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Abstract. The (3x + 1)-Map, T, acts on the set, I, of positive integers not divisible

1
by 2 or 3. Itisdefined by T (x) = Sx; , Where k is the largest integer for which

T (x) isan integer. The (3x + 1)-Conjecture asks if for every x € I there exists an
integer, n, such that 7" (x) = 1. The Statistical (3x + 1)-Conjecture asks the same
question, except for a subset of IT of density 1. The Structure Theorem proven in [S]
shows that infinity is in a sense a repelling point, giving some reasons to expect that
the (3x + 1)-Conjecture may be true. In this paper, we present the anal ogous theorem
for some generalizations of the (3x + 1)-Map, and expand on the consequences derived
in [S]. The generalizations we consider are determined by positive coprime integers, d
and g, with ¢ > d > 2, and a periodic function, & (x). The map T is defined by the

formulaT (x) = m, where k is again the largest integer for which T (x) is

an integer. We prove an analogous Structure Theorem for (d, g, h)-Maps, and that the
probability distribution corresponding to the density converges to the Wiener measure

with the drift log g —

71 logd and positive diffusion constant. This showsthat it is

natural to expect that typical trajectories return to the origin if log g —
and escape to infinity otherwise.

Keywords: 3x + 1 Problem, 3n 4+ 1 Problem, Collatz Conjecture, Structure Theorem,
(d, g, h)-Maps, Brownian Motion.

logd < 0
d_1 94

1 Introduction
1.1 The(3x + 1)-Map and (3x + 1)-Conjecture

Recall the definition of the (3x + 1)-Map, (see [L]). Take an integer x > O,
with x odd. Then 3x + 1 divides 2, so we can find a unique & > 0 such that
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214 A.V. KONTOROVICH AND YA. G. SINAI

y= 3x2j ! isagain odd. Inthisway, weget amapping T : x —> y defined on
theset I of strictly positivenumbersnot divisibleby 2 or 3. WriteIT = 6Z1+E,
where E = {1, 5}, isthe set of possible congruence classes modulo 6.

For every integer, x, with 0 < x < 2%, a computer has checked that enough
iterations of the (3x + 1)-Map eventually send x to 1 (see [L]). The natural
conjecture asks if the same statement holds for all x € IT:

Conjecture1l. ((3x + 1)-Conjecture). For everyx € II, there is an integer
n, such thatt” (x) = 1.

The Statistical (3x + 1)-Conjecture asksthe same question, except for asubset
of IT of density 1.

For every x, we can associate a value, which isthe k used in the definition of
T. When we apply T repeatedly, we get a set of k values, called the path of x.
We shall call the ordered set of positive integers, (k1, ..., k,,,), the “m-path of x,”
denoted by y,, (x), if these are the k values that appear in m repeated iterations
of T.

3.17+1
Eg T (17) = —2+ =13, 50k = 2, and 1 (17) = (2). T?>(17) =
13+1
713 = 2 BT _ 5 oherek = 3, and thus 1 (13) = (3), and 1, (17) =
2, 3).

Assume that we are given an m-path, (ki, ..., k,,). We can ask the following
guestion: what isthe set of x € IT for which y,,, (x) = (k, ..., k,)?

The answer is given by the so-called Structure Theorem, proven in [S]. The
theorem states that if x € IT has y,, (x) = (kq, ..., k,,) , then the next value in
IT which will have the same m-path and congruence class modulo 6 isx + 6 -
2kit-+kn |n other words, thereissomefirst x € I1 = 6Z* + E, cal it xo, which
has y,, (x) = (k, ..., k). Writingxg = 6- ¢ + ¢, withe € E, we get all x with
the same ¢ and m-path from the sequence x, = 6 (2*-**np + ¢) + ¢. The
theorem tells us how to solve uniquely for g given the m-path and ¢, and shows
that ¢ < 247+ so the representation of x, is unique.

Eg. Letky =2,k =3,ande = 5. Thenxo = 17 = 6(2°-0+2) + 5,
and we know that y, (17) = (2,3). Look at x; = 6(2°-1+2) + 5 = 209:
T (209) = 157, with k1 = 2, and 72 (209) = 59 with k, = 3, S0 y» (209) =
(2, 3). We can verify that there are no elements of IT between 18 and 208 that
are congruent 5 modulo 6 and have the 2-path (2, 3).

