
BULLETIN
BRAZILIAN

MATHEMATICAL
SOCIETY Bull Braz Math Soc, New Series 33(2), 225-229

© 2002, Sociedade Brasileira de Matemática

On a Conjecture of Finotti

John Tate

— Dedicated to IMPA on the occasion of its50th anniversary

Abstract. We prove a conjecture of Luis Finotti about cubic polynomials of one
variable in characteristic p. He checked it by computer for primes p < 890 and uses
it to define and study the minimal degree lift of the generic point of an ordinary elliptic
curve in characteristic p to the canonical lift mod p3 of the curve.
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1 Statement and proof of the conjecture

The theorem below is a slight generalization of a discovery of Luis Finotti,
who conjectured the corollary below and checked it by computer for all primes
p ≤ 877, [1], [2].

Finotti’s conjecture involves what I will call the leading coefficient of the
remainderof the division of a polynomial f (X) by a polynomial g(X) of degree
n. By this I mean the coefficient of Xn−1 in the remainder, even if it be 0.
Fernando Villegas remarked that if g(x) is monic this quantity is the negative of
the residue at X = ∞ of the differential f (X)dX/g(X), i.e., is the coefficient
of X−1 in the expansion of the rational function f (X)/g(X) in powers of X−1.
Once pointed out, this is obvious:

f (X)

g(X)
= q(X) + r(X)

g(X)
= q(X) + cXn−1 + · · ·

Xn + · · · = q(X) + cX−1 + · · · .

I thank Villegas for this observation, which was a big help to me in finding a first
proof of the Theorem below.

Let p = 2m + 1 be a prime ≥ 3 and let k be a field of characteristic p. Note
that a polynomial F = ∑

aνX
ν ∈ k[X] is the derivative of another polynomial

if and only if aν = 0 for ν ≡ −1 (mod p).
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Theorem. LetF1, F2, F3 ∈ k[X] be monic cubic polynomials. Fori = 1, 2, 3
let Ai be the coefficient ofXp−1 in Fm

i , and letGi ∈ k[X] be a polynomial of
degree3m+1 such thatG′

i = Fm
i −AiX

p−1, where′ denotes differentiation with
respect toX. Letci be the leading coefficient of the remainder of the division of
GjGk byXpFm+1

i , where{i, j, k} = {1, 2, 3}. Thenc1 + c2 + c3 = 0.

Proof. We show that c1 + c2 + c3 is the coefficient of X4p−1 in the derivative
(G1G2G3)

′ and is therefore 0. By hypothesis, there are polynomials qi, ri ∈ k[X]
such that

GjGk = qiX
pFm+1

i + ri , deg ri ≤ 5m + 3 ,

and ci is the coefficient of X5m+3 in ri . Then

(G1G2G3)
′ = G1G2G

′
3 + G1G3G

′
2 + G2G3G

′
1

=
3∑

i=1

(qiX
pFm+1

i + ri)(F
m
i − AiX

p−1)

=
3∑

i=1

(
qiX

pF
p

i − qiAiX
2p−1Fm+1

i + ri(F
m
i − AiX

p−1)
)

.

The degree of qi is m − 2 < p − 1. Hence the monomials Xnp−1, in particular
X4p−1, do not appear in qiX

pF
p

i . The degree of qiAiX
2p−1Fm+1

i is 4p −2. The
coefficient of X4p−1 in ri(F

m
i − AiX

p−1) is ci . Hence
∑3

i=1 ci is the coefficient
of X4p−1 in (G1G2G3)

′ as claimed. �

Corollary. Supposep ≥ 5. LetF ∈ k[X] be a monic cubic polynomial. Let
A be the coefficient ofXp−1 in Fm. Let G ∈ k[X] be a polynomial of degree
3m + 1 such thatG′ = Fm − AXp−1. Then the remainder in the division ofG2

byXpFm+1 has degree≤ 5m + 2 = 5p−1
2 .

