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Nahm’s equations, configuration spaces
and flag manifolds
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Abstract. We give a positive answer to the Berry-Robbins problem for any compact Lie
groupgG, i.e. we show the existence of a smodthequivariant map from the space of
regular triples in a Cartan subalgebra to the flag manifgld’. This map is constructed

via solutions to Nahm’s equations and it is compatible with §ki&(3) action, where

SO (3) acts onG/ T via a regular homomorphism frof1/ (2) to G. We then generalize

this picture to include an arbitrary homomorphism fréi#i (2) to G. This leads to an
interesting geometrical picture which appears to be related to the Springer representation
of the Weyl group and the work of Kazhdan and Lusztig on representations of Hecke
algebras.
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1 Introduction

This paper has an unusual origin, evolution and potential application. As ex-
plained in [2, 3] it arose from a problem posed by Berry and Robbins [6] in their
investigation of the spin-statistics theorem. They asked the following simple
guestion: is there, for each integer 2, a continuous map

fa: Cu@R®) > Um)/T" (1.1)

compatible with the action of the symmetric grodly? HereC,(R3) is the
configuration space of ordered distinct points oR3, and U(n)/T" is the
well known flag manifold. The symmetric group acts freely on both spaces, by
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permuting points in the first space and components of the flag in the second. For
n=2,

CRY = R3x (R®-0)
U@)/T? = Py(C) =52

and there is an obvious solution to (1.1). Note that this obvious solution is also
compatible with the natural action 60 (3) on both sides.

In [2] a positive answer was given to the Berry-Robbins question using an
elementary construction of,. A more elegant construction was also proposed
but this was dependent on the conjectured non-vanishing of a certain determinant.
This question was pursued further in [3] and the conjecture has now been verified
numerically forn < 20 [5].

The mapsf, of [2] are all compatible with the action &fO(3), where we
chooseS 0 (3) to act onU(n)/T" via the irreducible representation 8t/ (2)
onC". This suggested a natural generalization of the Berry-Robbins question to
other compact Lie group& instead ofU (n). Let T be a maximal torus of;,
then the Weyl group

W = N(T)/T

acts freely on the flag manifold/ T. Let ) be the Lie algebra df’, thenW acts
also onf) and on

P =H®R> (1.2)

The singular seA of this action orf)® is the union of the codimension 3 subspaces
which are the kernels of root homomorphisms

a®1: b3 — R®
ThenW acts freely onj®> — A which is the space ofegular triples in} (i.e.
with only f as their common centralizer).
For G = U (n) we recognise that/ T is the usual flag manifold and that
6% — A = C,(R®).
The obvious generalization of (1.1) is therefore to ask for a continuous map
fe:®*—A—>G/T (1.3)
which is compatible with the action of the Weyl group. Again we can hope to

find f; which is also compatible with the action 80 (3), whereS O (3) acts on
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h® — A, via the decomposition (1.2), and acts@i7T through some preferred
homomorphism

p:SU2) — G. (1.4)

There is a natural candidate for each compact Lie gréumeneralizing the
irreduciblen-dimensional representation 8/ (2) for U (n). This is given by the
so-calledregular (or principal) homomorphisnp. This may be characterized

by the fact that, after complexificatiop takes the unipotent element$f£. (2, C)

into aregular unipotent element o;*(i.e. one which lies in a unique Borel
subgroup). The regular homomorphism is unique up to conjugacy. Its action on
G/T also factors through 0 (3).

It turns out that such a mafy;, with all the desired properties, can actually be
extracted from previous work ddahm’s equations in [9] and this is Theorem
B of section 3. The original purpose of this paper was to show how this comes
about.

After the original solution of the Berry-Robbins problem in [2], various coho-
mological consequences were drawn in [4], and similar results were expected for
other Lie groups. It was then suggested by Gus Lehrer that these ideas might be
related to the Springer representation of the Weyl group and the extensive work
done in this direction by Kazhdan and Lusztig (see for example [17] or [16]).
This has led us to extend our investigations, using Nahm'’s equation, to include
arbitrary homomorphismg of SU(2) into G. This leads to an interesting geo-
metrical picture, generalizing the map (1.3), formulated as Theorem A in section
3. Itis our hope that this will shed light on the work of Kazhdan and Lusztig and
explain the geometry behind the Hecke algebras. It is perhaps worth pointing
out that both Hecke algebras and Nahm'’s equations are related to physics, the
former through the Jones polynomials of knots (and Witten’s reinterpretation in
terms of Chern-Simons theory) and the latter through the self-dual Yang-Mills
equations and magnetic monopoles.