Moreover, the Structure Theorem tells us that if the image of xg is yo =
T" (xg) = 6-r 4+ 6, with§ € E (since yq is aso in IT), then we get the

Bull Braz Math Soc, Vol. 33, N. 2, 2002



STRUCTURE THEOREM FOR (d, g, h)-MAPS 215

next image by adding 6 - 3". In other words, if y, is the image of x,, then
yp =T™(x,) = 6(3"p +r) + 8. The theorem also solves explicitly for r and
8 given the m-path and ¢, and finds that r < 3™.

Eg T?2(17)=5=6(3%-0+0)+5, and 72(209) =59 =6(3%- 1+ 0)+
5.

The Structure Theorem also shows that infinity isin a sense arepelling point.
This gives some reasons to expect that the (3x + 1)-Conjecture may be true.

In this paper, we present the anal ogous theorem for some generalizations of
the (3x + 1)-Map, and expand on the consequences derived in [S].

1.2 The(d, g, h)-Mapsand (d, g, h)-Problem

The generalizations we consider are a particular case of maps proposed in [FR].
They are determined by positive coprimeintegers, d and g, withg > d > 2, and
aperiodic function, 4 (x), satisfying:

1 h(x+d) =h(x),

2. x+h(x) =0(modd),
3.0<|h(x) <g.

Themap T isdefined by the formula

gx +h(gx)
d* ’

where k is uniquely chosen so that the result is not divisible by d. Property 2
of h guarantees k > 1. The natural domain of this map is the set IT of positive
integers not divisible by d and g. Let E be the set of integers between 1 and dg
that divide neither d nor g, sowe canwrite IT = dgZ* + E. Thesize of E can
easly becaculated: |[E|=(d -1 (g — D).

In the same way as before, we have m-paths, which are the values of k that
appear in iterations of T, and we again denote them by y,, (x).

The original problem correspondsto g = 3,d = 2, and 2 (1) = 1. The
(8x — 1)-problem correspondsto g = 3,d = 2,and h (1) = —1. The (5x + 1)-
problem correspondsto g = 5,d = 2, and i (1) = 1, and so on.

T (x) =

The Structure Theorem for (d, g, h)-Maps will be dightly different, in that
given an m-path, (kq, ..., k,»), and congruence class, ¢, modulo dg, we do not
haveaunique xg. Instead, we have (d — 1)™ valuesof what was xq intheoriginal
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case, which we will denote by x§”, withi = 1, ..., (d — 1)". Each of these can
be written as x{’ = dg - ¢ + ¢, with ¢ < d*+-+*n_ Then we get every x

with the given m-path by adding dg - d¥+*+%=In other words, letting
x;,i) =dg (dk1+“'+k’"p + qm) + €,

we get every x € IT with y,, (x) = (kq, ..., k) ad x = ¢ (moddg) in the set
{xl(’l)}pqusis(d—ly" ’
Hereisthe precise formulation of the Structure Theorem for (d, g, h)-Maps.

Theorem 2 (StructureTheorem). Given arm-path,(k4, ..., k,,), ande € E,
letk = k1 + ... + k. Then there existd — 1) triples, (¢, r®,80), i =
1,..,d-1" with0<qg® <dk,0<r? < g” ands® e E, such that

{x e T1: x = e(moddg), ym(x) = (k, ..., kn)}
= {dg(d*p + q") + €} p=0.1<i<@—1n-

Moreover,T™ (dg (d*p + q) + &) =dg (g"p +r?) + 7.

The proof of the theorem is given in the next section.

In section 3, we prove that the probability distribution corresponding to the
density converges to the Wiener measure with the drift logg — d%l logd and
positive diffusion constant. This shows that it is natural to expect that typical
trajectories return to the origin if logg — ﬁ logd < 0 and escape to infinity
otherwise. This question is discussed in more detail in section 4.

