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Abstract. The (3x + 1)-Map, T , acts on the set, �, of positive integers not divisible

by 2 or 3. It is defined by T (x) = 3x + 1

2k
, where k is the largest integer for which

T (x) is an integer. The (3x + 1)-Conjecture asks if for every x ∈ � there exists an
integer, n, such that T n (x) = 1. The Statistical (3x + 1)-Conjecture asks the same
question, except for a subset of � of density 1. The Structure Theorem proven in [S]
shows that infinity is in a sense a repelling point, giving some reasons to expect that
the (3x + 1)-Conjecture may be true. In this paper, we present the analogous theorem
for some generalizations of the (3x + 1)-Map, and expand on the consequences derived
in [S]. The generalizations we consider are determined by positive coprime integers, d

and g, with g > d ≥ 2, and a periodic function, h (x). The map T is defined by the

formula T (x) = gx + h (gx)

dk
, where k is again the largest integer for which T (x) is

an integer. We prove an analogous Structure Theorem for (d, g, h)-Maps, and that the
probability distribution corresponding to the density converges to the Wiener measure

with the drift log g − d

d − 1
log d and positive diffusion constant. This shows that it is

natural to expect that typical trajectories return to the origin if log g − d

d − 1
log d < 0

and escape to infinity otherwise.

Keywords: 3x + 1 Problem, 3n + 1 Problem, Collatz Conjecture, Structure Theorem,
(d, g, h)-Maps, Brownian Motion.

1 Introduction

1.1 The (3x + 1)-Map and (3x + 1)-Conjecture

Recall the definition of the (3x + 1)-Map, (see [L]). Take an integer x > 0,
with x odd. Then 3x + 1 divides 2, so we can find a unique k > 0 such that
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y = 3x + 1

2k
is again odd. In this way, we get a mapping T : x �−→ y defined on

the set � of strictly positive numbers not divisible by 2 or 3. Write � = 6Z
++E,

where E = {1, 5}, is the set of possible congruence classes modulo 6.
For every integer, x, with 0 < x < 260, a computer has checked that enough

iterations of the (3x + 1)-Map eventually send x to 1 (see [L]). The natural
conjecture asks if the same statement holds for all x ∈ �:

Conjecture 1. ((3x + 1)-Conjecture). For everyx ∈ �, there is an integer
n, such thatT n (x) = 1.

The Statistical (3x + 1)-Conjecture asks the same question, except for a subset
of � of density 1.

For every x, we can associate a value, which is the k used in the definition of
T . When we apply T repeatedly, we get a set of k values, called the path of x.
We shall call the ordered set of positive integers, (k1, ..., km), the “m-path of x,”
denoted by γm (x), if these are the k values that appear in m repeated iterations
of T .

E.g. T (17) = 3 · 17 + 1

22
= 13, so k = 2, and γ1 (17) = (2). T 2 (17) =

T (13) = 3 · 13 + 1

23
= 5, so here k = 3, and thus γ1 (13) = (3), and γ2 (17) =

(2, 3).

Assume that we are given an m-path, (k1, ..., km). We can ask the following
question: what is the set of x ∈ � for which γm (x) = (k1, ..., km)?

The answer is given by the so-called Structure Theorem, proven in [S]. The
theorem states that if x ∈ � has γm (x) = (k1, ..., km) , then the next value in
� which will have the same m-path and congruence class modulo 6 is x + 6 ·
2k1+...+km . In other words, there is some first x ∈ � = 6Z

+ +E, call it x0, which
has γm (x) = (k1, ..., km). Writing x0 = 6 · q + ε, with ε ∈ E, we get all x with
the same ε and m-path from the sequence xp = 6

(
2k1+...+kmp + q

) + ε. The
theorem tells us how to solve uniquely for q given the m-path and ε, and shows
that q < 2k1+...+km , so the representation of xp is unique.

E.g. Let k1 = 2, k2 = 3, and ε = 5. Then x0 = 17 = 6
(
25 · 0 + 2

) + 5,
and we know that γ2 (17) = (2, 3). Look at x1 = 6

(
25 · 1 + 2

) + 5 = 209:
T (209) = 157, with k1 = 2, and T 2 (209) = 59 with k2 = 3, so γ2 (209) =
(2, 3). We can verify that there are no elements of � between 18 and 208 that
are congruent 5 modulo 6 and have the 2-path (2, 3).

