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On a Conjecture of Finotti

John Tate

— Dedicated to IMPA on the occasion of 88" anniversary

Abstract. We prove a conjecture of Luis Finotti about cubic polynomials of one
variable in characteristic p. He checked it by computer for primes p < 890 and uses
it to define and study the minimal degree lift of the generic point of an ordinary elliptic
curve in characteristic p to the canonical lift mod p2 of the curve.
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1 Statement and proof of the conjecture

The theorem below is a dight generalization of a discovery of Luis Finotti,
who conjectured the corollary below and checked it by computer for all primes
p =877,[1],[2].

Finotti’s conjecture involves what | will call the leading coefficient of the
remainderof thedivision of apolynomia f(X) by apolynomial g(X) of degree
n. By this | mean the coefficient of X"~ in the remainder, even if it be O.
Fernando Villegas remarked that if g(x) ismonic this quantity isthe negative of
theresidue at X = oo of the differential f(X)dX/g(X), i.e., isthe coefficient
of X~1 in the expansion of the rational function f(X)/g(X) in powersof X1,
Once pointed out, thisis obvious:

f(X) r(X) X"t “1

2(X) q(X)+g(X) X))+ T =40 X
| thank Villegasfor this observation, which was abig help to mein finding afirst
proof of the Theorem below.

Let p = 2m + 1 beaprime > 3 and let k be afield of characteristic p. Note
that apolynomial F = )" a, X" € k[X] isthe derivative of another polynomial
ifandonly if a, =0forv=—-1 (mod p).
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Theorem. LetFy, F», F3 € k[X] be monic cubic polynomials. For=1, 2, 3

let A; be the coefficient ak?~1 in F", and letG; € k[X] be a polynomial of
degree3m + 1such thalG, = F" — A, X?~1, where denotes differentiation with
respect toX. Letc; be the leading coefficient of the remainder of the division of
G,Gy by XPF"™, where(i, j, k} = {1, 2, 3}. Thency + ¢z + c3 = 0.

Proof. We show that c; + ¢2 + c3 isthe coefficient of X471 in the derivative
(G1G2G3) andistherefore0. By hypothesis, therearepolynomialsg;, r; € k[X]
such that

GijzinpFim+1+ri, degr; <5m + 3,

and ¢; isthe coefficient of X®**23inr;,. Then

(G1G2G3) = GleGé + G1G3G/2 + GngG/l

3
=Y (@ XPF" ) (F — A XY
i=1
3
= > (X" — @A X R = AKX
i=1

The degree of ¢; ism — 2 < p — 1. Hence the monomials X"?~1, in particular
X*4P=1 donot appear ing; X” F/. Thedegreeof ¢;A; X?»~*F"*!is4p — 2. The
coefficient of X*~Linr;(F" — A; X7~ isc;. Hence Y7, ¢; isthe coefficient
of X*7~1in (G1G,G3)' asclaimed. O

Corollary. Suppose > 5. Let F € k[X] be a monic cubic polynomial. Let
A be the coefficient ok~ in F. LetG e k[X] be a polynomial of degree
3m + 1such thatG’ = F™ — AX?~1. Then the remainder in the division 6f

m 5p—1
by X7 F"*1 has degree< 5m + 2 = 2=,

Proof. Thetheoremwith F; = F», = F3 = F showsthat 3timestheremainder

is of degree < 2271, and we have assumed p # 3.

One can also prove the corollary directly using Villegas's interpretation in
terms of residues. We have
3G%dX  3G%*G'dX dG3

XpFm+l = XpFn+lGgr Xme—‘rl(Fm _ AXp—l)

_ d(G¥/(XPFP))
T (1— AXp-l/Fmy’
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At X = oo, the function G2/ X7 F? hasapole of order m — 1 and AX?~1/F™
has a zero of order m. Hence the residue a8 X = oo of the differential
3G?dX/XPF"*! is the same as that of the exact differential d(G3/XP FP),
and is therefore O. O

2 Origin of the conjecture

Finotti wasled to conjecturethe corollary by his study of the Teichmueller points
in canonical lifts of elliptic curves. Let

E:y’=x*4ax+b=f(x)
be an ordinary €lliptic curve defined over k. Let
a=(a,a1,a), b= (b,b1,by)c Wsk)
be Witt vectors of length three, so that
E:y?=x+ax+Db

isalift of E mod p3. Suppose F1, F», G1, G, are polynomials with coefficients
in k such that

X, y) = t(x, y) = ((x, Fi(x), F2(x)), (y, yG1(x), yG2(x)))

defines amap t from the affine part of E to the affine part of E. It was shown
by JF. Voloch and J. Walker [4] in the corresponding situation mod p? that
deg(Fy) takesonits minimum value, whichis (3p — 1)/2, if and only if E isthe
canonical lift of E and 7 isthe Teichmueller lift of points mod p2. Finotti uses
the corollary, applied to the cubic f(x), to show that if deg(F1) = 3p — 1)/2,
then the minimum possible degree of F» is (3p? — 1) /2, and that this occurs only
if E is the canonical lift of E (mod p®). However the corresponding 7 is not
the Teichmueller lift of points mod p2. It is defined on the affine part of E, but
does not extend to the point O at infinity. He callsthat ¢ the “minimal degree”
lift. It isuseful for computing the canonical lift of E and also the Teichmuller
lift of points mod p3. The Teichmueller F is of degree 2p? — p, has the same
derivative asthe minimal degree F», and ischaracterized by deg(4xP2F2 — 3F12” )
taking its minimum value, whichis (5p% — 1)/2, cf. [3], [2].

3 Anexample

To end this note we mention an easily stated congruence which can be proved
with the corollary.
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Proposition. Letp = 2m + 1 be a prime> 5. Then

1
E — = (mod p)
122%
1<p,v<m

u+v>m+1

Proof. With notation asin the corollary, wecantake F = X?(X +1),A =1,
and

G=X"Y (X+1"/n.
n=1

for then

G = XP Z(x + )P =X (X + )" —1) = F" — AXPL
n=1

By the coroallary, the leading coefficient of the remainder on dividing

G2 = x? Z (X + D" /uv

1<p,v<m

by X7 Fm+t = x2r+1(X 4-1)"+iszero. Termsof degree < 2p+m in G2 donot
affect that leading coefficient. Dropping them and cancelling X27 (X + 1)"+1,
we find that the leading coefficient in question is the remainder on dividing

> X+

1<p,v<m

pu+v=m+1

by X. O
On seeing the congruence just proved, Matilde Lalin noted that

3 1 Z L
1<p,v<m MV k=1 k2

n+v>m—+1
isanidentity inrational numbersfor every integer m > 0, provable by induction
onm. If p = 2m + 1lisprime, theright side of Lalin’sidentity is the sum of all
mth roots of unity in characteristic p, henceisQif p > 3, giving another proof

of the proposition.
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