2 Proof of the Structure Theorem

The proof goes by induction on m. At each stage, we assume x has the given
m-path and modulo class, and writex = dg (d*p +¢) +eandy = T™ (x) =
dg (g"s + r)+ 8. Thiscan be donefor any number, since we are simply writing
out the modulo classes. After some agebra, we come to some equation for the
triplets (¢, r, 8), and show that it has (d — 1)™ solutions.

21 Casem =1

Say we are given a 1-path, (k), and let ustakean s € E. Writex = dg -t + ¢,
and assume that x has the 1-path, (k). One can further break r into the form:
t = dp+g,with0 < g < d*. Let y = T (x), so by our assumption,
d*y = gx + h (gx). By periodicity, 1 (gx) = h (ge), so since ¢ isfixed, 1 does
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STRUCTURE THEOREM FOR (d, g, h)-MAPS 217

not depend on x, and is fixed. Thus we will write just & for i (gx) from now
on. Sincey € I1, wecanwritey = dg - t' 4+ § for some § € E, and expand
t'=g-s+r,for0 <r < g. Thefirst step of our analysisisto show that s = p.
We write gx + h = d*y, and substitute for x, y, ¢, and ¢’

g(dg - (d*p+q)+e)+h=d"dg (g-s+r)+9).
We expand thisto see:
g2 d* ™t p+ (dgzq +ge+ h) = g% .5+ (dk+1gr + a’k8) . (1)

Next, we apply the following simple Lemma.

Lemma3. If a-b4+c=a-b+c¢ with 0<¢,¢’ <a, thenb =54 and
c=c. O

To apply the lemma (with a = g2d**1), we need to show that the parts in
parentheses on both sides of (1) are contained in [0, g?d**t* — 1]. We will
derive upper and lower bounds for the left side, and leave similar calculations
for the right side to the reader.

Consider thelower bound of theleft side. Sinceg > 0, ¢ > 1landh > —g+1
(by Condition 3), we have that

dg’ q+ge+h>g-1+(—g+1) =1,

and thusis positive.
For the upper bound of the left side, we noticethat g < d* — 1, <dg — 1
(sincese E)andh < g—1. S0

dg®-q+ge+h < g°d-(d"—1)+gdg—D+(g—-1
gde-l-l_l.

» The Lemma gives usthat p = s, and from now on we write just p. We
want to characterize ¢, r and §, showing that they are independent of p.

To continue, we recall that the Lemmaimpliesthat the parts in parentheses of
(1) also concur. So:

g%d-q+ge+h=dgd r+ds. (2)

Bull Braz Math Soc, Vol. 33, N. 2, 2002



218 A.V. KONTOROVICH AND YA. G. SINAI

Thenext stepistobreak § intoé = 8’g + 68", with0 < §” < g. Since§ € E, we
have § < dg, implying0 < d’ < d. We now look at (2) modulo g to solve for
8"

d*8” = h (modyg). (3

Since g and d are relatively prime, d* has amultiplicativeinversein (Z \ gZ)*,
meaning §” is uniquely determined. Exactly one of the d possible values of §
will makes = §’g+ 8" divisibleby d, and wethrow thisvalueaway since$ € E.

This leaves us with d — 1 possible values for §, which we denote by
M, 8@ ..., 8¥=D It sufficesto solve (2) uniquely for ¢ and r@ given §©.

Now we assume we have fixed §, and rearrange (2), adding a superscript to

g and r to correspond to §:
k(i
g'q(i) —dkr(i) = —d 8()_g8_h = V.
dg

Everything on the right hand side is known, so v is now just an integer (and
independent of p). Wesolvefor ¢ and r) by applying the Chinese Remainder
Theorem to the equation g - a — d¥b = 1, then setting ¢ = v - a(mod d*) and
r =v.b(modyg).

 Havingfoundthetriplets (¢, r, ), wearedonewith thecasem = 1.

Summarizing the first step of the induction, we pick some ¢ € E, assume
x € ITisof theform dg -t + &, and write t = d*p + g. Under the same
assumptionsfor theimage, y = T'(x), wewritey =dg-t' +8andt = gp +r.
We find that § is unique modulo g, and there are d — 1 values, §@, ..., 8@,
which § € E may take. For each one, we solve for ¢ and »@. All of the
calculations depend only on k and ¢.

