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Abstract. We give a positive answer to the Berry-Robbins problem for any compact Lie
groupG, i.e. we show the existence of a smoothW -equivariant map from the space of
regular triples in a Cartan subalgebra to the flag manifoldG/T . This map is constructed
via solutions to Nahm’s equations and it is compatible with theSO(3) action, where
SO(3) acts onG/T via a regular homomorphism fromSU(2) toG. We then generalize
this picture to include an arbitrary homomorphism fromSU(2) toG. This leads to an
interesting geometrical picture which appears to be related to the Springer representation
of the Weyl group and the work of Kazhdan and Lusztig on representations of Hecke
algebras.
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1 Introduction

This paper has an unusual origin, evolution and potential application. As ex-
plained in [2, 3] it arose from a problem posed by Berry and Robbins [6] in their
investigation of the spin-statistics theorem. They asked the following simple
question: is there, for each integern ≥ 2, a continuous map

fn : Cn(R3) → U(n)/T n (1.1)

compatible with the action of the symmetric group�n? HereCn(R3) is the
configuration space ofn ordered distinct points ofR3, andU(n)/T n is the
well known flag manifold. The symmetric group acts freely on both spaces, by
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permuting points in the first space and components of the flag in the second. For
n = 2,

C2(R
3) = R

3 × (R3 − 0)
U(2)/T 2 = P1(C) = S2

and there is an obvious solution to (1.1). Note that this obvious solution is also
compatible with the natural action ofSO(3) on both sides.

In [2] a positive answer was given to the Berry-Robbins question using an
elementary construction offn. A more elegant construction was also proposed
but this was dependent on the conjectured non-vanishing of a certain determinant.
This question was pursued further in [3] and the conjecture has now been verified
numerically forn ≤ 20 [5].

The mapsfn of [2] are all compatible with the action ofSO(3), where we
chooseSO(3) to act onU(n)/T n via the irreducible representation ofSU(2)
onC

n. This suggested a natural generalization of the Berry-Robbins question to
other compact Lie groupsG instead ofU(n). Let T be a maximal torus ofG,
then the Weyl group

W = N(T )/T

acts freely on the flag manifoldG/T . Let � be the Lie algebra ofT , thenW acts
also on� and on

�3 = � ⊗ R
3. (1.2)

The singular set�of this action on�3 is the union of the codimension 3 subspaces
which are the kernels of root homomorphisms

α ⊗ 1 : �3 → R
3.

ThenW acts freely on�3 − � which is the space ofregular triples in � (i.e.
with only � as their common centralizer).

ForG = U(n) we recognise thatG/T is the usual flag manifold and that

�3 −� = Cn(R
3).

The obvious generalization of (1.1) is therefore to ask for a continuous map

fG : �3 −� → G/T (1.3)

which is compatible with the action of the Weyl group. Again we can hope to
findfG which is also compatible with the action ofSO(3), whereSO(3) acts on
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h3 −�, via the decomposition (1.2), and acts onG/T through some preferred
homomorphism

ρ : SU(2) → G. (1.4)

There is a natural candidate for each compact Lie groupG, generalizing the
irreduciblen-dimensional representation ofSU(2) forU(n).This is given by the
so-calledregular (or principal) homomorphismρ. This may be characterized
by the fact that, after complexification,ρ takes the unipotent element ofSL(2,C)
into a regular unipotent element ofGC(i.e. one which lies in a unique Borel
subgroup). The regular homomorphism is unique up to conjugacy. Its action on
G/T also factors throughSO(3).

It turns out that such a mapfG, with all the desired properties, can actually be
extracted from previous work onNahm’s equations in [9] and this is Theorem
B of section 3. The original purpose of this paper was to show how this comes
about.

After the original solution of the Berry-Robbins problem in [2], various coho-
mological consequences were drawn in [4], and similar results were expected for
other Lie groups. It was then suggested by Gus Lehrer that these ideas might be
related to the Springer representation of the Weyl group and the extensive work
done in this direction by Kazhdan and Lusztig (see for example [17] or [16]).
This has led us to extend our investigations, using Nahm’s equation, to include
arbitrary homomorphismsρ of SU(2) intoG. This leads to an interesting geo-
metrical picture, generalizing the map (1.3), formulated as Theorem A in section
3. It is our hope that this will shed light on the work of Kazhdan and Lusztig and
explain the geometry behind the Hecke algebras. It is perhaps worth pointing
out that both Hecke algebras and Nahm’s equations are related to physics, the
former through the Jones polynomials of knots (and Witten’s reinterpretation in
terms of Chern-Simons theory) and the latter through the self-dual Yang-Mills
equations and magnetic monopoles.

The paper is organised as follows. In §2 we review the key aspects of Nahm’s
equations and the various moduli spaces. Then in §3 we spell out the main
construction which in particular gives the map (1.3) and we formulate Theorems
A and B. In §4 we break theSU(2)-symmetry down to a circle subgroup and
relate the geometry to that of the complex Lie group. In §5 we explain the relation
of our construction to the Kazhdan-Lusztig work.