Moreover, the Structure Theorem tells us that if the image of x0 is y0 =
T m (x0) = 6 · r + δ, with δ ∈ E (since y0 is also in �), then we get the
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next image by adding 6 · 3m. In other words, if yp is the image of xp, then
yp = T m

(
xp

) = 6 (3mp + r) + δ. The theorem also solves explicitly for r and
δ given the m-path and ε, and finds that r < 3m.

E.g. T 2 (17) = 5 = 6
(
32 · 0 + 0

)+5, and T 2 (209) = 59 = 6
(
32 · 1 + 0

)+
5.

The Structure Theorem also shows that infinity is in a sense a repelling point.
This gives some reasons to expect that the (3x + 1)-Conjecture may be true.

In this paper, we present the analogous theorem for some generalizations of
the (3x + 1)-Map, and expand on the consequences derived in [S].

1.2 The (d, g, h)-Maps and (d, g, h)-Problem

The generalizations we consider are a particular case of maps proposed in [FR].
They are determined by positive coprime integers, d and g, with g > d ≥ 2, and
a periodic function, h (x), satisfying:

1. h (x + d) = h (x),

2. x + h (x) ≡ 0 (mod d),

3. 0 < |h (x)| < g.

The map T is defined by the formula

T (x) = gx + h (gx)

dk
,

where k is uniquely chosen so that the result is not divisible by d. Property 2
of h guarantees k ≥ 1. The natural domain of this map is the set � of positive
integers not divisible by d and g. Let E be the set of integers between 1 and dg

that divide neither d nor g, so we can write � = dgZ
+ + E. The size of E can

easily be calculated: |E| = (d − 1) (g − 1).
In the same way as before, we have m-paths, which are the values of k that

appear in iterations of T , and we again denote them by γm (x).
The original problem corresponds to g = 3, d = 2, and h (1) = 1. The

(3x − 1)-problem corresponds to g = 3, d = 2, and h (1) = −1. The (5x + 1)-
problem corresponds to g = 5, d = 2, and h (1) = 1, and so on.

The Structure Theorem for (d, g, h)-Maps will be slightly different, in that
given an m-path, (k1, ..., km), and congruence class, ε, modulo dg, we do not
have a unique x0. Instead, we have (d − 1)m values of what was x0 in the original
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case, which we will denote by x
(i)
0 , with i = 1, ..., (d − 1)m. Each of these can

be written as x
(i)
0 = dg · q(i) + ε, with q(i) < dk1+...+km . Then we get every x

with the given m-path by adding dg · dk1+...+km . In other words, letting

x(i)
p = dg

(
dk1+...+kmp + q(i)

) + ε,

we get every x ∈ � with γm (x) = (k1, ..., km) and x ≡ ε (mod dg) in the set{
x(i)

p

}
p≥0,1≤i≤(d−1)m

.

Here is the precise formulation of the Structure Theorem for (d, g, h)-Maps.

Theorem 2 (Structure Theorem). Given anm-path,(k1, ..., km), andε ∈ E,
let k = k1 + ... + km. Then there exist(d − 1)m triples,

(
q(i), r(i), δ(i)

)
, i =

1, ..., (d − 1)m, with 0 ≤ q(i) < dk, 0 ≤ r(i) < gm, andδ(i) ∈ E, such that

{x ∈ � : x ≡ ε(mod dg), γm(x) = (k1, ..., km)}
= {dg(dkp + q(i)) + ε}p≥0,1≤i≤(d−1)m.

Moreover,T m
(
dg

(
dkp + q(i)

) + ε
) = dg

(
gmp + r(i)

) + δ(i).

The proof of the theorem is given in the next section.
In section 3, we prove that the probability distribution corresponding to the

density converges to the Wiener measure with the drift log g − d
d−1 log d and

positive diffusion constant. This shows that it is natural to expect that typical
trajectories return to the origin if log g − d

d−1 log d < 0 and escape to infinity
otherwise. This question is discussed in more detail in section 4.

2 Proof of the Structure Theorem

The proof goes by induction on m. At each stage, we assume x has the given
m-path and modulo class, and write x = dg

(
dkp + q

) + ε and y = T m (x) =
dg (gms + r)+ δ. This can be done for any number, since we are simply writing
out the modulo classes. After some algebra, we come to some equation for the
triplets (q, r, δ), and show that it has (d − 1)m solutions.