2.2 Inductiononm > 1

For m > 1, the induction goes as follows. To know which x have a given m-
path, (k1, ..., k), we first assume we know the answer for the (m — 1)-path,
(k1, ..., km_1).

Let k = ky + k2 + ... + k,,_1, and assume by the induction hypothesis
that there are (d — 1)" ! values for the triplet (¢,,_1, Fm—1, Sm—1) Which sat-
isfy our equations. Fix one such triplet, pick any integer, p,,_1, and set x =
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dg(dkpmfl + LImfl) + ¢, and y = dg(gm_lpmfl + rmfl) + Smfl- Then we
have y,, (x) = (kq, ..., ku—1), and y = T" 1(x). Here we write p,,_; instead of
just p to distinguish from the p we will have in the next paragraph. The triplet
(gm—1, rm—1, 8m—_1) is still gotten independently of p,, 1.

We can dternatively break x into x = dg(d“** p,, + g,) + ¢ for some
gm < d*T* andalsowritez = T"(x) = T(y) = dg -t +8,, witht = g"s+r,,.
Thekey ideaisto find the d — 1 possible values for §,, € E, and with each we
solve for the corresponding ¢,, and r,,,, knowing g,,_1, r,n—1, @ad §,,_1. We will
again seethat p,, = s and that (¢, r, §) do not depend on this value.

Since z = T(y), by assumption, we have d*z = gy + h(gy), (again let
h = h(gy) = h(gd,—1)) which expands to:

dkm+lgm+ls + dk’"ngm + dks,, = dgm+lpm_1 + gzdrm_1 + g8u_1+ h.
(4)

Remembering the two expressions for x, and setting p,, = d* p1 + p» (with
0 < po < d*), wewrite:
X —& k
Pm+qm = =d Pm-1+ Gm-1
dg

= d"npy +d* pr+ gu-a.

dk +km

We easily see that 0 < d¥p, + g1 < d*™, so we again use the Lemma to
find:

Pm = Pp1, )
dn = dkp2+Qm—1~ (6)

Returning to (4), we expand:

dkm+1gm+ls + (dkm+lgrm + dkmam) — dkm+lgm+1p1 +
+ (dg" ™ p2 + g2dri -1+ g8n-1+h) .

Following the same techniques as before, we bound the parts in parentheses
on both sides between zero and d*» g+, and apply the Lemma. Thisgivesus
that p,, = p1 = s, and that

dk'”+1grm +dkm5m — dgrn+lp2 +g2drm—l+g8m—1 +h. (7)
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Again looking modulo g and setting §,, = §’g + §”, we solve:
8" = g8u_1+h(modyg),

which again givesusd choicesfor §’, one of which wethrow out becauses,, € E.
Rearranging (7), we get:

m —dkml" _ dkmfsm_dgzrmfl_gsmfl_h —
8 D2 m dg

From here, we solve g"a — d*»b = 1 and set p, = a - v (modd*) and r,, =
b-v(modg™), 0 g, = d*pr + gn_1. We have (d — 1) values of (g, ', 8m)
derived from (d — 1)1 values of (¢,_1, Fm—1, Sm_1), SO there are a total of
(d — 1) triplets, consistent with the induction hypothesis. Now everything in
thetriplet (g, 7w, 8) is defined, and we are done. O

3 Brownian Motion of (d, g, h)-Paths

In [FMMT],[LW], it is assumed that the (3x + 1)-Map behaves as a geometric
Brownian motion, and a stochastic model is built from which other conjectures
relating tothe problem arederived. Here, weprovethat thegeneralized (d, g, h)-
Maps do indeed have this behavior.

In order to consider sample (d, g, h)-paths, we must first establish aversion of
aprobability measureon Z*. The only natural way to do thisisthrough density:

Definition 4. For A C Z™*, define

P ) — lim [AN[LalnTI _ . lAN[LA]NT] dg -

oo LN oo n |E
provided the limit exists.

A nice consequence of the Structure Theorem is that if we want to consider
the set of x that follow acertain m-path, they all fall in one of several arithmetic
progressions, and so these sets have a density.