The paper is organised as follows. In 82 we review the key aspects of Nahm’s
equations and the various moduli spaces. Then in 83 we spell out the main
construction which in particular gives the map (1.3) and we formulate Theorems
A and B. In 84 we break th8U (2)-symmetry down to a circle subgroup and
relate the geometry to that of the complex Lie group. In 85 we explain the relation
of our construction to the Kazhdan-Lusztig work.

In order to keep the geometrical picture clear Sections 2-5 are presented in
non-technical terms. The precise analytical details are then set out in section 6.

2 Nahm'’s equations and Lie groups

Since Nahm’s equations will be our main technical tool it may be helpful to
provide here a little background on how these equations first arose and what role
in particular they play in Lie theory.
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For any Lie algebrg Nahm'’s equations are the system af-8alued ordinary
differential equations

dT;

I +I[7;, T,]=0 (2.1)
when(, j, k) is a cyclic permutation ofl, 2, 3) and theT; are functions of the
real variable.

While (2.1) makes sense for any Lie algebra these equations have a particularly
simple interpretation whegq is the Lie algebra of @ompactLie groupG (the
case of interestto us). Inthis case we hageiavariant metrid, ) ong, enabling
us to identifyg with its dualg*. This leads to the well-know@ -invariant skew
3-form ¢ on g given by

¢(T1, T, T3) = (Tx, [13, T3]) (2.2)

which also defines the bi-invariant (harmonic) exterior differential 3 -fornizon
(unique up to a scalar for simp(@). It is then easy to check that

Nahm's equations are the gradient-flow

equations for ¢ as a function ong ® g @ g. (2.3)

Regardingp as a function oy ® R3 or on HomR3, g) it is invariant under
the SO (3)-action onR3.
To see this we observe that if

T:R®— q
is a linear map then
AT : ASR® = A3g

sends thes O (3)-invariant oriented volume element&f to 73 A T A Ts.
In Lie theory it is standard to consider

g qg@R>=g"

the complexified Lie algebra. What, one may ask, is the significance of replacing
g®R? by g®R?3as in Nahm's equations? The answer is that we should identify
R3 here with theimaginary quaternions

R3 & Im(H).

To see why this is the case we should actually introduce a fourth Lie-algebra-
valued functionTy(z) and consider the expression

A = Todt + Thdxq + Todxy + Tzdxs (24)
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as defining aG-connection over
H=R*=Ra& ImH.

Since the matricesin (2.4) depend onlyroand not orx, the natural gauge group
to consider is simply thé&'-valued functions of. Using the gauge freedom we
can reducdy to zero getting back to just 3 matricEs T», T5. More invariantly
we should start with & -bundle oveR* which has an action of the translations of
R3. Then (2.4) describes a connection for this bundle whid’isinvariant and
is written in anR3-invariant gauge. The matric@sthen represent the difference
between the Lie derivative and the covariant derivative inithdirection, and
are usually referred to as Higgs fields: they are infinitesimal automorphisms of
the bundle.

Now in 4 dimensions we have the famous anti-self-duality (ASD) equations

*F =—-F

where F is the curvature of a connectiof. It was Donaldson [13] who first
observed that, for the connection (2.4), and after gauging &lyathe ASD
equations are identical with Nahm'’s equations.

Now it is an important point that the ASD equations oRérare, formally, the
hyperkahler moment map for the action of the gauge group. This leads (for-
mally) to a hyperk&ahler metric on moduli spaces of solutions. This observation
is well-known to physicists as a consequence of super-symmetry and the concept
of the hyperkéhler quotient construction, developed in [15], was inspired by this.

Hyperkahler manifolds are Riemannian manifolds of dimensiomith holon-
omy in Sp(n), so that their tangent spaces are quaternionic. They have a 2-
parameter family of complex structures (depending on an embedtirg H,
or on an imaginary quaternidrwith /2 = —1). They are the quaternionic coun-
terparts of complex Kahler manifolds and they have twistor spaces in the sense
of Roger Penrose.

All these general remarks apply, not only to the full four-dimensional ASD
equations (where the matric@g, ..., 74 in (2.4) depend on all 4 variables), but
also to the (partially) translation invariant ones such as Nahm'’s equations (where
the dependence is only on one variable). These moduli spaces of solutions to
Nahm'’s equations should formally have hyperkéhler metrics.

