula in the special case of a rectangle,
aligned with the coordinate axes and of given aspect ratior (a similar approach
would work for any domain with a “regular” boundary, but it would involve
dealing with more complex deformations of the boundary). Consider a finite
rectangleR = R(a, b) ≡ (−a/2, a/2) × (−b/2, b/2) ⊂ R

2 with sides of
lengthsa andb, such that the aspect ratioa/b is r. We say that there is (inσn) a
vertical plus-crossing ifR∩ δH contains a path of+1 spins fromσn joining the
top and bottom sides of the rectangleR, and callPδ(r; n) the probability of such
a plus-crossing at timen. More precisely, there is a vertical plus crossing if there
is a pathx0, x1, . . . , xm, xm+1 in H with σn

xj
= +1 for all j , with δx1, . . . , δxm all

inR, and with the line segmentsδx0, δx1 andδxm, δxm+1 touching respectively
the top side[−a/2, a/2] × {b/2} and the bottom side[−a/2, a/2] × {−b/2}.
In the next section we will prove the following result:

Theorem 1. For all η ∈ [1, ∞], the limitP(r; n) = limδ→0 Pδ(r; n) exists and
is given by Cardy’s formula (whereη is an explicit function ofr [5]):

P(r; n) = FC(r) ≡ �(2
3)

�(4
3)�(1

3)
η

1
3 2F1

(
1

3
,

2

3
; 4

3
; η

)
. (3)

A stronger result than Theorem 1 can be obtained, i.e., it is possible to prove
existence, uniqueness and conformal invariance of the continuum scaling limit,
as proven by Smirnov [20, 21] for independent site percolation on the triangular
lattice. Such a result, though, requires more work and will be pursued in a future
paper [22]. Here we just note that the proof is based on showing that the limit
for our dependent percolation models (on the hexagonal lattice) coincides with
that of Smirnov for independent percolation on the triangular lattice, i.e., that
the models belong to the same universality class.

The following observations are useful in understanding the behavior of the
model and will help in the proof of Theorem 1.

• The values of the spins in the sublatticeA at time zero are irrelevant, since
at time 1, after the first update, those values are uniquely determined by
the values of the spins in the sublatticeB.

• Once the initial spin configuration in the sublatticeB is chosen, the dy-
namics is completely deterministic.
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• A site can no longer flip once it belongs to either a loop or “barbell” of
constant sign inH, where a loop means a simple loop (with no subloops)
and a barbell consists of two disjoint loops connected by a path (we regard
a loop as a degenerate barbell).

We also note that, by studying the percolation properties of the final stateσ∞ on
the infinite latticeH, it can be shown that every site is in some barbell of constant
σ∞-sign [4].

The discrete time Markov process defined above can be considered a simplified
version of a continuous time process where an independent (rate 1) Poisson
clock is assigned to each sitex ∈ H, and the spin at sitex is updated (with
the same rule as in our discrete time process) when the corresponding clock
rings. The percolation properties of the final stateσ∞ of that process were
studied, both rigorously and numerically, in [13]; the results there (about critical
exponents rather than critical crossing probabilities) strongly suggest that that
dependent percolation model is also in the same universality class as independent
percolation. Similar stochastic processes on different types of lattices have been
studied in various papers. See, for example, [3, 8, 10, 15, 16, 17, 18] for models
on Z

d and [12] for a model on the homogeneous tree of degree three. Such
models are also discussed extensively in the physics literature, usually onZ

d

(see, for example, [7] and [14]). On the hexagonal lattice, the discrete time
dynamics is the zero-temperature case of Domany’s dynamics [7]. Numerical
simulations have been done by Nienhius [19] and rigorous results for both the
continuous and discrete dynamics have been obtained in [4], including a detailed
analysis of the discrete time (synchronous) case. The analysis of [4] is at the
heart of this paper, and we will refer to and heavily rely on it for the proof of
Theorem 1, which is given in the next section.

There is an alternative, but equivalent, way of describing the discrete time
dynamics as a deterministic cellular automaton on the triangular latticeT (with
random initial state). The initial state is again chosen by assigning value+1 or
−1 independently, with equal probability, to each site of the triangular lattice.
Given some sitēx ∈ T, group its sixT-neighborsy in three disjoint pairs
{yx̄

1 , yx̄
2}, {yx̄

3 , yx̄
4}, {yx̄

5 , yx̄
6}, so thatyx̄

1 andyx̄
2 areT-neighbors, and so on for the

other two pairs. Translate this construction to all sitesx ∈ T, thus producing
three pairs of sites{yx

1 , yx
2}, {yx

3 , yx
4}, {yx

5 , yx
6} associated to each sitex ∈ T.