Proof. The theorem with F1 = F2 = F3 = F shows that 3 times the remainder
is of degree ≤ 5p−1

2 , and we have assumed p �= 3.
One can also prove the corollary directly using Villegas’s interpretation in

terms of residues. We have

3G2 dX

XpFm+1
= 3G2G′ dX

XpFm+1G′ = dG3

XpFm+1(Fm − AXp−1)

= d(G3/(XpFp))

(1 − AXp−1/Fm)
.
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At X = ∞, the function G3/XpFp has a pole of order m − 1 and AXp−1/Fm

has a zero of order m. Hence the residue at X = ∞ of the differential
3G2 dX/XpFm+1 is the same as that of the exact differential d(G3/XpFp),
and is therefore 0. �

2 Origin of the conjecture

Finotti was led to conjecture the corollary by his study of the Teichmueller points
in canonical lifts of elliptic curves. Let

E : y2 = x3 + ax + b = f (x)

be an ordinary elliptic curve defined over k. Let

a = (a, a1, a2), b = (b, b1, b2) ∈ W3(k)

be Witt vectors of length three, so that

E : y2 = x3 + ax + b

is a lift of E mod p3. Suppose F1, F2, G1, G2 are polynomials with coefficients
in k such that

(x, y) = τ(x, y) := ((x, F1(x), F2(x)), (y, yG1(x), yG2(x)))

defines a map τ from the affine part of E to the affine part of E. It was shown
by J.F. Voloch and J. Walker [4] in the corresponding situation mod p2 that
deg(F1) takes on its minimum value, which is (3p − 1)/2, if and only if E is the
canonical lift of E and τ is the Teichmueller lift of points mod p2. Finotti uses
the corollary, applied to the cubic f (x), to show that if deg(F1) = (3p − 1)/2,
then the minimum possible degree of F2 is (3p2 −1)/2, and that this occurs only
if E is the canonical lift of E (mod p3). However the corresponding τ is not
the Teichmueller lift of points mod p3. It is defined on the affine part of E, but
does not extend to the point O at infinity. He calls that τ the “minimal degree”
lift. It is useful for computing the canonical lift of E and also the Teichmuller
lift of points mod p3. The Teichmueller F2 is of degree 2p2 − p, has the same
derivative as the minimal degree F2, and is characterized by deg(4xp2

F2 −3F
2p

1 )

taking its minimum value, which is (5p2 − 1)/2, cf. [3], [2].

3 An example

To end this note we mention an easily stated congruence which can be proved
with the corollary.
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Proposition. Letp = 2m + 1 be a prime≥ 5. Then

∑
1≤µ,ν≤m

µ+ν≥m+1

1

µν
≡ 0 (mod p)

Proof. With notation as in the corollary, we can take F = X2(X + 1), A = 1,
and

G = Xp

m∑
µ=1

(X + 1)µ/µ ,

for then

G′ = Xp

m∑
µ=1

(X + 1)µ−1 = Xp−1((X + 1)m − 1) = Fm − AXp−1.

By the corollary, the leading coefficient of the remainder on dividing

G2 = X2p
∑

1≤µ,ν≤m

(X + 1)µ+ν/µν

by XpFm+1 = X2p+1(X+1)m+1 is zero. Terms of degree ≤ 2p+m in G2 do not
affect that leading coefficient. Dropping them and cancelling X2p(X + 1)m+1,
we find that the leading coefficient in question is the remainder on dividing

∑
1≤µ,ν≤m

µ+ν≥m+1

(X + 1)µ+ν−m−1/µν

by X. �
On seeing the congruence just proved, Matilde Lalin noted that

∑
1≤µ,ν≤m

µ+ν≥m+1

1

µν
=

m∑
k=1

1

k2

is an identity in rational numbers for every integer m > 0, provable by induction
on m. If p = 2m + 1 is prime, the right side of Lalin’s identity is the sum of all
mth roots of unity in characteristic p, hence is 0 if p > 3, giving another proof
of the proposition.
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