Of course appropriate boundary conditions need to be imposed and analytical
details need to be checked. Originally Nahm introduced his equations in relation
to non-abelian magnetic monopoles (which satisfy the Bogomolny equations, the
R-invariant version of the ASD equations) and the corresponding hyperkéahler
metrics were studied in detail in [1].

It was Kronheimer [20, 21] who first applied Nahm'’s equations to the study
of Lie groups themselves, by altering the boundary conditions. SEO(2)-
monopoles of charge Nahm considered his equation f6r = U(n) on an
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interval and took as boundary condition that thdadsimple regular polesat
each end. If thd; have simple poles with residuesthen (2.1) shows that

o; = [0}, o] (2.5)
are the commutation relations (up to a factpo®the quaternions j, k
Ulzi/z, O’2=j/2, O’3=k/2

and thus are the standard generators of the Lie algel$f& (). A pole is called
regular if then-dimensional representation ofi (2) given by the matrices (2.5)
is irreducible.

In [21] Kronheimer considered poles of any type, characterized by an arbitrary
homomorphism

p:5u(2) > g

given by the residues as in (2.5). By taking= 0 at one end (so that the solution
has no pole there), and a genepaht the other, Kronheimer obtained as his
moduli space a new hyperkahler manifold which (for almost all of its complex
structures) could be identified with the nilpotent orbitiin corresponding te
(i.e. the one containing (x) wherex is a nilpotent element af((2, C) andp is
understood as the complexification of (2.6)).

In [20] Kronheimer considered Nahm’s equation on the half-line O and
imposed finiteness at @nd finite limits atco

Ti(t) — Ti(o0) = 1,

where T1(00), T»(0c0), Ts(co) are a regular (commuting) triple. For these
boundary conditions (with th&-conjugacy class of the regular triptefixed)
he found the moduli space to be a hyperkéhler manifold which (for almost all of
its complex structures) was a regular semi-simple orbifin

These results of Kronheimer have since [11, 18] been extended to provide hy-
perkahler metrics for all complex co-adjoint orbits. This story is the quaternionic
generalization of the complex Kahler metrics on co-adjoint orbits of

The moral of all this is the following. A compact (real) Lie groGphas a
complexificationG® with compact complex homogeneous spaces @%y.B)
which have Kéahler metrics. The Lie algelrdas a (vector space) quaternioni-
sationg ® H, but there is no corresponding “quaternionic group”. However the
analogous “homogeneous spaces” do exist as hyperkahler manifolds. For many
purposes;© can be studied through, for example, the flag manit@fd/ B, so
we can view the hyperkéhler structures on the complex co-adjoint orb@s of
as substitutes for the non-existing quaternion group.

In this spirit the different homomorphisms: SU(2) — G are the quater-
nionic analogous of 1-parameter subgrotfd) — G.
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From this point of view Nahm’s equation is the key to unlocking the “quater-
nionic nature of Lie groups”. An area where this has proved its worth is in the
clarification of the work of Brieskorn on Kleinian singularities (due to Kron-
heimer [19]) and its systematic extension to the Brieskorn-Grothendieck resolu-
tion of singularities of the nilpotent variety [24].

In [8, 9] other variants of the boundary conditions for Nahm’s equations were
studied. Here we shall be concerned with the equations on the half-line where,
following Kronheimer, we take limiting regular triples & but ast — 0 we
impose a simple pole of type. The case whep is the regulasU (2) will give
the construction of the map (1.3), while the othewill yield the more general
picture to be discussed later.

3 The main construction

Let p : su(2) — g be a homomorphism, and consider solutions of Nahm’s
equations (2.1) on the half-line9 ¢ < oo, with the boundary conditions:

(@) thereisapole oftypeasr — 0

(b) theT; tend to a regular commuting triple if¥ ast — oo. (3.1)

We denote the space of such solutionsNiyp). By taking the value ato we
geta map

N'(p) — ¢ (3.2)

Note that we have fixed a definite homomorphijsnbut conjugate give equiv-
alent maps (3.2).

Now fix a maximal torusl” of G and let} be its Lie algebra.G acts ong®
and on the regular commuting triples. Each orbit is of the farmwherer is
a regular triple oy and every orbitGt meets)® in an orbit of the Weyl group
W. We can therefore define a finite coveriNgp) of N'(p) by the commutative
diagram

N(p) — N'(p)
2 \: (3.3)
BP-A >  (B-A/W

where the vertical arrows assign to a solution of Nahm’s equation its orbit type
atoo, arising from (3.2).