(Note that this construction does not need to specify howT is embedded inR2.)
Site x is updated at timesm = 1, 2, . . . according to the following rule: the
spin at sitex is changed fromσx to −σx if and only if at least two of its pairs of
neighbors have the same sign and this sign is−σx .
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Remark 2.1. This dynamics on the triangular latticeT is equivalent to the
alternating sublattice dynamics on the hexagonal latticeH when restricted to
the sublatticeB for even timesn = 2m. To see this, start withT and construct
the hexagonal latticeH′ by means of a star-triangle transformation (see, for
example, p. 335 of [11]) such that a site is added at the center of each of the
triangles(x, yx

1 , yx
2), (x, yx

3 , yx
4), and (x, yx

5 , yx
6). H

′ may be partitioned into
two triangular sublatticesA′ andB′ with B′ = T. It is now easy to see that the
dynamics onT for m = 1, 2, . . . and the alternating sublattice dynamics onH

′
restricted toB′ for even timesn = 2m are the same.

Theorem 1 (and its generalizations) in this context means that, at all times
m ≥ 0, the crossing probabilities for the statesσm of this cellular automaton on
T have the same conformally invariant continuum scaling limit as that for critical
independent percolation onT, despite the dependence induced by the cellular
automaton dynamics.

3 Proof of Theorem 1

In this final section of the paper we prove Theorem 1. We follow the notation of
[4] and start by giving some definitions. Let us consider a loopγ in the triangular
sublatticeB, written as an ordered sequence of sites(y0, y1, . . . , yn) with n ≥ 3,
which are distinct except thatyn = y0. For i = 1, . . . , n, let ζi be the unique
site inA that is anH-neighbor of bothyi−1 andyi . We call γ an s-loop if
ζ1, . . . , ζn are all distinct. Similarly, a (site-self avoiding) path(y0, y1, . . . , yn)

in B, betweeny0 andyn, is called ans-pathif ζ1, . . . , ζn are all distinct. Notice
that any path inB betweeny andy ′ (seen as a collection of sites) contains an
s-path betweeny andy ′. An s-loop of constant sign is stable for the dynamics
since at the next update ofA the presence of the constant sign s-loop inB will
produce a stable loop of that sign in the hexagonal lattice. Similarly an s-path
of constant sign betweeny andy ′ will be stable ify andy ′ are stable — e.g., if
they each belong to an s-loop. A triangular loopx1, x2, x3 ∈ B with a common
H-neighborζ ∈ A is called astar; it is not an s-loop. A triangular loop inB
that is not a star is an s-loop and will be called anantistar, while any loop inB
that contains more than three sites contains an s-loop.

Before stating a lemma, that will be a main ingredient in the proof ofTheorem 1,
we need one more definition. For(x, x ′) an ordered pair of neighbors inB, we
define the “partial cluster”CB

(x,x′) to be the set of sitesy ∈ B such that there is
a (site-self avoiding) pathx0 = x ′, x1, . . . , xn = y in B of constant sign inσ 0,
with x1 �= x and(x0 = x ′, x1, x) not forming a star. Combining the stability
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properties of s-loops and s-paths just discussed, we have the following lemma.

Lemma 3.1. An s-path(y0, . . . , ym) in B of constant sign inσ 0 is stable (i.e.,
retains that same sign inσn for all 0 ≤ n ≤ ∞) if CB

(y1,y0)
andCB

(ym−1,ym) both
contain s-loops.

Proof of Lemma 3.1. The original s-path(y0, . . . , ym) is stable because either
y0 andym both belong to s-loops of constant sign inσ 0 or else there is a longer s-
path of constant sign inσ 0, between somey andy ′ (with the original(y0, . . . , ym)

as a subpath), such that bothy andy ′ belong to s-loops of constant sign inσ 0. �

With this preparation, we are now ready to start the proof of Theorem 1. What
we will prove, roughly speaking, is that, in the limitδ → 0, there exists a vertical
plus-crossing ofR from σn with n ≥ 1, inR ∩ δH, if and only if there exists a
vertical plus-crossing ofR from σ 0 in R ∩ δB. SinceB is a triangular lattice
and the initial stateσ 0 is chosen from a symmetric Bernoulli product measure,
this implies that the limitP(r; n) = limδ→0 Pδ(r; n) exists forn ≥ 1 and is the
same as in the case of the crossing probability for independent site percolation
on the triangular lattice, thus proving the theorem.