In order to keep the geometrical picture clear Sections 2-5 are presented in
non-technical terms. The precise analytical details are then set out in section 6.

2 Nahm’s equations and Lie groups

Since Nahm’s equations will be our main technical tool it may be helpful to
provide here a little background on how these equations first arose and what role
in particular they play in Lie theory.
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For any Lie algebra� Nahm’s equations are the system of 3�-valued ordinary
differential equations

dTi

dt
+ [Tj , Tk] = 0 (2.1)

when(i, j, k) is a cyclic permutation of(1,2,3) and theTi are functions of the
real variablet.

While (2.1) makes sense for any Lie algebra these equations have a particularly
simple interpretation when� is the Lie algebra of acompactLie groupG (the
case of interest to us). In this case we have aG-invariant metric〈, 〉 on�,enabling
us to identify� with its dual�∗. This leads to the well-knownG -invariant skew
3-formφ on � given by

φ(T1, T2, T3) = 〈T1, [T2, T3]〉 (2.2)

which also defines the bi-invariant (harmonic) exterior differential 3 -form onG

(unique up to a scalar for simpleG). It is then easy to check that

Nahm’s equations are the gradient-flow
equations forφ as a function on� ⊕ � ⊕ �.

(2.3)

Regardingφ as a function on� ⊗ R
3 or on Hom(R3, �) it is invariant under

the SO(3)-action on R
3.

To see this we observe that if

T : R
3 → �

is a linear map then

�3T : �3
R

3 → �3�

sends theSO(3)-invariant oriented volume element ofR
3 to T1 ∧ T2 ∧ T3.

In Lie theory it is standard to consider

� ⊕ � ∼= � ⊗ R
2 ∼= �C

the complexified Lie algebra. What, one may ask, is the significance of replacing
�⊗R

2 by �⊗R
3 as in Nahm’s equations? The answer is that we should identify

R
3 here with theimaginary quaternions

R
3 ∼= Im(H).

To see why this is the case we should actually introduce a fourth Lie-algebra-
valued functionT0(t) and consider the expression

A = T0dt + T1dx1 + T2dx2 + T3dx3 (2.4)

Bull Braz Math Soc, Vol. 33, N. 2, 2002



NAHM’S EQUATIONS, CONFIGURATION SPACES AND FLAG MANIFOLDS 161

as defining aG-connection over

H = R
4 = R ⊕ ImH.

Since the matrices in (2.4) depend only ont,and not onx, the natural gauge group
to consider is simply theG-valued functions oft. Using the gauge freedom we
can reduceT0 to zero getting back to just 3 matricesT1, T2, T3.More invariantly
we should start with aG -bundle overR4 which has an action of the translations of
R

3. Then (2.4) describes a connection for this bundle which isR
3 -invariant and

is written in anR3-invariant gauge. The matricesTi then represent the difference
between the Lie derivative and the covariant derivative in thei th direction, and
are usually referred to as Higgs fields: they are infinitesimal automorphisms of
the bundle.

Now in 4 dimensions we have the famous anti-self-duality (ASD) equations

∗F = −F
whereF is the curvature of a connectionA. It was Donaldson [13] who first
observed that, for the connection (2.4), and after gauging awayT0, the ASD
equations are identical with Nahm’s equations.

Now it is an important point that the ASD equations overR
4 are, formally, the

hyperkähler moment map for the action of the gauge group. This leads (for-
mally) to a hyperkähler metric on moduli spaces of solutions. This observation
is well-known to physicists as a consequence of super-symmetry and the concept
of the hyperkähler quotient construction, developed in [15], was inspired by this.

Hyperkähler manifolds are Riemannian manifolds of dimension 4nwith holon-
omy in Sp(n), so that their tangent spaces are quaternionic. They have a 2-
parameter family of complex structures (depending on an embeddingC → H,

or on an imaginary quaternionI with I 2 = −1).They are the quaternionic coun-
terparts of complex Kähler manifolds and they have twistor spaces in the sense
of Roger Penrose.

All these general remarks apply, not only to the full four-dimensional ASD
equations (where the matricesT0, ..., T4 in (2.4) depend on all 4 variables), but
also to the (partially) translation invariant ones such as Nahm’s equations (where
the dependence is only on one variable). These moduli spaces of solutions to
Nahm’s equations should formally have hyperkähler metrics.

Of course appropriate boundary conditions need to be imposed and analytical
details need to be checked. Originally Nahm introduced his equations in relation
to non-abelian magnetic monopoles (which satisfy the Bogomolny equations, the
R-invariant version of the ASD equations) and the corresponding hyperkähler
metrics were studied in detail in [1].