Fixing 7 identifiesGt with G/ T and hence, by taking the valuescat, we
get a natural map

¢(p): N(p) > G/T. (3.4)
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N(p) is a fibration ovet)> — A with fibre (att) N(p, r) and the manifolds
N(p, t) are all hyperkéhler. In fact if we denote Bf(p) the T-bundle over
N(p) induced byy thenM (p) is a hyperkahler manifold and the map

w:Mp)— 32— A

is a hyperkahler moment map of tiieaction. The manifold®/(p, 7) are justthe
hyperk&hler quotients. M (p) itself is also a suitable moduli space of solutions
of Nahm’s equations.

All these statements are best understood in terms of the gauged version of
Nahm'’s equations involving the fourth matrf. This, together with the more
precise description of the analytical details will be explained in 86 .

The action ofW on N (p), implied by (3.3), is induced by an action of the nor-
malizerN (T) on M (p). Moreover the groug U (2) acts throughout, commuting
with N(T'), and the map (p) of (3.4) is compatible with th&U (2) action on
G/ T induced byp.

In fact all these constructions are compatible with yet another group. This is
the groupZ(p), the centralizer op (SU (2)) in G. Conjugation by an element
of Z(p) preserves the boundary conditions (3.1) and so induces an action on
N(p). The natural action o (p) on G/ T also commutes (by definition) with
the action ofSU (2). ThusZ(p) lifts also to an action oM (p).

To sum up we can formulate our main result as

Theorem A. The asymptotic value of the solutions of Nahm'’s equations, with
boundary condition$3.1), yield a diagram of maps

M(p) — G
v , (3.5)
N(p) — G/T
and a compatible action of the group
N(T) x SU2) x Z(p)
descending to an action of
W x SU(2) x Z(p)

for the bottom mag.
For the fibre map

N(p) > §°— A (3.6)
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W x SU(2) acts naturally on the base, whifg p) acts trivially on the base but

acts on the fibre®v(p, t). The torusT and the groufZ(p) both preserve the

hyperkahler structure off (p), but SU (2) rotates the complex structures.
There are three noteworthy special cases.dfhese are

(@) p = 0. ThenZ(p) = G and, as will be discussed in the next section,
N(p, 7) is the complexificatiorG®/TC of G/T. The map

¢:G%/TC > G/T

commutes withG. Observing thatG/T sits insideG®/TC with a con-
tractibleT -invariant slice it follows thap must be a deformation retraction
compatible with thisG-action.

(b) p theregulaSU (2). ThenZ(p) is finite and, as will be shown in the next
section,N(p, t) is one point. Thus Theorem A, in this case, reduces to

Theorem B. The asymptotic value of the solutions of Nahm'’s equations,
for conditions(3.1) with p regular, yields a map

d:°—A—>G/T

compatible withW x SU (2).

This is the result, generalizing the caselofn), which arose from the
Berry-Robbins paper and provided our original motivation.

(c) p the sub-reguldrSU(2). Then, as we shall see laté¥,(p, 7) is the 4-
dimensional ALE space studied by Kronheimer [19]. In this cdge)
is finite for all simpleG exceptSU (n) when it isU(1). This circular
symmetry corresponds to the Gibbons-Hawking construction [14].

As mentioned in section 1, the essentials of the proof of Theorem A are already
contained in [9], and the details are given in section 6.

4 The complex picture

Although not necessary for Theorem A this section explains the geometrical
nature of the fibre®v (o, t) occurring in Theorem A. The complex story is also
needed for the link with the work of Kazhdan and Lusztig outlined in section 5.

1This means that the corresponding nilpotent orbitnis subregular (the unique codimension 2
orbit in the nilpotent variety).
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In this section we shall break the symmetryR5fby picking a preferred axis
and consider the orthogonal projection

7R3> R?2=C,

identifying R? with the complex plane. The symmetry groS® (3) is then
reduced taSO (2) = U (1).

The preferred axis will pick out a distinguished complex symplectic structure
on all the hyperkéhler manifolds described in the preceding sections. We shall
now analyse the complex manifolds that arise. Inthis we are essentially following
Kronheimer [21] as extended by the second author [8, 7].

Let r = (11, 12, T3) be a regular triple with projectiofi(t) = o = 15 + i ts.

