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Abstract. The reconstruction theorem deals with dynamical systems which are given
by amap ¢ : M — M together with aread out function f : M — R. Restricting to the
caseswhere ¢ isadiffeomorphism, it statesthat for generic (¢, f) thereisabijection be-
tweenelementsx € M and corresponding sequences( f (x), f(¢(x)), ..., f(gF1(x)))
of k successive observations, at least for k sufficiently big. This statement turns out to
be wrong in cases where ¢ is an endomorphism.

In the present paper we derive aversion of thistheorem for endomorphisms (and which
isequivalent to the original theorem in the case of diffeomorphisms). Itjustifies, also for
dynamical systems given by endomorphisms, the algorithms for estimating dimensions
and entropies of attractors from obervations.
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1 Introduction

In this paper we discuss the analogue of the reconstruction theorem, see [T1],
[A], and [SYC], for dynamica systems which are given by an endomorphism.
We first give the statement of the reconstruction theorem for diffeomorphisms
and then discuss the situation for endomorphisms.

The original reconstruction theorem deals with dynamical systems, given by
a diffeomorphism ¢ : M — M on a compact manifold M together with a
function f : M — R. Both ¢ and f are supposed to be at least C1. The
diffeomorphism ¢ determines the time evolution, or dynamics, and the function
f isinterpreted here as aread out function This setup is supposed to represent
the situation of adynamical system where one hasonly partial information about
the statesasafunction of time: if thesystemisinthestate x € M, one observes,
or measures, only the value of f(x). So an evolution {x, = ¢"(xo)} leads
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232 FLORIS TAKENS

to the observations {y, = f(x,)}; such a sequence of observationsis caled a
time series The reconstruction theorem deals with the question whether one
can reconstruct from such observations information about the evolution of the
dynamical system itself.

In fact, the original reconstruction theorem also dealt with systems given by
a vector field (continuous time systems). Both in the case of systems given by
diffeomorphisms and by vector fields, the past and the future can be deduced
from the present. Systems given by endomorphisms are much like those given
by diffeomorphisms except that in the case of endomorphismsone cannot deduce
in general the past from the present. There is no such analogue for vector fields
where the present does not determine the past. Since we are primarily interested
here in systems given by endomorphisms we disregard systems given by vector
fields because they are not useful as analogues.

For the formulation of the theorem we need some definitions. Given adiffeo-
morphism (or endomorphism) ¢ : M — M and aread out function f as above,
we define for any k the reconstruction majRec; : M — R* by

Recy (x) = (f(x), f(@(x)), ..., F(@" 0.

The image of M under this map is denoted by X,. We call vectors of the
form (f(x), f(e(x)), ..., f(@* 1)) e R* (k-dimensional) reconstruction
vectors

If the dimension k is clear from the context we may write Rec or X instead of
Rec;, and X;; if it is necessary to specify the dynamical system (¢, f) whichis
used in defining these objects, we write Rec"® and X @ /),

Theorem 1. There is an open and dense subsket Diff}(M) x C1(M), the
product of the space @f!-diffeomorphisms o and the space af-functions
on M, such that, whenevép, f) € ‘U andk > 2m, thenRec; is an embedding
of M into R¥, implying thatX; is a submanifold oR* which is diffeomorphic to
the state space manifold. O

This means that for generic (¢, f), i.e. belonging to the open and dense
subset ‘U, and k > 2m, each state x of the system is uniquely determined by
the k& ‘measurements’ which one obtains if the systems follows *its dynamics
starting at the state x.

In the case where ¢ is not a diffeomorphism but an endomorphism the above
theorem is no longer true: there are persistent examples where Rec; is not an
embedding. We mean here persistent in the sense that there are no C*-small
perturbations of the given system (¢, f) making Rec, an embedding. Such
examples will be discussed in section 2. What one still can prove is that, under
generic assumptions, and for k > 2m, a sequence of k successive measurements
doesdeterminethe state of the system at theendof the sequence of measurements;
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THE RECONSTRUCTION THEOREM FOR ENDOMORPHISMS 233

ingeneral, for each of these‘final states' thereare however several corresponding
reconstruction vectors.

Theorem2. Thereis an open and dense subdet End(M) x C1(M), where
End*(M) denotes the space 6f!-endomorphisms oM, such that, whenever
(¢, f) € Uandk > 2m, there is a mapr; : X — M with 7, Reg;, = ¢* 1.