It was Kronheimer [20, 21] who first applied Nahm’s equations to the study
of Lie groups themselves, by altering the boundary conditions. ForSU(2)-
monopoles of chargen Nahm considered his equation forG = U(n) on an
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interval and took as boundary condition that theTi hadsimple regular polesat
each end. If theTi have simple poles with residuesσi then (2.1) shows that

σi = [σj , σk] (2.5)

are the commutation relations (up to a factor 2) of the quaternionsi, j, k

σ1 = i/2, σ2 = j/2, σ3 = k/2

and thus are the standard generators of the Lie algebra ofSU(2).A pole is called
regular if then-dimensional representation of��(2) given by the matrices (2.5)
is irreducible.

In [21] Kronheimer considered poles of any type, characterized by an arbitrary
homomorphism

ρ : ��(2) → �

given by the residues as in (2.5). By takingρ = 0 at one end (so that the solution
has no pole there), and a generalρ at the other, Kronheimer obtained as his
moduli space a new hyperkähler manifold which (for almost all of its complex
structures) could be identified with the nilpotent orbit in�C corresponding toρ
(i.e. the one containingρ(x) wherex is a nilpotent element of��(2, C) andρ is
understood as the complexification of (2.6)).

In [20] Kronheimer considered Nahm’s equation on the half-linet ≥ 0 and
imposed finiteness at 0, and finite limits at∞

Ti(t) → Ti(∞) = τi,

whereT1(∞), T2(∞), T3(∞) are a regular (commuting) triple. For these
boundary conditions (with theG-conjugacy class of the regular tripleτ fixed)
he found the moduli space to be a hyperkähler manifold which (for almost all of
its complex structures) was a regular semi-simple orbit in�C.

These results of Kronheimer have since [11, 18] been extended to provide hy-
perkähler metrics for all complex co-adjoint orbits. This story is the quaternionic
generalization of the complex Kähler metrics on co-adjoint orbits ofG.

The moral of all this is the following. A compact (real) Lie groupG has a
complexificationGC with compact complex homogeneous spaces (e.g.GC/B)

which have Kähler metrics. The Lie algebra� has a (vector space) quaternioni-
sation� ⊗H, but there is no corresponding ‘‘quaternionic group’’. However the
analogous ‘‘homogeneous spaces’’ do exist as hyperkähler manifolds. For many
purposesGC can be studied through, for example, the flag manifoldGC/B, so
we can view the hyperkähler structures on the complex co-adjoint orbits ofGC

as substitutes for the non-existing quaternion group.
In this spirit the different homomorphismsρ : SU(2) → G are the quater-

nionic analogous of 1-parameter subgroupsU(1) → G.
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From this point of view Nahm’s equation is the key to unlocking the ‘‘quater-
nionic nature of Lie groups’’. An area where this has proved its worth is in the
clarification of the work of Brieskorn on Kleinian singularities (due to Kron-
heimer [19]) and its systematic extension to the Brieskorn-Grothendieck resolu-
tion of singularities of the nilpotent variety [24].

In [8, 9] other variants of the boundary conditions for Nahm’s equations were
studied. Here we shall be concerned with the equations on the half-line where,
following Kronheimer, we take limiting regular triples at∞ but ast → 0 we
impose a simple pole of typeρ. The case whenρ is the regularSU(2) will give
the construction of the map (1.3), while the otherρ will yield the more general
picture to be discussed later.

3 The main construction

Let ρ : su(2) → � be a homomorphism, and consider solutions of Nahm’s
equations (2.1) on the half-line 0< t < ∞, with the boundary conditions:

(a) there is a pole of typeρ ast → 0
(b) theTi tend to a regular commuting triple in�3 ast → ∞.

(3.1)

We denote the space of such solutions byN ′(ρ). By taking the value at∞ we
get a map

N ′(ρ) → �3. (3.2)

Note that we have fixed a definite homomorphismρ, but conjugateρ give equiv-
alent maps (3.2).

Now fix a maximal torusT of G and let� be its Lie algebra.G acts on�3

and on the regular commuting triples. Each orbit is of the formGτ whereτ is
a regular triple of� and every orbitGτ meets�3 in an orbit of the Weyl group
W.We can therefore define a finite coveringN(ρ) ofN ′(ρ) by the commutative
diagram

N(ρ) → N ′(ρ)
↓ ↓

�3 −� → (�3 −�)/W

(3.3)

where the vertical arrows assign to a solution of Nahm’s equation its orbit type
at∞, arising from (3.2).

Fixing τ identifiesGτ with G/T and hence, by taking the values at∞, we
get a natural map

φ(ρ) : N(ρ) → G/T . (3.4)
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N(ρ) is a fibration over�3 − � with fibre (atτ) N(ρ, τ ) and the manifolds
N(ρ, τ) are all hyperkähler. In fact if we denote byM(ρ) theT -bundle over
N(ρ) induced byφ thenM(ρ) is a hyperkähler manifold and the map

µ : M(ρ) → �3 −�

is a hyperkähler moment map of theT -action. The manifoldsN(ρ, τ)are just the
hyperkähler quotients. M(ρ) itself is also a suitable moduli space of solutions
of Nahm’s equations.