We shall in the first instance assume thais a regular point of the complex
Lie algebral) ® C. Then the main result proved in [8] identifies the preferred
complex symplectic structure of the manifa\ o, 7). To describe this we need
to recall the sliceS(p) introduced by Slodowy [24]. First we extendto a
homomorphism of complex Lie algebras

p:38l2,C) —> g®C.

b= -1 0 (01 (00
L o1) *Tloo) " \10
be the standard basis 6f(2, C) and letH, X, Y be their images under. We
put

Let

S(p) =Y + Z(X) (4.1)

whereZ(X) is the centralizer oK in g ® C. ThenS(p) is a transverse slice to
the orbit of Y. It is transverse to any adjoint orbit 6fC it meets. In particular

it is transverse to the orb&Co and so intersects this in a manifold. Then we
have [8]

N(p,7) = G% N S(p) (4.2)

whereN (p, t) is given its preferred complex structure. Varying while keep-
ing o = 1o + i13 fixed, gives different Kahler metrics to the complex manifold
in (4.2).
If 7, is aregular point of), then(zq, 0, 0) is a regular triple so thaV (p, 7) is
still a complex manifold fos = 0, where the isomorphism (4.2) breaks down.
To understand what happens here we have to explain the Brieskorn-Grothendieck
theory of the simultaneous resolution.
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Starting now with the complex Lie group® we let B be a Borel subgrouph,
its Lie algebra and© a Cartan subalgebra In The Grothendieck resolution is
then given by the diagram

GC x3 0 —w> qC
L6 1 x (4.3)
6% R A4

whereB acts onG® on the right and by the adjoint action briThe vertical maps
are given by taking the semi-simple parts (the “eigenvalues”). The key property
of this diagram is that the fibres éfprovide resolutions of the singularities of
the fibres ofy and thatf is a smooth fibration (and topologically a product).
Note in particular that —1(0) is a resolution of the nilpotent variet} : it is
isomorphic to the cotangent bundfé(GC/ B).

We can now restrict this diagram to the sli€é), giving the diagram

v HS(p) - S(p)
1 0(p) I x(p) (4.4)
6c - 5w
Again the fibres ob (p) resolve the singularities of the fibres pto) andé (p)
is a smooth fibration. In particular the inverse ima@)1(0) resolves the
singularities of)t N S(p).
The generic fibre of (p) is the manifoldGC (o) N S(p) of (4.2). As shown
in [9, 10] the manifoldy~1S(p) of (4.4) can be naturally identified with the

submanifoldV,, (p) C N(p) (with fixed regularry). In other words the complex
manifoldsN (p, t) are the fibres of (p) and in particular

N(p; 11,0,0) (4.5)

is the Grothendieck resolution 8f N S(p).
Let us illustrate all this by examining the three special casgs:of

(@ p=0, S(p) =g, N(@©; 1) =G%0)andN(0; 1, 0, 0) isthe resolution
of 9t and diagram (4.4) is just (4.3).

(b) p the regulasu(2), S(p)is a translate 0§/ W, the manifold in (4.2) is
just a point and (p) is an isomorphism.

(c) pthe sub-regulasii(2), the manifolds in (4.2) have complex dimension 2
and the fibres ob(p) are the ALE spaces as discussed by Kronheimer
[19].
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Considering again the general case, we have a fibratign — 7% — A with
hyperkahler manifolda/ (p, ) as fibres. The groupU (2) acts on this fibration.
The subgrouf/ (1) = SO (2) C SO(3) fixing a direction ofR® has fixed points
of the formt = (1, 0,0) € h3 — A and so its double-cove§ C SU(2) acts
on the fibreN (p, T) over this point. As we have seen this fibre in its complex
structure fixed byS is a complex manifold which can be identified with the
resolution offt N S(p). ThusN (p, ) has a holomorphic action d@f (1), in
addition to a commuting action df(p). As this holomorphic action ot/ (1)
must leaveY fixed, it is the composition of the complex scalar actiombrand
of the adjoint action by (U (1)). This will be explained more fully in section 6.
The map

N(p, ) = S(p)

defines a distinguished compact complex subspace which is the inverse image of
the base point € S(p) (see (4.1)). From the Grothendieck resolution (4.4) we
see that this is jushe fixed point set of the action ofAd(Y) onG®/B = G/T.
Equivalently, viewingGC /B as the spac® of all Borel subgroups, it is the set of
all Borel subgroups whose Lie algebra conthiliVe shall denote it b8y. When

p isthe regulasO(2), Y is regular andy is a point. Wherp is sub-regulary

is sub-regular an®y is 1-dimensional, consisting of rational curves intersecting
as in the Dynkin diagram [24]. In genet8l, C Jt(p, ) is the “compact core”

of the open manifold, and carries all its topological information. More precisely,
the action of S extends to an action a&* all of whose orbits have limits (as

z — o0) in Vy. The observation essentially goes back to Slodowy [24] and will
be recalled in detail in the next section.