Moreover the mapr; has bounded expansion, or is Lipschitz, meaning that
forall p # g € X, the the ratio of the distances

d(m(p), mr(q))
lp—aql

’

is bounded by some constantwhich is independent gf andg; d denotes the
distance onf with respect to some Riemannian metric. O

Remark. We should point out that without extra work we prove a somewhat
stronger statement: the map = is differentiable, in the sense that it admits a
differentiable extension to aneighbourhood of X inRR*. Thisin spite of thefact
that X isingeneral not amanifold, sothat it hasno * differentiable structure’ . For
the applicationsitisimportant that 7 isLipschitz; thefact that itisdifferentiable
is, asfar as| know, of no use. O

Though thistheoremismuch weaker than in the case of diffeomorphismsinthe
sensethat neither Rec, : M — X nor i, needsto beadiffeomorphism, for many
practical purposes the result is just as good as in the case of diffeomorphisms.
We shall discuss thisin section 6, but we indicate here aready the applications
which we have in mind:

— under the generic assumptions, the set X, for k > 2m + 1, completely
determines the deterministic structure of the time series produced by the
dynamical system, in the sense that from any segment of at least k — 1
successive values of such atime series all future values can be deduced,
using the shape of X;;

— the estimation of dimension and entropy from observed data, as discussed
in [GPa], [GPb], [T3] and [KS] is also justified for systems where the
dynamicsis given by an endomorphism (provided the generic conditions
are satisfied).

The paper is organised as follows. In section 2 we discuss various examples,
essentially al the local singularities and self intersections which occur in re-
construction maps of generic dynamical systems with state space manifolds of
dymension 1 or 2. These examples show indeed that in the case of dynamical
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systems given by an endomorphism self intersections and non-immersion points
occur in a persistent way so that in general X is not a manifold. In section 3
we formulate the reconstruction conditiopwhich has to be satisfied in the case
of endomorphisms for the conclusion of theorem 2 to be valid. In section 4 we
provethat thisreconstruction condition isindeed generically satisfied if k > 2m.
In section 5 we prove that the reconstruction condition implies the existence of
the map s, with the properties as announced in the above theorem 2. Finadlly, in
section 6, we discuss the applications refered to above.

2 Examples

In this section we give examples of the local structure of reconstruction maps of
generic dynamical systems. We restrict to the cases where the state space mani-
fold M islow dimensiona (in fact only the dimensions 1 and 2 are considered).
Also we shall assume that there are no fixed points and periodic orbits (of low
period) and that the dynamical systems are sufficiently differentiable (this may
mean more than just C1). Within all these restriction we describe all local phe-
nomenawhich occur in reconstruction maps of generic dynamical systems. The
examples are mainly intended to explain the rather complicated reconstruction
condition in section 3.

2.1 Genericreconstructionsof 1-dimensional systems

For a generic dynamical system (¢, f) on a 1-dymensional manifold M, the
derivative of f isonly zero at isolated points. At the points where the derivative
of f isnon-zero, the reconstruction map Rec;, for k > 1, isanimmersion. Now
we consider such an exceptional point p € M where the derivative of f iszero.
Sinceweassumethat thedynamical system (¢, f) isgeneric wemay assumethat
at these exceptional points there are no other exceptional things. Otherwise we
would have a situation with co-dimension at least 2 and this should not happen
in the 1-dimensional manifold M (for the use of the notion of co-dimension in
relation with genericity arguments, see section 4). In particular, we may assume
that de(p) is non-zero, that ¢(p) # p, and that the derivative of f in ¢(p) is
non-zero. It iseasy to seethat thisimpliesthat Rec, for k > 2 isan immersion
at p. So asafirst result we have:

Lemmal. Forgeneric dynamical systems on a 1-dimensional manitplkthe
reconstruction majRecy, for k > 2, is an immersion (in each point 8f). O