All these statements are best understood in terms of the gauged version of
Nahm’s equations involving the fourth matrixT0. This, together with the more
precise description of the analytical details will be explained in §6 .

The action ofW onN(ρ), implied by (3.3), is induced by an action of the nor-
malizerN(T ) onM(ρ).Moreover the groupSU(2) acts throughout, commuting
with N(T ), and the mapφ(ρ) of (3.4) is compatible with theSU(2) action on
G/T induced byρ.

In fact all these constructions are compatible with yet another group. This is
the groupZ(ρ), the centralizer ofρ(SU(2)) in G. Conjugation by an element
of Z(ρ) preserves the boundary conditions (3.1) and so induces an action on
N(ρ). The natural action ofZ(ρ) onG/T also commutes (by definition) with
the action ofSU(2). ThusZ(ρ) lifts also to an action onM(ρ).

To sum up we can formulate our main result as

Theorem A. The asymptotic value of the solutions of Nahm’s equations, with
boundary conditions(3.1), yield a diagram of maps

M(ρ) → G

↓ ↓
N(ρ)

φ→ G/T
(3.5)

and a compatible action of the group

N(T )× SU(2)× Z(ρ)

descending to an action of

W × SU(2)× Z(ρ)

for the bottom mapφ.

For the fibre map

N(ρ) → �3 −� (3.6)
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W × SU(2) acts naturally on the base, whileZ(ρ) acts trivially on the base but
acts on the fibresN(ρ, τ). The torusT and the groupZ(ρ) both preserve the
hyperkähler structure ofM(ρ), butSU(2) rotates the complex structures.

There are three noteworthy special cases ofρ. These are

(a) ρ = 0. ThenZ(ρ) = G and, as will be discussed in the next section,
N(ρ, τ) is the complexificationGC/T C of G/T . The map

φ : GC/T C → G/T

commutes withG. Observing thatG/T sits insideGC/T C with a con-
tractibleT -invariant slice it follows thatφmust be a deformation retraction
compatible with thisG-action.

(b) ρ the regularSU(2). ThenZ(ρ) is finite and, as will be shown in the next
section,N(ρ, τ) is one point. Thus Theorem A, in this case, reduces to

Theorem B. The asymptotic value of the solutions of Nahm’s equations,
for conditions(3.1)with ρ regular, yields a map

φ : �3 −� → G/T

compatible withW × SU(2).

This is the result, generalizing the case ofU(n), which arose from the
Berry-Robbins paper and provided our original motivation.

(c) ρ the sub-regular1 SU(2). Then, as we shall see later,N(ρ, τ) is the 4-
dimensional ALE space studied by Kronheimer [19]. In this caseZ(ρ)

is finite for all simpleG exceptSU(n) when it isU(1). This circular
symmetry corresponds to the Gibbons-Hawking construction [14].

As mentioned in section 1, the essentials of the proof of Theorem A are already
contained in [9], and the details are given in section 6.

4 The complex picture

Although not necessary for Theorem A this section explains the geometrical
nature of the fibresN(ρ, τ) occurring in Theorem A. The complex story is also
needed for the link with the work of Kazhdan and Lusztig outlined in section 5.

1This means that the corresponding nilpotent orbit in�C is subregular (the unique codimension 2
orbit in the nilpotent variety).
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In this section we shall break the symmetry ofR
3 by picking a preferred axis

and consider the orthogonal projection

π : R
3 → R

2 ∼= C,

identifying R
2 with the complex plane. The symmetry groupSO(3) is then

reduced toSO(2) = U(1).
The preferred axis will pick out a distinguished complex symplectic structure

on all the hyperkähler manifolds described in the preceding sections. We shall
now analyse the complex manifolds that arise. In this we are essentially following
Kronheimer [21] as extended by the second author [8, 7].

Let τ = (τ1, τ2, τ3) be a regular triple with projectionπ(τ) = σ = τ2 + iτ3.

We shall in the first instance assume thatσ is a regular point of the complex
Lie algebra� ⊗ C. Then the main result proved in [8] identifies the preferred
complex symplectic structure of the manifoldN(ρ, τ). To describe this we need
to recall the sliceS(ρ) introduced by Slodowy [24]. First we extendρ to a
homomorphism of complex Lie algebras

ρ : �l(2, C) → � ⊗ C.