Consider two rectangles,R′ = R(a′, b′) with b′ slightly larger thanb anda′
slightly smaller thana, andR′′ = R(a′′, b′′) with b′′ slightly smaller thanb and
a′′ slightly larger thana. CallP ′

δ(a
′, b′) the probability of a vertical plus-crossing

from σ 0 in R′ ∩ δB joining the top and bottom sides ofR′ andP ′′
δ (a′′, b′′) the

probability of ahorizontal minus-crossing fromσ 0 in R′′ ∩ δB joining the left
and right sides ofR′′. Note that a vertical plus crossing (on the triangular lattice
δB) occurs if and only if a horizontal minus-crossing does not occur. Clearly,
from [20, 21] we have

P ′(a′, b′) ≡ lim
δ→0

P ′
δ(a

′, b′) = FC(a′/b′), (4)

lim
a′→a, b′→b

P ′(a′, b′) = P ′(a, b) = FC(r), (5)

and

lim
a′′→a, b′′→b

lim
δ→0

P ′′
δ (a′′, b′′) = 1 − FC(r). (6)

Any vertical plus-crossing ofR′ ∩ δB at time 0 yields a vertical plus-crossing
by some s-path(y0, . . . , ym), which then yields at time 1 a vertical plus-crossing
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of R ∩ δH by a path(yk1, ζk1+1, . . . , ζk2, yk2), providinga′ < a, b′ ≥ b andδ

is sufficiently small. (The reason we first takeb′ > b and then letb′ → b is to
handle the case of timen > 1, as we shall see.) Therefore, for smallδ,

Pδ(r; n = 1) ≥ P ′
δ(a

′, b′). (7)

On the other hand, if there is a horizontal minus-crossing ofR′′ ∩ δB at time 0,
it produces a horizontal minus-crossing inR∩ δH at time 1 (for smallδ) which
blocks any possible vertical plus-crossing inR ∩ δH at that time; therefore, for
smallδ,

Pδ(r; n = 1) ≤ 1 − P ′′
δ (a′′, b′′). (8)

Letting δ → 0 and thena′, a′′ → a and b′, b′′ → b and using (5)-(8), we
conclude thatPδ(r; n = 1) converges to Cardy’s formula,FC(r), asδ → 0.

It remains to prove that the same is true for all timesn ≥ 2. In order to
do that, we first have to show that our vertical plus-crossing ofR′ ∩ δH by
(y0, ζ1, . . . , ζm, ym) created at time 1 doesn’t “shrink” too much due to the effect
of the dynamics, so that at all later times, includingn = ∞, there is a vertical
plus-crossing ofR ∩ δH by (yk1, ζk1+1, . . . , ζk2, yk2).

To do this by extending the bound (7) to alln ≥ 1, at the cost of a correction to
the right hand side that tends to zero withδ, we apply Lemma 3.1. Noting that
each of the partial paths(y0, . . . , yk1) and(yk2, . . . , ym) contains of the order of
(b′ − b)/δ sites, we see that the lemma implies that it suffices to show that there
is someβ > 0 andK < ∞ such that for any deterministic(x, x ′),

P(|CB
(x,x′)| ≥ 	 andCB

(x,x′) contains no antistar) ≤ K e−β	. (9)

To prove (9), we partitionB into disjoint antistars and denote byτ the collection
of these antistars. We do an algorithmic construction ofCB

(x,x′) (as in, e.g., [9]),
where the order of checking the sign of sites is such that when the first site in
an antistar fromτ is checked (and found to have the same sign asx ′), then the
other two sites in that antistar are checked next. Without loss of generality, we
assume thatσ 0

x′ = +1. Then standard arguments show that the probability in (9)
is bounded byK (1 − (1

2)
3)(	/3).

To similarly extend the bound (8), one proceeds in the same way, but consider-
ing horizontal minus-crossings ofR′′∩δB at time zero which produce horizontal
minus-crossings ofR ∩ δH at timen ≥ 1. Taking the limitsδ → 0, a′, a′′ →
a, b′, b′′ → b concludes the proof. �
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