Next we consider possible self-intersections. For this we have to consider
pairs of points (p,q) € M x M with p # ¢. For such points to have the
same image under a reconstruction map we need at least that f(p) = f(g).
Thisis a co-dimension 1 condition, so in M x M there will be genericaly a
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1-dimensional submanifold, i.e. acurve, where this condition is satisfied. For
such a pair to have the same image under Rec,, we must have that ¢(p) =
¢(g), aco-dimension 1 condition, or ¢(p) # ¢(g) and f(e(p)) = f(p(q)),
which is aso a co-dimension 1 condition. If the former of these conditionsis
satisfied, then we have that Rec, (p) = Reci(q) for al k; generically this will
happen at isolated points of the 1-dimensional manifoldin M x M defined by the
condition f(p) = f(q). If thelatter of these conditionsis satisfied, then we have
Rec, (p) = Reci(g) for k = 1, 2; in order to have the same for k = 3 we need
a further condition to be satisfied, namely ¢?(p) = ¢?(g) or ¢?(p) # ¢?(q)
but f(¢?(p)) = f(¢3(g)). Again both these conditions imply one more co-
dimension. So this would be a co-dimension 3 situation. Generically this does
not happen on the 2-dimensional manifold M x M. So the only way in which
self-intersections for Recy, k > 3 can occur for generic 1-dimensional systems
isat pairs p, g with p # ¢, f(p) = f(g) and p(p) = ¢(g). Itisnot hard
to show by similar arguments that generically there are no triple points, i.e. no
three points p # g # r # p such that Rec,(p) = Reci(q) = Reci(r) with
k> 2.

Lemmaz2. Forgeneric dynamical systems on a 1-dimensional manitblkthe
reconstruction magrec,, k > 3 may have double points but not triple points.
Moreover, if Rec;(p) = Reci(g), with p # g andk > 3, theng(p) = ¢(g). O

So we seeherethefirst instance of areconstruction map of ageneric dynamical
systemwhichisnot genericasmap: generic mapsfromal-dimensiona manifold
in R3 are embeddings.

2.2 Generic reconstruction maps of 2-dimensional systems

A similar analysis can be carried out in the case the dimension of M is 2, the
details are however more extensive. Thefirst differenceisthat, even for generic
dynamical systems, thereconstruction mapsarein general nolonger immersions.
This can be seen asfollows. For apoint p € M itisaco-dimension 1 condition
that the derivative dy is not invertible in p. So this happens generically along
so-called fold curves. Along these fold curves it is another co-dimension 1
condition that thekernelsof dy and d f coincide. Sothiswill occur (persistently)
in isolated points for generic 2-dimensiona dynamical systems. In such a point
a reconstruction map cannot be an immersion: if v is a non-zero vector in the
common kernels of dy and df, then this vector will be mapped to zero by the
derivative of any reconstruction map. Thisisin fact the only way in which the
reconstruction mapsRec;, withk > 4 canfail tobeimmersions. If thedynamical
system is sufficiently differentiable and if the higher order terms of ¢ and f are
generic, then the resulting singularity in Rexz forms a Whitney umbrella, see
[W4]. Thissingularity remainsin Rec, for k > 3. So we have:
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Lemma3. Forageneric dynamical syste, /) on a 2-dimensional manifold

M the reconstruction mapRec;, with k > 4 can have isolated points where it is
not an immersion; in these points it has a singularity in the form of a Whitney
umbrella. O

With arguments similar to those used in the 1-dimensional case, we obtain for
generic 2-dimensional systemsthat Rec;, with & > 5 may have curves of double
pointsand al so isolated double points. Theformer ones correspond to those pairs
of points p # ¢ for which ¢(p) = ¢(q), thelatter correspond those pairs p # g
for which ¢(p) # ¢(g), but ?(p) = ¢?(g). Also there will be isolated tripple
points; in fact they will be the intersection of 3 lines of double points of the first
kind. However there will never be four different points which are mapped to the
same reconstruction vector.

3 Thereconstruction condition for endomorphisms

In this section we formulate the condition which has to be satisfied by (¢, 1) in
order to belong to the set ‘U in theorem 2. For this we need some definitions.

Definition (meeting number). Let (¢, f) be adynamical system on M and
let (x, X) bean element of M x M. The meeting number j(x, X) of x and x is
the smallest integer such that ¢/ % (x) = ¢/*¥ (%). If no such number exists,
then the meeting number is co. This meeting number dependson g; if thisneeds
to be expressed in the notation, we write j#(x, ). Notethat j (x, x) = 0if and
only if x = x. 0

Definition (s-embedding). Let (¢, f) be a dynamical system on a manifold
M. We say that a point x € M is s-embedding if the co-vectors df (x),
d(fe)(x),...,d(fe* 1) (x) contain aco-basis of T (M). Note that this condi-
tion isequivalent with the condition that Rec;, restricted to some neighbourhood
of x, isan embedding into R*.