2.1 Case m = 1

Say we are given a 1-path, (k), and let us take an ε ∈ E. Write x = dg · t + ε,
and assume that x has the 1-path, (k). One can further break t into the form:
t = dkp + q, with 0 ≤ q < dk. Let y = T (x), so by our assumption,
dky = gx + h (gx). By periodicity, h (gx) = h (gε), so since ε is fixed, h does
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not depend on x, and is fixed. Thus we will write just h for h (gx) from now
on. Since y ∈ �, we can write y = dg · t ′ + δ for some δ ∈ E, and expand
t ′ = g · s + r , for 0 ≤ r < g. The first step of our analysis is to show that s = p.
We write gx + h = dky, and substitute for x, y, t, and t ′:

g
(
dg · (

dkp + q
) + ε

) + h = dk (dg · (g · s + r) + δ) .

We expand this to see:

g2dk+1 · p + (
dg2q + gε + h

) = g2dk+1 · s + (
dk+1gr + dkδ

)
. (1)

Next, we apply the following simple Lemma.

Lemma 3. If a · b + c = a · b′ + c′ with 0 ≤ c, c′ < a, then b = b′ and
c = c′. �

To apply the lemma (with a = g2dk+1), we need to show that the parts in
parentheses on both sides of (1) are contained in

[
0, g2dk+1 − 1

]
. We will

derive upper and lower bounds for the left side, and leave similar calculations
for the right side to the reader.

Consider the lower bound of the left side. Since q ≥ 0, ε ≥ 1 and h ≥ −g+1
(by Condition 3), we have that

dg2 · q + gε + h ≥ g · 1 + (−g + 1) = 1,

and thus is positive.
For the upper bound of the left side, we notice that q ≤ dk − 1, ε ≤ dg − 1

(since ε ∈ E) and h ≤ g − 1. So

dg2 · q + gε + h ≤ g2d · (
dk − 1

) + g (dg − 1) + (g − 1)

= g2dk+1 − 1.

• The Lemma gives us that p = s, and from now on we write just p. We
want to characterize q, r and δ, showing that they are independent of p.

To continue, we recall that the Lemma implies that the parts in parentheses of
(1) also concur. So:

g2d · q + gε + h = dkgd · r + dkδ. (2)
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The next step is to break δ into δ = δ′g + δ′′, with 0 ≤ δ′′ < g. Since δ ∈ E, we
have δ < dg, implying 0 ≤ d ′ < d . We now look at (2) modulo g to solve for
δ′′:

dkδ′′ = h (mod g) . (3)

Since g and d are relatively prime, dk has a multiplicative inverse in (Z \ gZ)∗,
meaning δ′′ is uniquely determined. Exactly one of the d possible values of δ′
will make δ = δ′g+δ′′ divisible by d, and we throw this value away since δ ∈ E.

This leaves us with d − 1 possible values for δ, which we denote by
δ(1), δ(2), ..., δ(d−1). It suffices to solve (2) uniquely for q(i) and r(i) given δ(i).

Now we assume we have fixed δ(i), and rearrange (2), adding a superscript to
q and r to correspond to δ:

g · q(i) − dkr(i) = dkδ(i) − gε − h

dg
= v.

Everything on the right hand side is known, so v is now just an integer (and
independent of p). We solve for q(i) and r(i) by applying the Chinese Remainder
Theorem to the equation g · a − dkb = 1, then setting q(i) = v · a(mod dk) and
r(i) = v · b(mod g).

• Having found the triplets (q(i), r(i), δ(i)), we are done with the case m = 1.

Summarizing the first step of the induction, we pick some ε ∈ E, assume
x ∈ � is of the form dg · t + ε, and write t = dkp + q. Under the same
assumptions for the image, y = T (x), we write y = dg · t ′ + δ and t ′ = gp + r .
We find that δ is unique modulo g, and there are d − 1 values, δ(1), ..., δ(d−1),
which δ ∈ E may take. For each one, we solve for q(i) and r(i). All of the
calculations depend only on k and ε.

2.2 Induction on m > 1

For m > 1, the induction goes as follows. To know which x have a given m-
path, (k1, ..., km), we first assume we know the answer for the (m − 1)-path,
(k1, ..., km−1).