Let

h =
( −1 0

0 1

)
x =

(
0 1
0 0

)
y =

(
0 0
1 0

)

be the standard basis of��(2, C) and letH,X, Y be their images underρ. We
put

S(ρ) = Y + Z(X) (4.1)

whereZ(X) is the centralizer ofX in � ⊗ C. ThenS(ρ) is a transverse slice to
the orbit ofY. It is transverse to any adjoint orbit ofGC it meets. In particular
it is transverse to the orbitGCσ and so intersects this in a manifold. Then we
have [8]

N(ρ, τ) ∼= GCσ ∩ S(ρ) (4.2)

whereN(ρ, τ) is given its preferred complex structure. Varyingτ1, while keep-
ing σ = τ2 + iτ3 fixed, gives different Kähler metrics to the complex manifold
in (4.2).

If τ1 is a regular point of�, then(τ1,0,0) is a regular triple so thatN(ρ, τ) is
still a complex manifold forσ = 0, where the isomorphism (4.2) breaks down.
To understand what happens here we have to explain the Brieskorn-Grothendieck
theory of the simultaneous resolution.
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Starting now with the complex Lie groupGC we letB be a Borel subgroup,�
its Lie algebra and�C a Cartan subalgebra in�. The Grothendieck resolution is
then given by the diagram

GC ×B �
ψ→ �C

↓ θ ↓ χ
�C → �C/W

(4.3)

whereB acts onGC on the right and by the adjoint action on�.The vertical maps
are given by taking the semi-simple parts (the ‘‘eigenvalues’’). The key property
of this diagram is that the fibres ofθ provide resolutions of the singularities of
the fibres ofχ and thatθ is a smooth fibration (and topologically a product).
Note in particular thatθ−1(0) is a resolution of the nilpotent variety� : it is
isomorphic to the cotangent bundleT ∗(GC/B).

We can now restrict this diagram to the sliceS(ρ), giving the diagram

ψ−1(S(ρ)) → S(ρ)

↓ θ(ρ) ↓ χ(ρ)
�C → �C/W

(4.4)

Again the fibres ofθ(ρ) resolve the singularities of the fibres ofχ(ρ) andθ(ρ)
is a smooth fibration. In particular the inverse imageθ(ρ)−1(0) resolves the
singularities of� ∩ S(ρ).

The generic fibre ofχ(ρ) is the manifoldGC(σ ) ∩ S(ρ) of (4.2). As shown
in [9, 10] the manifoldψ−1S(ρ) of (4.4) can be naturally identified with the
submanifoldNτ1(ρ) ⊂ N(ρ) (with fixed regularτ1). In other words the complex
manifoldsN(ρ, τ) are the fibres ofθ(ρ) and in particular

N(ρ; τ1,0,0) (4.5)

is the Grothendieck resolution of� ∩ S(ρ).
Let us illustrate all this by examining the three special cases ofρ :
(a) ρ = 0, S(ρ) = �C, N(0; τ) = GC(σ )andN(0; τ1,0,0) is the resolution

of � and diagram (4.4) is just (4.3).

(b) ρ the regular��(2), S(ρ) is a translate of�C/W, the manifold in (4.2) is
just a point andθ(ρ) is an isomorphism.

(c) ρ the sub-regular��(2), the manifolds in (4.2) have complex dimension 2
and the fibres ofθ(ρ) are the ALE spaces as discussed by Kronheimer
[19].
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Considering again the general case, we have a fibrationN(ρ) → h3 −� with
hyperkähler manifoldsN(ρ, τ) as fibres. The groupSU(2) acts on this fibration.
The subgroupU(1) = SO(2) ⊂ SO(3) fixing a direction ofR3 has fixed points
of the formτ = (τ1,0,0) ∈ h3 − � and so its double-coverS ⊂ SU(2) acts
on the fibreN(ρ, τ) over this point. As we have seen this fibre in its complex
structure fixed byS is a complex manifold which can be identified with the
resolution of� ∩ S(ρ). Thus� (ρ, τ ) has a holomorphic action ofU(1), in
addition to a commuting action ofZ(ρ). As this holomorphic action ofU(1)
must leaveY fixed, it is the composition of the complex scalar action on�C and
of the adjoint action byρ(U(1)). This will be explained more fully in section 6.
The map

�(ρ, τ ) → S(ρ)

defines a distinguished compact complex subspace which is the inverse image of
the base pointY ∈ S(ρ) (see (4.1)). From the Grothendieck resolution (4.4) we
see that this is justthe fixed point set of the action ofAd(Y ) onGC/B = G/T .

Equivalently, viewingGC/B as the space� of all Borel subgroups, it is the set of
all Borel subgroups whose Lie algebra containY.We shall denote it by�Y .When
ρ is the regularSO(2), Y is regular and�Y is a point. Whenρ is sub-regular,Y
is sub-regular and�Y is 1-dimensional, consisting of rational curves intersecting
as in the Dynkin diagram [24]. In general�Y ⊂ �(ρ, τ ) is the ‘‘compact core’’
of the open manifold, and carries all its topological information. More precisely,
the action of S extends to an action ofC∗ all of whose orbits have limits (as
z → ∞) in �Y . The observation essentially goes back to Slodowy [24] and will
be recalled in detail in the next section.