Note that if x iss-embedding for (¢, f), then thisis still so for x sufficiently
closeto x and (@, f) C* sufficiently closeto (¢, f); thisis due to the fact that
‘forming abasis is persistent under small perturbations. O

Definition (property P). Let (¢, f) beadynamical system onamanifold M,
and let k£ be an integer. We say that a pair of points (x, x) € M x M has the
property P, if:

— Rec(x) # Recy(x), or
— forsome j(x,x) < j <k, ¢/ (x) = ¢/ (x) is (k — j)-embedding.
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We note that in this definition we do not exclude the case x = x. Also observe

that if the pair x, X hasthe property P, then it has the property P, for [ > k.
When thevalue of k isirrelevant, or clear from the context, we write P instead

of Py. O

Definition (reconstruction condition). Let (¢, f) be adynamical system on
a manifold M and let k be some integer. We say that (¢, f) satisfies the k-
reconstruction condition if each pair of points (x, x) € M x M hasthe property
Py. O

Thereisan equivalent form of thereconstruction conditionwhichwill beuseful
in section 5.

Lemma. A dynamical systerfy, f) on a manifoldM satisfies thé&-recons-
truction condition if and only if for eack-dimensional reconstruction vectér
there are anintegef (£) and apointp(¢) € M suchthat, whenevé&ec,(x) = &,
then

— ¢/ O ) = p(©);
— p(§)is (k — j(§))-embedding. O

Proof. First we assumethat (¢, f) satisfies the k-reconstruction condition. For
x € M the property P then holds for the pair (x, x). This means that there
issome j < k such that ¢/(x) is (k — j)-embedding. We define j(x) to be
the biggest such integer. Then, if, for x # x, we have Rec;(x) = Reci(x),
it follows from the property P, that there is some j such that ¢/ (x) = ¢/ (x)
and such that ¢/ (x) is (k — j)-embedding. This however implies that we have
j(x) = j(X) (sincewe required j (x) respectively j(x) to bethe biggestinteger
such that ¢/ (x) respectively ¢/ (%) is (k — j(x)), respectively (k — j(¥))-
embedding). In other words we can define for a k-dimensional reconstruction
vector & theinteger j (&) asj (x) for any x with Rec, (x) = &. Alsowe can define
p(€) as /™ (x) whenever Rec; (x) = £. With these definitions it is clear that
j (&) and p(&) have the properties as announced in the lemma.

Next we assume that we have for each reconstruction vector & an integer j (&)
and apoint p(&§) € M withthe propertiesasformulated inthelemma. Let (x, x)
be any pair of pointsin M x M. If Rec;(x) # Rec,(x) then the pair (x, x) has
the property 7. If Rec,(x) = Rec,(¥) = &, then it follows from the various
definitionsthat j(x, x) < j (&) and that the pair (x, X) has the property 7, with
j=J@). O
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4 The proof of the genericity

Our first step, in section 4.1, is to prove that for a pair (x,x) € M x M the
property P is persistent, both under C*-small perturbations of ¢ and f and
under small perturbations of x and x. Therest of the proof of genericity isbased
on transversality. In section 4.2 we recall the basic ideas of this method as we
will useit. In section 4.3 we prove the genericity result for pairs (x, X) where
x or X is close to a periodic point of ¢ with ‘low’ period or to ‘some of the
pre-images of such periodic points with low period. In section 4.4 we finally
compl ete the genericity proof.

4.1 Persistence of the property P

We assume we are given a dynamical system (¢, f), and an integer k& such that
the property 2, holds for (x, x) € M x M. We shall prove that this property
remains if the points x and x are dlightly perturbed and aso if ¢ and f are
dightly perturbed in the C*-sense. In order to prove this, we assume that we
have sequences x,,, X,,, ¢, and f, convergingto x, X, ¢, and f respectively and
derive a contradiction from the assumptiorthat for each n the property 2, does
not hold for (¢,, f,) a (x,, X,).

If for (x, x) the first aternative holds, i.e., if for some 0 < j < k we
have f(¢/(x)) # f(¢/(¥)) then we also have, for n sufficiently large, that
Fu(@) (x2)) # fa(@)(X,)) which implies property P, for n sufficiently large:
a contradiction with our assumption. This means that from now on we may
assume that for (x, x) the second aternative holds, and even that for each
0<j<J=jx%) wehae f(¢p/(x)) = f(p/(X)) (jx,X) is the meet-
ing number as defined in section 3).