Let k = k1 + k2 + ... + km−1, and assume by the induction hypothesis
that there are (d − 1)m−1 values for the triplet (qm−1, rm−1, δm−1) which sat-
isfy our equations. Fix one such triplet, pick any integer, pm−1, and set x =
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dg(dkpm−1 + qm−1) + ε, and y = dg(gm−1pm−1 + rm−1) + δm−1. Then we
have γm(x) = (k1, ..., km−1), and y = T m−1(x). Here we write pm−1 instead of
just p to distinguish from the p we will have in the next paragraph. The triplet
(qm−1, rm−1, δm−1) is still gotten independently of pm−1.

We can alternatively break x into x = dg(dk+kmpm + qm) + ε for some
qm < dk+km and also write z = T m(x) = T (y) = dg · t +δm, with t = gms +rm.
The key idea is to find the d − 1 possible values for δm ∈ E, and with each we
solve for the corresponding qm and rm, knowing qm−1, rm−1, and δm−1. We will
again see that pm = s and that (q, r, δ) do not depend on this value.

Since z = T (y), by assumption, we have dkmz = gy + h(gy), (again let
h = h(gy) = h(gδm−1)) which expands to:

dkm+1gm+1s + dkm+1grm + dkmδm = dgm+1pm−1 + g2drm−1 + gδm−1 + h.

(4)

Remembering the two expressions for x, and setting pm = dkmp1 + p2 (with
0 ≤ p2 < dkm), we write:

dk+kmpm + qm = x − ε

dg
= dkpm−1 + qm−1

= dk+kmp1 + dkp2 + qm−1.

We easily see that 0 ≤ dkp2 + qm−1 < dk+km , so we again use the Lemma to
find:

pm = p1, (5)

qm = dkp2 + qm−1. (6)

Returning to (4), we expand:

dkm+1gm+1s + (
dkm+1grm + dkmδm

) = dkm+1gm+1p1 +
+ (

dgm+1p2 + g2drm−1 + gδm−1 + h
)
.

Following the same techniques as before, we bound the parts in parentheses
on both sides between zero and dkm+1gm+1, and apply the Lemma. This gives us
that pm = p1 = s, and that

dkm+1grm + dkmδm = dgm+1p2 + g2drm−1 + gδm−1 + h. (7)
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Again looking modulo g and setting δm = δ′g + δ′′, we solve:

δ′′ ≡ gδm−1 + h (mod g) ,

which again gives us d choices for δ′, one of which we throw out because δm ∈ E.
Rearranging (7), we get:

gmp2 − dkmrm = dkmδm − dg2rm−1 − gδm−1 − h

dg
= v

From here, we solve gma − dkmb = 1 and set p2 = a · v (
mod dkm

)
and rm =

b · v (mod gm), so qm = dkp2 + qm−1. We have (d − 1) values of (qm, rm, δm)

derived from (d − 1)m−1 values of (qm−1, rm−1, δm−1), so there are a total of
(d − 1)m triplets, consistent with the induction hypothesis. Now everything in
the triplet (qm, rm, δm) is defined, and we are done. �

3 Brownian Motion of (d, g, h)-Paths

In [FMMT],[LW], it is assumed that the (3x + 1)-Map behaves as a geometric
Brownian motion, and a stochastic model is built from which other conjectures
relating to the problem are derived. Here, we prove that the generalized (d, g, h)-
Maps do indeed have this behavior.

In order to consider sample (d, g, h)-paths, we must first establish a version of
a probability measure on Z

+. The only natural way to do this is through density:

Definition 4. For A ⊂ Z
+, define

P (A) = lim
n→∞

|A ∩ [1, n] ∩ �|
|[1, n] ∩ �| = lim

n→∞
|A ∩ [1, n] ∩ �|

n
· dg

|E| , (8)

provided the limit exists.

A nice consequence of the Structure Theorem is that if we want to consider
the set of x that follow a certain m-path, they all fall in one of several arithmetic
progressions, and so these sets have a density.

Partition the interval [0, 1] by: 0 = t0 < t1 < ... < tr = 1. Fix m and let
mi = �tim. For any x, let xi = T mi (x).
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Theorem 5. The properly normalized pathln xi converges asm → ∞ to a
Brownian Path with driftln g − d

d−1 ln d. More precisely,

lim
m→∞ P

{
x : ai <

ln xi+1 − ln xi − (mi+1 − mi)
(
ln g − d

d−1 ln d
)

√
d

(d−1)2 m ln d
< bi,

with i = 0, ..., r − 1

}

�

∫ b0

a0

∫ b1

a1
· · ·

∫ br−1

ar−1

e

(
− 1

2

∑r−1
i=0 u2

i

)

(2π)
r
2

du0du1 · · · dur−1.