5 Relation with Kazhdan-Lusztig

In a long series of papers (see [16, 17]) Kazhdan and Lusztig made an extensive
study of representation of the Hecke algehifaassociated to Weyl groups (both
finite and affine). A comprehensive account of this theory is given in [12]. These
algebras are defined over the finite Laurent series

A=Clg,q ]

and reduce to the group algebras of the Weyl group whenl.

Kazhdan and Lusztig construct representationg/adn the equivariank -
groups of certain subspaces of the flag manifold of the Lie gtdufhe purpose
of this section is to show how all the ingredients in the Kazhdan-Lusztig con-
struction arise naturally in our context. It is our hope that this will shed light
on the geometric significance of the Hecke algebras. Essentially, by using the
“quaternionic” aspect of Lie groups which we have been emphasizing we are
able to move outside the purely complex theory of Lie groups where Kazhdan
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and Lusztig work. Since they use the Grothendieck resolution (and ideas of
Brieskorn and Slodowy) it is not surprising that the hyperkahler story described
in previous sections should be relevant.

Givenp : SU(2) — G we recall that we have the fibration (3.6)

N(p)

!
5 - A

whose fibresV (p, t) are hyperkahler manifolds, and that the group
W x SU(2) x Z(p)

acts on the fibration (wherg(p) centralizes the image qf). We now fix a
direction inR3 reducing theSU (2) symmetry to a circleS. We identify the ring
A with the character ring of (overC)

A=R(S)®C (5.1)

(sinceS C SU(2) double-coverssO(2) c SO(3), ourg is the square-root of
the one in [17].
This means that any spa&eon whichsS acts will have an equivariai -group

Ks(X)®C (5.2)

which is anA-module. IfX is not compact we shall ugé-theory withcompact
supportsin (5.2)

Consider now a fixed point for the action ofS on §3 — A. If we choose
our coordinates oR? so thatS defines rotation in théx,, x3) plane thenr is
fixed unders if it is of the form (z1, 0, 0). Note that the set of such points can be
identified with the regular points éfand so the components are permuted by the
Weyl group. A choice of component is essentially the same as a choice of Borel
subgroup ofGC containingT’, or equivalently a choice of complex structure on
the flag manifoldG/T.

The fibreN (p, t) overt has a complex structure (singled out by our choice of
direction) and a holomorphic action 8fWe can therefore consider ti&egroup
(with compact support)

Ks(N(p, 1)) ® C (5.3)
Inside N (p, t) we have its “compact core”, namely the fixed-point &

of the nilpotent element e 31(2, C), as explained in 84, and the action©f
(complexification ofS) has all limitsz — oo in By.
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Now Kazhdan-Lusztig work with the “homology” versiok§ of K2 and
observe that, in the situation just described, we have a natural isomorphism

K5(By) ® C = KX(N(p, 1)) ®C. (5.4)

It is modules such as these in (5.4) (and various refinements) that afe the
modules studied by Kazhdan and Lusztig. One obvious refinement is to enhance
the symmetry fron to S x Z(p), or to a subgroup of this.

The Weyl groupW does not act on the spaces in (5.4), it permutes them.
However we also have the map

¢:N(p)— G/T

defined by (3.4) and this is compatible with the actiombk Z(p). This makes
the groups in (5.4) into modules over

Ks(G/T)®C

(whereS acts onG/ T via p) and more generally we can replag&ey S x Z(p).

Let us now describe, somewhat speculatively, why this picture might help to
explain the geometric significance of the Hecke algebra and its modules. As
we have seen th& -groups in question, disregarding for the moment $he
equivariance, ar& -groups of fibres ovef® — A with an action of W on the
fibration. Alternatively they ar& -groups of fibres oveft)® — A)/W. In a non-
equivariant situation this gives rise to the monodromy actioi of he action of
W on the homology of the fibres essentially gives the Springer representations.
In an equivariant situation (e.g. with &h-action) it is not clear what replaces
monodromy, sinces only acts on fibres over its fixed points. This suggests that
(6% — A)/ W, together with itsS-action, somehow produces the Hecke algebra
(instead of the fundamental group) and that bundles over this space (together with
compatibleS-action) yieldH-modules. One small piece of evidence in favour of
this idea is to note that th&-equivariant analogue of a path from a pair(fixed
by S) toits transformw (7), @ € W, is a 2-sphere acted on 5y The equivariant
K -theory of such a 2-sphere is anmodule with one generator, satisfying a
guadratic equation which is essentially the defining equation for generators of
H.