If necessary by restricting to a subsequence, we may assume that the val ues of
Jj# (x,, X,) are independent of n. We denote thisvalue by J'. Clearly J < J'.
If J = J’ we aobtain a contradiction because the property of being s-embedding
is persistent under small perturbations, see section 3.

For J < j < J'thepointsg; (x,) and ¢; (x,) arevery close, but not equal. We
can interpret the difference between these points as ‘infinitesimal vectors'. This
can bemade preciseby taking local coordinatesin aneighbourhood of each of the
pointsg’ (x) = ¢/ (X). Withrespect tosuch coordinates, wehaveunit vectorsuv, ;
and positivereal numberse, ; (convergingtozeroforn — oo) suchthat ¢; (x,,) —
@n(X,) = &, jv, ;. If necessary by restricting again to a subsequence, we have
that for each j (still with J < j < J’) thelimitv; =lim,_, v, ; exists. These
limitvectorsbelongto 7,,; ., (M) and areindependent, up to scalar multiplication,
of the coordinates which we used. One easily verifies that, for some real 4,
dp(v;) = AjvjpforJ < j < J'— 1landthat dp(v;—1) = 0. Furthermore,
for each j suchthat / < j < J', wehavethat df (v;) = 0, because otherwise,
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for n sufficiently large, we would have £, (@i (x,)) # f.(¢i (%,)) which would
imply property 2, to hold for such n which is again against our assumption.
This means that each of the vectors v; isin the kernel of d(f¢’") (¢’ (x)) for al
j =0.

We return to the fact that the second alternative in the condition 7, holds for
(¢, f) @ (x,%). Thismeansthat there is an integer j > J such that ¢/ (x) is
(k — j)-embedding. We concluded above that for every j with J < j < J’
there is a non-zero vector in T, (M), namely v;, which is in the kernel of

d(fe’) (¢’ (x)) for al j* > 0. This means that we must have j > J'. Now

it follows that, for n sufficiently large, also ¢; (x,) is (k — j)-embedding for
(¢, f»), meaning that the property 2, holds for such (¢,, f,) a (x,, x,). This
is the final contradiction which completes the proof of the persistence of the
property P;.

4.2 Transversality

For a good exposition of the theory of transversality we refer to [B] and [H].
We recall here the definition of transversality, prove the transversality theorem
for asimple situation, and indicate the role of the perturbing familiesvhich are
necessary in the proof of our transversality results.

Definition. Let V be a submanifold of a manifold W and let f be a C*-
map from another manifold N into W. We say that f istransversal with respect
to V if we have for each x € N either f(x) € V or df (T, (N)) + T¢)(V) =
Ty (W). .

Remarks.

1. Notethat if the derivative of f is, for each x € N, a surjective map from
T((N) to T (W), then f istransversal with respect to any submanifold
of W.

2. Notethat if the dimension of N issmaller than the co-dimension of V in
W, i.e. smaler than dim(W) — dim(V), then f istransversal with respect
to Vifand only if f(N) isdigoint from V.

3. It is easy to see that if V is a topologically closed submanifold and if
N is compact, then the set of C*-maps, k > 1, from N to W which are
transversal with respect to V isopenin the C*-topology; in the case where
moreover the dimension of N issmaller than the co-dimensionof V in W,
asin the above remark, transversality is even open in the C°-topology.
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4. 1f f istransvgrwl with respectto V, then V = f~1(V) isasupmani[old
of N and, if V isnonempty, the co-dimension dim(N) — dim(V) of V in
N equalsthe co-dimensiondim(W) — dim(V) of VinW.

Theorem (Thom’stransversality lemma[T6],[H]). LetV be a submanifold
of W which is topologically closed and I& be a compact manifold. Then the
setofC*-mapsk > 1, which are transversal with respect tois open and dense
in the C*-topology. O

Sketch of the proof for the case that W isa vector space. Aswe observed
before, transversality is open in the C*-topology. Since C!- and even C>-maps
are dense in the C1-maps, it is enough to prove only density of the transversal
maps in some C’-topology with [ > 1.

Here we only indicate the proof for the case where W = R’ for some L. Let
f : N — RE beaC’-map. Wewant to show that we can approximate f by amap
which is transversal with respect to V. For this we take a parametrised family
fu : N — RE, where the parameter 1 has values in an open neighbourhood P
of the origin in some vector space, such that

- fo=1i

—themap F : P x N — RL, defined by F(u,x) = f,(x) is C' and
transversal with respectto V.