Proof. By an extension of the Structure Theorem, we know that xi = T mi (x)

can be expressed as xi = dg(gmidkmi+1+...+kmp + qi) + δi . Then

ln xi = mi ln g + (
kmi+1 + ... + km

)
ln d + ln p + O (1) , (9)

and since we are interested in questions about density, xi is large, so p is large,
and thus O (1) is non-essential. Then we can rearrange (9) to:

ln xi − mi ln g − (
kmi+1 + ... + km

)
ln d = ln p

= ln xi+1 − mi+1 ln g −(
kmi+1+1 + ... + km

)
ln d,

from which we get:

(mi+1 − mi)
d

d − 1
ln d − (

kmi+1 + ... + kmi+1

)
ln d =

= ln xi+1 − ln xi − (mi+1 − mi)

(
ln g − d

d − 1
ln d

)
.

(10)

Since the set of xi consists of precisely (d − 1)i arithmetic progressions, each
with step dg · dk (where k = k1 + ... + km), we use (8) to find that

P

{
γm (x) = (k1, ..., km) , x ≡ ε (mod dg)

}
= 1

dg · dk

dg

|E| (d − 1)m .

Bull Braz Math Soc, Vol. 33, N. 2, 2002



222 A. V. KONTOROVICH AND YA. G. SINAI

This holds for each ε ∈ E, so we see that

P {γm (x) = (k1, ..., km)} = |E| · P {γm (x) = (k1, ..., km) , x ≡ ε (mod dg)}

= (d − 1)m

dk
=

m∏
j=1

(d − 1)

dkj
. (11)

This shows that we can consider the kj as independent identically distributed
random variables, with exponential distribution having the parameter 1

d
. Thus

the expected value,

E [k1 + ... + km] =
∑
n≥m

n · P {k1 + ... + km = n}

=
∑
n≥m

n ·
∑

s1+...+sm=n−m, si≥0

P {(s1 + 1, ..., sm + 1)}

= (d − 1)m
∑
n≥m

n
∑

s1+...+sm=n−m, si≥0

1

dn

= (d − 1)m
∑
n≥m

n

dn

(
n − 1
m − 1

)

= d

d − 1
m.

Similarly, we can calculate that V ar [k1 + ... + km] = d

(d−1)2 m. So by the Cen-
tral Limit Theorem,

lim
m→∞ P




k1 + ... + km − d
d−1m√

d

(d−1)2 m
∈ (a, b)


 =

∫ b

a

e− u2
2√

2π
du.

And by (10), we have that

P




ln xi+1 − ln xi − (mi+1 − mi)
(
ln g − d

d−1 ln d
)

√
m · d

(d−1)2 ln d
∈ (ai, bi)


 =

�

= P




d
d−1 (mi+1 − mi) − (

kmi+1 + ... + kmi+1

)
√

d

(d−1)2 m
∈ (ai, bi)


 ,
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which converges exactly as claimed. Since the ki are independent, the incre-
ments, ln xi+1−ln xi are as well, and we have the statement about the convergence
of our distributions to the Wiener measure. �

4 Asymptotic Behavior of Typical Trajectories

The previous section proves that the probability distribution corresponding to
the density converges to the Wiener measure with drift log g − d

d−1 log d. Since
d and g are relatively prime, there are no values of d and g for which log g −

d
d−1 log d = 0, and thus every (d, g, h)-Map has a non-trivial drift. Therefore,
the asymptotic behavior of typical trajectories depends entirely on the sign of
the drift. When the drift is negative, infinity is a repelling point. In the opposite
case, typical trajectories escape to infinity. For the original (3x + 1)-Map, the
drift is log 3 − 2 log 2 < 0, and so as a special case, we get the result found in
[S].

In the literature, the stopping time of an integer x is defined as the first positive
integer, n, such that T n(x) < x. If n does not exist, we say that x has an infinite
stopping time. In [E] and [T76], [T79], it is independently proven that for the
(3x + 1)-Map, the density of integers with a finite stopping time is 1. This paper
provides another proof of this statement.
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