Unfortunately, although this is an appealing idea, we have not yet seen how to
carry it out. What we have done however is to put the general Kazhdan-Lusztig
construction into a more natural form.

In particular the circle symmetry is enlarged to a fulf (2)-action. We hope
the pay-off will emerge later.
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6 Analytic details

In this section we shall explain the analytic details behind the main construction
leading to the proof of Theorem A and in particular show how to define the
spacesN (p) and M (p) of section 3 as moduli spaces of solutions to Nahm’s
equations. The Nahm equations will be the full translation-invariant anti-self-
duality equations oiR*:

T; + [To, ;1 + [Tk, T;1 =0, (6.1)

where(i, j, k) run over cyclic permuations afl, 2, 3). This form of Nahm’s
equations admits an action by the gauge grou@-oflued functiong (¢):

To +— Ad(9)To—gg*
T — Ad()T,, i=123 (6.2)

The component; can be gauged away if we allow arbitrary gauge transforma-
tions. We recall that the spad& (p) was defined as the space of solutions to
Nahm'’s equations on the half-line with poles of typat: = 0 and approaching

a regular commuting triple as— +oo. As Kronheimer [20] observes such a
solution must approach its limit exponentially fast.

Let Q be the space of exponentially fast decaying function§f0, +-oc],

ie.

Q= {f 2 (0, 00] = ¢ Fy-0 SU(IJO(e”’IIf(t)II +eMdf/drl) < +00} . (6.3

To defineN(p) let us fix a Cartan subalgebbaof g and consider solutions to
(6.1) on the half-line satisfying the following boundary conditions at infinity:

(i) To(400) =0;

(i) T;(+o00) e fhfori=0,...,3;
(i) (T1(400), To(+00), T3(+00)) is a regular triple, i.e. its centralizer s
(iv) (T;(t) — T;(+00)) e Qfori =0,1, 2, 3.

In addition, the boundary conditionssat 0 are the same as fo¢'(p). This
space is acted upon by the gauge grguphose Lie algebra consistsiodunded
C2-pathsp : [0, +00) — g with p(0) = 0 andp, [z, p] both belonging ta for
any regular element of §). This means that any element@fis asymptotic to
an element of’ = expl). Observe that we have a free actiondf= N(T)/T
on N (p) given by gauge transformations asymptotic to elementé@f).

We claim that the moduli space we obtain is the sp&i¢g) defined by the
diagram (3.3). Indeed, we see that we can always nTgkientically zero
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via a gauge transformatiog(z) with g(0) = 1. This gives us a projection
N(p) — N'(p). Now suppose we have two solutio(E) and(7;) in N(p)
which map to the same element 8f(p). This means that7;) and(7;) are
gauge equivalent via a gauge transformagon with g(0) = 1. Moreover, as
the limit of both(7;) and(7) is a regular triple in the same Cartan subalgebra,
g(t) is asymptotic to an element &f(7') and so(7;) and(7/) are in the same
W-orbit.

The manifold N (p) is not a hyperkahler. Nevertheless it is fibred by the
hyperk&hler manifoldsV (p, t) defined by fixing the limitr = (7y, 72, t3) Of
T1, T», T3 [8] (this is the fibration defined in (3.4)). As pointed out in section 2, a
moduli space of solutions to Nahm'’s equations is expected to carry a hyperkéhler
structure if it can be (formally) realised as a an infinite-dimensional hyperkahler
guotient. The spaced (p, ) are such quotients of the flat affine manifold
consisting of all functiongTy, T1, T», T3) with prescribed boundary conditions.

Wheno = 1, +it3is aregular element @f°, N(p, v) has the complex struc-
ture (corresponding to choosing theaxis inR%) described in (4.2). In general,
a complex structure of a hyperkahler moduli space of solutions to Nahm'’s equa-
tions can be identified by writing Nahm’s equations as equationgferalued
functions. If we choose an isomorphism (compatible with the usual metrics)
R3 =R x C, i.e. we choose complex coordinates, say- ix1, x» + ix3), on
R4, we can put

a:=To+iT1, B:=T>+iT3

The Nahm equations can then be written as:
d k * k
et a) e+ p1=0 (6.4)

and

d

The second equation is preserved by the complex gauge transformations and our
moduli space as a complex (in fact complex-symplectic) manifold is just