In this case one can take P = R and f,(x) = f(x) + p. Itiseasy to seethat
with this definition the above two conditions are satisfied. Note that we don't
have to specify V c R’ since the derivative of F is surjective everywhere.
Next we consider the submanifold V = F~1(V) and its projection = on
the parameter space P. According to Sard's theorem, e.g. see [B] or [H],
the set C,, of critical values of 7, i.e. the set of parameter values, which is
defined by C, = {u € P | I(u,x) € Vsuchthat dm,.,y : T (V) —
T,,(P) isnotsurjective}, has L ebesgue measure zero. Infact, for Sard’ stheorem
to apply we need = and hence f to be sufficiently differentiable (the required
differentiability / isthe maximum of 1 and (dim(V) — L + 1)). Aswe observed
in the beginning of the proof this is no problem: we could assume f to be as
differentiable as needed. Finaly it isnot hard to verify that a parameter value
isnon-critical if and only if f, istransversal with respect to V. This means that
arbitrarily close to O there are parameter values for which f,, is transversal with
respectto V. 0
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Remarks.

1. In the statement of the transversality theorem, and in its proof, we can
take N to be a non-compact manifold with a compact subset K. Then
the conclusion is that for an open and dense set of maps from N to W
transversality holds on K. We say that f : N — W is transversal
with respect to V on K if for any x € K we have either f(x) ¢ V or
df (T (N)) + Trx) (V) = Tu)(W). The conclusion holds both for the
strong and the weak topology on the space of C*-maps from N to W,
k > 1. Also, if the manifold V isnot closed as asubset of W, but contains
asubset L which is closed in W the conclusion of the theorem holds for
transversality with respect to V restrictedto L. Wesaythat f : N - W
is transversal with respect to V restricted to L if for each x € N we have
either f(x) ¢ L or df (T (N)) + Ty (V) = Ty (W).

2. We call the parametrised family f,, in the above proof aperturbing family
If one wants to prove the above theorem for an arbitrary manifold W, the
only part of the proof which needs adaptation is the construction of the
perturbing family.

Perturbing familiesfor dynamical systems. In the proof that the reconstruc-
tion condition is generic (for appropriate k), we shall use several times an argu-
ment of the following type:

We have some construction C which assignsto each endomorphism¢ : M —
M and read out function f : M — R amap C(g, f) : Cyy — Cy', where Cy
and C,, are smooth manifolds and where C,,” has a submanifold S,,. We then
need to show that for generic (¢, f), C(g, f)istransversal withrespectto S,,. So
what we will have to show then is that we can perturb C(g, f) in asufficiently
general way by perturbing ¢ and f. More precisely, we need a parametrised
family (¢,, f.), n in some parameter space, such that © +— C(g,, f,) isa
perturbing family as introduced in the proof of the transversality theorem. It
happens that there is one parametrised family (¢,, f,) (still depending on k)
which is sufficiently rich to generate the required perturbing families for al the
constructions which we will need. It isthis parametrised family (¢, f,,) which
wewill now construct. It will be denoted by the perturbing family ofe, f); note
that we use here the term ‘ perturbing family’ in a meaning which is somewhat
different from the original one, namely afamily of perturbationsof (¢, f) which
inducesa perturbing family in the original sense of mapslike C(g, f).

In order to construct this perturbing families for ¢ and f, we need to fix the
value k in the reconstruction condition and to identify the state space manifold
M with asubmanifold of R, which certainly can bedoneif L > 2dim(M), see
[H]. We denote by p asmooth projection of a (small) neighbourhood U of M in
RE to M sothat p|M istheidentity in M. Wethen define E asthelinear space of

Bull Braz Math Soc, Vol. 33, N. 2, 2002



242 FLORIS TAKENS

polynomials of degree at most (4k — 1) on RE. This degree is chosen to ensure
that for each collection of 2k pairwise different points X2, ... , X% e RZ, red
numbers o, ... , «% and co-vectors B, ... , % e (RY)* thereis an element
g € E suchthat g(X') =’ anddg(X’) = g forali =1,..., 2. Inorder to
see that this degree (4k — 1) suffices, we note the following:

Thereisapolynomia p of degree (4k — 2) onIRE whichis zero, and has zero
derivative, in the points X, ... , X%~1 and which is nonzero everywhere else,
eg. take p(x) = [1%;* | X' — x [|2. Then, multiplying this polynomial with a
polynomial of degree one, we kan make the value and the first derivative in X%
wr11atever erk vvlant, without changing the values or derivativesin the other points
X5 .., X9

Asaparameter space P for our perturbations of ¢ and f wetakethe (L + 1)-
fold power EX*+1 of E, or at least aneighbourhood of the origin 0 in that vector
space. For u = (go, ... , g1) € P wedefine

- fu = f + golm;
- ¢, =plp+(g1,...,81)), Where (g1, ... , gr) should be interpreted as
the restriction, of the polynomial map (g1, ... , gz) onRRY, to M.