5 Relation with Kazhdan-Lusztig

In a long series of papers (see [16, 17]) Kazhdan and Lusztig made an extensive
study of representation of the Hecke algebrasH associated to Weyl groups (both
finite and affine). A comprehensive account of this theory is given in [12]. These
algebras are defined over the finite Laurent series

A = C[q, q−1]
and reduce to the group algebras of the Weyl group whenq = 1.

Kazhdan and Lusztig construct representations ofH on the equivariantK -
groups of certain subspaces of the flag manifold of the Lie groupG.The purpose
of this section is to show how all the ingredients in the Kazhdan-Lusztig con-
struction arise naturally in our context. It is our hope that this will shed light
on the geometric significance of the Hecke algebras. Essentially, by using the
‘‘quaternionic’’ aspect of Lie groups which we have been emphasizing we are
able to move outside the purely complex theory of Lie groups where Kazhdan
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and Lusztig work. Since they use the Grothendieck resolution (and ideas of
Brieskorn and Slodowy) it is not surprising that the hyperkähler story described
in previous sections should be relevant.

Givenρ : SU(2) → G we recall that we have the fibration (3.6)

N(ρ)

↓
�3 −�

whose fibresN(ρ, τ) are hyperkähler manifolds, and that the group

W × SU(2)× Z(ρ)

acts on the fibration (whereZ(ρ) centralizes the image ofρ). We now fix a
direction inR

3 reducing theSU(2) symmetry to a circleS.We identify the ring
A with the character ring ofS (overC)

A = R(S)⊗ C (5.1)

(sinceS ⊂ SU(2) double-coversSO(2) ⊂ SO(3), our q is the square-root of
the one in [17].

This means that any spaceX on whichS acts will have an equivariantK -group

KS(X)⊗ C (5.2)

which is anA-module. IfX is not compact we shall useK-theory withcompact
supports in (5.2)

Consider now a fixed pointτ for the action ofS on �3 − �. If we choose
our coordinates ofR3 so thatS defines rotation in the(x2, x3) plane thenτ is
fixed underS if it is of the form(τ1,0,0). Note that the set of such points can be
identified with the regular points ofh and so the components are permuted by the
Weyl group. A choice of component is essentially the same as a choice of Borel
subgroup ofGC containingT , or equivalently a choice of complex structure on
the flag manifoldG/T .

The fibreN(ρ, τ) overτ has a complex structure (singled out by our choice of
direction) and a holomorphic action ofS.We can therefore consider theK-group
(with compact support)

KS(N(ρ, τ))⊗ C (5.3)

InsideN(ρ, τ) we have its ‘‘compact core’’, namely the fixed-point set�Y

of the nilpotent elementY ∈ �l(2,C), as explained in §4, and the action ofC
∗

(complexification ofS) has all limitsz → ∞ in �Y .
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Now Kazhdan-Lusztig work with the ‘‘homology’’ versionKS
0 of K0

S and
observe that, in the situation just described, we have a natural isomorphism

KS
0 (�Y )⊗ C ∼= K0

S(N(ρ, τ ))⊗ C. (5.4)

It is modules such as these in (5.4) (and various refinements) that are theA-
modules studied by Kazhdan and Lusztig. One obvious refinement is to enhance
the symmetry fromS to S × Z(ρ), or to a subgroup of this.

The Weyl groupW does not act on the spaces in (5.4), it permutes them.
However we also have the map

φ : N(ρ) → G/T

defined by (3.4) and this is compatible with the action ofW ×Z(ρ). This makes
the groups in (5.4) into modules over

KS(G/T )⊗ C

(whereS acts onG/T viaρ) and more generally we can replaceS byS×Z(ρ).
Let us now describe, somewhat speculatively, why this picture might help to

explain the geometric significance of the Hecke algebra and its modules. As
we have seen theK -groups in question, disregarding for the moment theS-
equivariance, areK-groups of fibres over�3 − � with an action ofW on the
fibration. Alternatively they areK-groups of fibres over(�3 −�)/W. In a non-
equivariant situation this gives rise to the monodromy action ofW. The action of
W on the homology of the fibres essentially gives the Springer representations.
In an equivariant situation (e.g. with anS -action) it is not clear what replaces
monodromy, sinceS only acts on fibres over its fixed points. This suggests that
(�3 −�)/W, together with itsS-action, somehow produces the Hecke algebra
(instead of the fundamental group) and that bundles over this space (together with
compatibleS-action) yieldH -modules. One small piece of evidence in favour of
this idea is to note that theS-equivariant analogue of a path from a pointτ (fixed
byS) to its transformω(τ), ω ∈ W, is a 2-sphere acted on byS.The equivariant
K -theory of such a 2-sphere is anA-module with one generator, satisfying a
quadratic equation which is essentially the defining equation for generators of
H.