(solutions to (6.5)/(complex gauge transformations
This is an example of identifying hyperkahler and complex symplectic quotients
[15].
Returning toN (p, ), we first observe, after Kronheimer [20], that whee=

0, N(p, ) is the complex adjoint orbit of with the holomorphic identification
given by

(a(t), B(1)) — B(0). (6.6)
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Foragenergb, N(p, ) can be defined as the hyperkahler quotient of the product
manifold N(O, ) x N,, whereN, is the moduli space of solutions to Nahm’s
equations on the intervaD, 1] with poles of typep atr = 0 and regular at = 1

(mod gauge transformations which are 1 at both endpoints). This hyperk&hler
manifold has been studied in detail in [8] where it was shown that with respect
to any complex structure it iS(p) x G (S(p) is the transversal slice defined

in (4.1)). In particular, whem = 0, N, is isomorphic to7*G® as a complex-
symplectic manifold [22, 8].

Both N (0, ) and N, admit a hyperkahleG-action given by gauge trans-
formations with arbitrary values at= 0 andt = 1, respectively. Taking the
hyperkéahler quotient av (0, ) x N, by the diagonal is equivalent to gluing
the solutions inV, att = 1 to those inN (0, r) atz = 0, and so it results in
the manifoldN (p, 7). On the other hand, the complex symplectic quotient of
(S(p) x G%) x O(0) by G© is easily seen to b&(p) N O(o) (the complex
moment map oS (p) x GC is u(B, g) = Ad(g)B and onO(o) it is the iden-
tity). The general mantra of identifying hyperkahler and complex-symplectic
quotients givesus the complex structure of (p, 7).

N(p) admits an action o8U (2) defined as follows. Le# be an element
of SU(2). ThenA acts onN(p) by rotating the “vector” (T1(¢), T»(t), Ts(t)
and then acting on the resulting solution to Nahm’s equations with a gauge
transformation equal to(A)~* atr = 0. This action leaves invariant the residues
of (To, T1, T, T3) att = 0.

We shall now explain the diagram (3.5) of Theorem A in terms of the solutions
to Nahm’s equations. We shall define a torus bundlg) over N(p) which
will be a hyperkahler manifold (more exactly: a hypercomplex manifold with a
compatible symmetric form which is generically non-degenerate). To define this
torus bundle we first observe th&lt(p) can be also defined a8 /G, where A
is defined by omitting the condition (i) on the solutions to Nahm’s equations in
the definition ofN (p) and the gauge group is enlargeddaonsisting of paths
g(¢) asymptotic to exfhr 4+ Ah) for someh € ) andi € R. In other words the
Lie algebra ofg consists ofC2-pathsp : [0, +00) — g such that

() p(0) =0 andp has a limit inf) at 4+o0;
(i) (p — p(+00)) € R, and[z, p] € 2 for any regular element € b,

The torus bundl@/ (p) over N (p) is defined as the quotierit /Go, wheregy is
defined agg with the added condition:
(ii)) im ;4 o (0 (t) — tp(+00)) = 0.

2strictly speaking a hyperkahler quotient can in general only be identified with an open subset of a
complex-symplectic quotient (of semi-stable points). The analytic argument that in our case the
two coincide is given in [8].

Bull Braz Math Soc, Vol. 33, N. 2, 2002



174 MICHAEL ATIYAH AND ROGER BIELAWSKI

In other words, elemenigt) of Gy are asymptotic to exgpr) for someh € §.
Itis clear thatG /Gy = exp(h) and therefored (p) is a torus bundle ove¥ (p).

We observe that thi&f (p) is the one defined by the diagram (3.5). Indeed, we
can makelp identically zero by a gauge transformation asymptotig éxp (/1)
whereg € G andh € ). Since we quotient by, we obtain a well defined
element ofG fitting into the diagram (3.5) (observe that in the above description
of N(p), we obtain a gauge transformation asymptotig e&xp(kt) but defined
only up to the action of").

The hyperkahler structure 1 (p) is part of the general story discussed in sec-
tion 2 and its existence is proved in detail in [9]. In particular the hyperkéhler mo-
ment map for the action @ on M (p) is given by(T1(+00), To(+00), T3(+00)),
and so the hyperkahler quotients are the fidéfs, t) of the map (3.6). There s
an action ofSU (2) defined onM (p) in exactly the same way as fof(p). This
action rotates the complex structuresWfp) which are therefore all equivalent.

M (p) as a complex manifold is discussed at length in [9]. In the complex picture
only the action of thd/ (1) c SU(2) preserving the chosen complex structure
is visible. This is the action described towards the end of §4.
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