Partition the interval [0,1] by: 0 =19 < 1 < ... < t, = 1. Fix m and let
m; = [t;m]. Forany x, let x; = T™i (x).
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Theorem 5. The properly normalized patlnx; converges ag: — oo to a
Brownian Path with drifin g — d%l Ind. More precisely,

lim P < b,

m—00

INx;y 1 —Inx; — (m,+1—m)(|ng d Ind)
xia; <
| @2 1)Zmlna’

withi =0, ...,r — 1}

—3Xsgu?)

bo pb1 r—1 e
/ / f duodulw-dur_l.
(21)%

Proof. By an extension of the Structure Theorem, we know that x; = T™i (x)
can be expressed as x; = dg (g™ d*i+1t-+n p 4 gy 4+ §;. Then

Inx; =m;Ing + (k41 + ... +kn)Ind +Inp+ 0 (1), (9

and since we are interested in questions about density, x; islarge, so p islarge,
and thus O (1) is non-essential. Then we can rearrange (9) to:

Inx; —m;Ing — (kmiJrl + ... +km) Ind = Inp
Inx; 1 —mip1lng —
(kmypr41 + . + k) Ind,

from which we get:

d
(Mjy1 — mi)d — Ind — (k14 ... + km,,,) INd =

(10)

d
Ind ).
Tyina)

Since the set of x; consists of precisely (d — 1)' arithmetic progressions, each
with step dg - d* (where k = ky + ... + k,,,), we use (8) to find that

=Inxiy1 —Inx; — (mip1 — my) (Ing e

dg

d—1n".
dg dklEl( )

P{ym (x) = (k1, ..., k) , x = e (moddg) }
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Thisholdsfor each ¢ € E, so we see that

P{ym (x) = (ky, ... kn)} = |E| - P {ym (x) = (ka, ..., k) , x = & (MOd dg)}

d-1" HWd-1
= dk = l_[ dkj .

(11)

j=1

This shows that we can consider the k; as independent identically distributed
random variables, with exponential distribution having the parameter %. Thus
the expected value,

Elki+ ...+ kn] = Zn-P{k1+...+km=n}

- Z” Z P{(s1+1 ....,50+1)
n>m s1+...+spm=n—m, 5; >0

= d-D") n > din

n>m  s1+..+sp=n—m, s;>0
m n n—1
= @-1 Eﬁ( m—l)
d

m.
d—1

Similarly, we can calculate that Var [ky + ... + ky] = ﬁgm. So by the Cen-
tral Limit Theorem,

L = wn) beid
im € (a, = | —du.
m—00 (dfl)zm a \/27'[

And by (10), we have that

INx;y1—Inx; — (mi 1 —my) (Ing - di_l Ind)

- € (aj, b))t =
/M'mlnd
1
d
= (Mmigr —m;) — (kg1 + .. + ki,
—p{atTl 5 - 2 it
@-12"
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which converges exactly as claimed. Since the k; are independent, the incre-
ments, Inx; .1 —Inx; areaswell, and we have the statement about the convergence
of our distributions to the Wiener measure. O

4 Asymptotic Behavior of Typical Trajectories

The previous section proves that the probability distribution corresponding to
the density converges to the Wiener measure with drift logg — ﬁ logd. Since
d and g are relatively prime, there are no values of d and g for which logg —
ddT1 logd = 0, and thus every (d, g, h)-Map has a non-trivia drift. Therefore,
the asymptotic behavior of typical trajectories depends entirely on the sign of
the drift. When the drift is negative, infinity is arepelling point. In the opposite
case, typical trajectories escape to infinity. For the original (3x + 1)-Map, the
driftislog3 — 2log2 < 0, and so as a specia case, we get the result found in
[S.

Intheliterature, the stopping time of aninteger x isdefined asthefirst positive
integer, n, suchthat 7" (x) < x. If n doesnot exist, we say that x hasaninfinite
stopping time. In [E] and [T76], [T79], it is independently proven that for the
(3x 4+ 1)-Map, the density of integerswith afinite stopping timeis 1. This paper
provides another proof of this statement.
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