Unfortunately, although this is an appealing idea, we have not yet seen how to
carry it out. What we have done however is to put the general Kazhdan-Lusztig
construction into a more natural form.

In particular the circle symmetry is enlarged to a fullSU(2)-action. We hope
the pay-off will emerge later.
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6 Analytic details

In this section we shall explain the analytic details behind the main construction
leading to the proof of Theorem A and in particular show how to define the
spacesN(ρ) andM(ρ) of section 3 as moduli spaces of solutions to Nahm’s
equations. The Nahm equations will be the full translation-invariant anti-self-
duality equations onR4:

Ṫi + [T0, Ti] + [Tk, Tj ] = 0 , (6.1)

where(i, j, k) run over cyclic permuations of(1,2,3). This form of Nahm’s
equations admits an action by the gauge group ofG-valued functionsg(t):

T0 �→ Ad(g)T0 − ġg−1

Ti �→ Ad(g)Ti , i = 1,2,3. (6.2)

The componentT0 can be gauged away if we allow arbitrary gauge transforma-
tions. We recall that the spaceN ′(ρ) was defined as the space of solutions to
Nahm’s equations on the half-line with poles of typeρ at t = 0 and approaching
a regular commuting triple ast → +∞. As Kronheimer [20] observes such a
solution must approach its limit exponentially fast.

Let � be the space of exponentially fast decaying functions inC1[0,+∞],
i.e.:

� =
{
f : (0,∞] → �; ∃η>0 sup

t≥0

(
eηt‖f (t)‖ + eηt‖df/dt‖) < +∞

}
. (6.3)

To defineN(ρ) let us fix a Cartan subalgebra� of � and consider solutions to
(6.1) on the half-line satisfying the following boundary conditions at infinity:

(i) T0(+∞) = 0;

(ii) Ti(+∞) ∈ � for i = 0, . . . ,3;

(iii) (T1(+∞), T2(+∞), T3(+∞)) is a regular triple, i.e. its centralizer is�;

(iv) (Ti(t)− Ti(+∞)) ∈ � for i = 0,1,2,3.

In addition, the boundary conditions att = 0 are the same as forN ′(ρ). This
space is acted upon by the gauge groupG whose Lie algebra consists ofbounded
C2-pathsρ : [0,+∞) → � with ρ(0) = 0 andρ̇, [τ, ρ] both belonging to� for
any regular elementτ of �. This means that any element ofG is asymptotic to
an element ofT = exp�. Observe that we have a free action ofW = N(T )/T

onN(ρ) given by gauge transformations asymptotic to elements ofN(T ).
We claim that the moduli space we obtain is the spaceN(ρ) defined by the

diagram (3.3). Indeed, we see that we can always makeT0 identically zero
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via a gauge transformationg(t) with g(0) = 1. This gives us a projection
N(ρ) → N ′(ρ). Now suppose we have two solutions(Ti) and(T ′

i ) in N(ρ)
which map to the same element ofN ′(ρ). This means that(Ti) and (T ′

i ) are
gauge equivalent via a gauge transformationg(t) with g(0) = 1. Moreover, as
the limit of both(Ti) and(T ′

i ) is a regular triple in the same Cartan subalgebra,
g(t) is asymptotic to an element ofN(T ) and so(Ti) and(T ′

i ) are in the same
W -orbit.

The manifoldN(ρ) is not a hyperkähler. Nevertheless it is fibred by the
hyperkähler manifoldsN(ρ, τ) defined by fixing the limitτ = (τ1, τ2, τ3) of
T1, T2, T3 [8] (this is the fibration defined in (3.4)). As pointed out in section 2, a
moduli space of solutions to Nahm’s equations is expected to carry a hyperkähler
structure if it can be (formally) realised as a an infinite-dimensional hyperkähler
quotient. The spacesN(ρ, τ) are such quotients of the flat affine manifold
consisting of all functions(T0, T1, T2, T3) with prescribed boundary conditions.

Whenσ = τ2 + iτ3 is a regular element of�C,N(ρ, τ) has the complex struc-
ture (corresponding to choosing thex1-axis inR

3) described in (4.2). In general,
a complex structure of a hyperkähler moduli space of solutions to Nahm’s equa-
tions can be identified by writing Nahm’s equations as equations for�C-valued
functions. If we choose an isomorphism (compatible with the usual metrics)
R

3 = R × C , i.e. we choose complex coordinates, say(t + ix1, x2 + ix3), on
R

4, we can put
α := T0 + iT1 , β := T2 + iT3

The Nahm equations can then be written as:

d

dt
(α + α∗)+ [α, α∗] + [β, β∗] = 0 (6.4)

and

d

dt
β = [β, α] (6.5)

The second equation is preserved by the complex gauge transformations and our
moduli space as a complex (in fact complex-symplectic) manifold is just

(
solutions to (6.5)

)
/
(
complex gauge transformations

)
.

This is an example of identifying hyperkähler and complex symplectic quotients
[15].

Returning toN(ρ, τ), we first observe, after Kronheimer [20], that whenρ =
0,N(ρ, τ) is the complex adjoint orbit ofσ with the holomorphic identification
given by

(α(t), β(t)) �→ β(0). (6.6)
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For a generalρ,N(ρ, τ) can be defined as the hyperkähler quotient of the product
manifoldN(0, τ ) × Nρ , whereNρ is the moduli space of solutions to Nahm’s
equations on the interval(0,1] with poles of typeρ at t = 0 and regular att = 1
(mod gauge transformations which are 1 at both endpoints). This hyperkähler
manifold has been studied in detail in [8] where it was shown that with respect
to any complex structure it isS(ρ) × GC (S(ρ) is the transversal slice defined
in (4.1)). In particular, whenρ = 0,Nρ is isomorphic toT ∗GC as a complex-
symplectic manifold [22, 8].

Both N(0, τ ) andNρ admit a hyperkählerG-action given by gauge trans-
formations with arbitrary values att = 0 andt = 1, respectively. Taking the
hyperkähler quotient ofN(0, τ )×Nρ by the diagonalG is equivalent to gluing
the solutions inNρ at t = 1 to those inN(0, τ ) at t = 0, and so it results in
the manifoldN(ρ, τ). On the other hand, the complex symplectic quotient of(
S(ρ) × GC

) × O(σ ) by GC is easily seen to beS(ρ) ∩ O(σ ) (the complex
moment map onS(ρ) × GC is µ(β, g) = Ad(g)β and onO(σ ) it is the iden-
tity). The general mantra of identifying hyperkähler and complex-symplectic
quotients gives2 us the complex structure ofN(ρ, τ).
N(ρ) admits an action ofSU(2) defined as follows. LetA be an element

of SU(2). ThenA acts onN(ρ) by rotating the ‘‘vector’’(T1(t), T2(t), T3(t)

and then acting on the resulting solution to Nahm’s equations with a gauge
transformation equal toρ(A)−1 att = 0. This action leaves invariant the residues
of (T0, T1, T2, T3) at t = 0.

We shall now explain the diagram (3.5) of Theorem A in terms of the solutions
to Nahm’s equations. We shall define a torus bundleM(ρ) overN(ρ) which
will be a hyperkähler manifold (more exactly: a hypercomplex manifold with a
compatible symmetric form which is generically non-degenerate). To define this
torus bundle we first observe thatN(ρ) can be also defined asA/G, whereA
is defined by omitting the condition (i) on the solutions to Nahm’s equations in
the definition ofN(ρ) and the gauge group is enlarged toG consisting of paths
g(t) asymptotic to exp(ht + λh) for someh ∈ � andλ ∈ R. In other words the
Lie algebra ofG consists ofC2-pathsρ : [0,+∞) → � such that

(i) ρ(0) = 0 andρ̇ has a limit in� at+∞;

(ii) (ρ̇ − ρ̇(+∞)) ∈ �, and[τ, ρ] ∈ � for any regular elementτ ∈ �;

The torus bundleM(ρ) overN(ρ) is defined as the quotientA/G0, whereG0 is
defined asG with the added condition:

(iii) lim t→+∞(ρ(t)− t ρ̇(+∞)) = 0.

2Strictly speaking a hyperkähler quotient can in general only be identified with an open subset of a
complex-symplectic quotient (of semi-stable points). The analytic argument that in our case the
two coincide is given in [8].
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In other words, elementsg(t) of G0 are asymptotic to exp(ht) for someh ∈ �.
It is clear thatG/G0 = exp(�) and thereforeM(ρ) is a torus bundle overN(ρ).

We observe that thisM(ρ) is the one defined by the diagram (3.5). Indeed, we
can makeT0 identically zero by a gauge transformation asymptotic tog exp(ht)
whereg ∈ G andh ∈ �. Since we quotient byG0 we obtain a well defined
element ofG fitting into the diagram (3.5) (observe that in the above description
of N(ρ), we obtain a gauge transformation asymptotic tog exp(ht) but defined
only up to the action ofT ).

The hyperkähler structure ofM(ρ) is part of the general story discussed in sec-
tion 2 and its existence is proved in detail in [9]. In particular the hyperkähler mo-
ment map for the action ofT onM(ρ) is given by(T1(+∞), T2(+∞), T3(+∞)),
and so the hyperkähler quotients are the fibersN(ρ, τ) of the map (3.6). There is
an action ofSU(2) defined onM(ρ) in exactly the same way as forN(ρ). This
action rotates the complex structures ofM(ρ)which are therefore all equivalent.
M(ρ) as a complex manifold is discussed at length in [9]. In the complex picture
only the action of theU(1) ⊂ SU(2) preserving the chosen complex structure
is visible. This is the action described towards the end of §4.
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