The neighbourhood P of theoriginin EX+1 should be so small that the image
of p+(g1, ..., gr)iscontainedin U, the neighbourhood on whichthe projection
p on M isdefined, whenever (go, ..., gr) € P.

The use of this perturbing family is further explained in connection with the
jet extensions to be discussed bel ow.

Jet extensions. For any smoothmap g : V. — W, the 1-jet of thismap in
apoint y € V consists of the pair y, g(y) together with the derivative dg(y)
of g at the point y. For the dynamica systems which we are considering here,
consisting of asmooth endomorphism ¢ and asmooth read out function £, both
defined on M, the 1-jet at apoint x € M consists of x, ¢(x) and f(x), together
with the derivativesdp (x) and d f (x). Wecall themap, assigningtoeachx € M
the 1-jet of (¢, f), the 1-jet extension ofy, f); it is denoted by J(¢, f) and
it is a map whose degree of differentiability is one less than that of (¢, f); its
range can obviously be given the structure of a smooth manifold. Thisrangeis
avector bundle over M x M x R, whose fibre over (x1, x», s) isthe product of
the set of linear maps Lin(T,, (M), T,,(M)), from the tangent space at x; to the
tangent space at x,, and 7 (M); in this representation the 1-jet of (¢, f) at x
corresponds to the ‘base point’ (x, ¢(x), f(x)), while the element of the fibre
determines the derivatives of ¢ and f respectively at x. The space of all these
1-jetsis denoted by J1(M).

Apart from 1-jets, we also consider multi-1-jets First we define M~X asthe
set of K-tuples (X, ..., XX) of pointsin M which are pairwise different. The
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K-1-jet of (¢, f) a (X%, ..., XX) is the sequence of 1-jets of (¢, f) at the
successive points X1, ... , XX; the map assigning to each such (X1, ..., XX)
its K-1-jet is the K-1-jet extension of (¢, f) and is denoted by JX-1(M), its
range by J1(M)~X. The proposition below formulates the main property of our
perturbing family of (¢, f) intermsof multi-1-jets. Its proof is straightforward.

Proposition. For the parametrised familyp,,, f,,), as constructed above, the
map which assigns to each elemeémnt X1, - - - , X%) of P x M™% the 2k-1-jet

of (¢, f,) at (X%, ..., X%) has a derivative which is everywhere surjective,
and hence is transversal with respect to any submanifolttafr)~2. O

Remark. In order to prove that the k-reconstruction condition is generic (for
appropriate values of k) wewill need to apply the transversality argument to 2k-
1-jet extensions of (¢, 1), or to maps which are derived from such extensions.
Since in the transversality theorem one assumes maps to be at least C?, one
would expect that (¢, f) should belong to some open and dense subset in the
C?-topology. The reason that the C*-topology is sufficient is due to the fact
that, wherever 1-jet extensions are involved, we will only use the transversality
argument in situationswheretransversality means‘ nointersection’ inwhich case
transversality is even open in the C°-topology. Another argument, showing that
the C*-topology issufficient, isbased on thefact that the property P; ispersistent
under Ct-small perturbations.

4.2.1 Transversality with respect to a (semi-)algebraic subset

The Thom transversality theorem concerning maps from N to W can be gener-
alised to the case where the subset V of W is no longer a submanifold but an
algebraic, or even aclosed semi-algebraic, subset (an algebraic subset isgiven by
algebraic equalities, in the definition of a semi-algebraic subset also (algebraic)
inequalitiesmay occur). Thereason that such ageneralisationispossibleisbased
on thefact that closed (semi-)al gebraic subsets admit Whitney stratifications; for
the proof we refer to [L], seealso [T9] or [GWPL]. A Whitney stratification of
aclosed set is a decomposition of the set into a finite number of manifolds, or
strata, such that for each stratum S, itstopological boundary S \ S, is contained
in the union of strata of lower dimension, and such that certain compatibility
conditions are satisfied. These compatibility conditionsimply that for any point
x of astratified set, belonging to a stratum S and any sequence x; converging to
x and belonging to astratum S” and such that the tangent spaces 7, (S”) converge
to a limit, the tangent space T, (S) is contained in that limit. Moreover, in a
stratified set V, the union of al strata of dimension smaller than or equal to i,
also called the i-dimensional skeleton of V and denoted by V', isagain aclosed
stratified set.
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It follows from this compatibility condition that, whenever the manifold N
is compact, the maps from N to W which are transversal with respect to all
the strata of some closed (semi-)algebraic subset V, or, more generally a closed
stratified subset V, of W form an open subset in the C*-topology. The density
of transversal maps is obtained by induction on the dimension of the skeletons:

Transversality with respect to V0 is certainly dense because V° is a topologi-
cally closed submanifold. Mapswhich aretransversal with respect to all stratain
Vi are, inasufficiently small neighbourhood of V', also transversal with respect
tothe stratain Vi*+* (dueto the compatibility conditions). The remaining part of
Vit+lisaclosed subset of a smooth manifold, so there transversality follows as
usual. In this way we obtain transversality with respect skeletons of increasing
dimensions and finally with respect to al of V.

4.2.2 Reconstruction maps of generic dynamical systems

Here we show how the method of perturbing families can be used for our recon-
struction problem. In fact, what we do here isto prove, as an example, a part of
our general genericity theorem.

Proposition. Letg : M — M be an endomorphism, lét > 2dim(M) be
an integer and letk ¢ M x M be a compact subset such that for any pair
(x, X) € K we have:

— the meeting number’ (x, x) is at leastk;

— the first2k — 1 iterates ofx, namelyx, p(x), ... , *1(x) are pairwise
different;

— the first2k — 1 iterates ofx, namelyx, ¢(%), ... , *?(x) are pairwise
different.

Then there is an open and dense subset Gh(M), the space of
C*-functions onM, such that forf in that subset andx, ¥) € K we have

Reci " (x) # Rec” " (%). O

Proof. Let E be a vector space of functions on M such that, whenever
X1, ..., X% are pairwise different pointson M and o, ... , «? € R, thereis
afunction g € E suchthat g(X’) = o fori =1, ..., 2k. For the construction
of those (finite dimensional) vector spaces we refer back to the discussion of
the pertubing families in section 4.2. For afunction f; on M we consider the
perutbing family f,,, with u € E given by:

Ju(x) = folx) + p(x).

Bull Braz Math Soc, Vol. 33, N. 2, 2002



THE RECONSTRUCTION THEOREM FOR ENDOMORPHISMS 245

To each u we associate themap R, : M x M — R¥, defined by
R, (x, ) = Rec ™ (x) — Rec” " (%),
and the correspondingmap R : E x M x M — R¥ by

R(u, (x,x)) = R, (x, X).

Our proposition follows (by the transversality argument) if the map R has, in
each point of E x K, asurjective derivative.

For apair (x, x), suchthat all the 2k points¢’ (x) and ¢’ (x),fori =0, ... , k—
1, arepairwise different it is obvious that the derivative of R issurjectivein each
point (u, (x, x)). For apair (x, X) € K, the only way in which parts of the two
orbit segmentsx, ..., o* Y(x) and %, ... , ¢*1(¥) may coincideis

— forsome0 < i < j, ' (x) = ¢/*5(x) for s > 0 and no other points
coincide;

— the same as above with the roles of x and x interchanged.

(Here we made heavily use of the second and third condition in the proposition
which for example exclude the possibility that ¥ = ¢*~1(x) and at the sametime
k=1,
x =@ (X))
It is however not hard to verify that also in these cases, one can find for each

(@, ..., o" ) e R*anelement 1 € E suchthatforeachi =0,... . k—1,we
have (¢’ (x)) — u(p' (X)) = o'. Thisimpliesthat in each point of E x K the
derivative of R issurjective. This completes the proof. d

4.3 Theproperty P at (pre-)periodic points of low period

We now proceed to the actual genericity proof, or rather to the density proof since
we have already the openness of the property 2. In this proof the periodic points
of low period (and a number of their inverse images) need a special treatment.
That is the subject of the present section.

As before we consider dynamical systems, given by an endomorphism ¢ and
afunction f on aclosed manifold M of dimension m. Since we only have to
establish the density of thereconstruction condition, and sincethe C *°-mappings
are dense in the C*-mappings, we may assume ¢ and f to be as differentiable
as needed.

For the proof of the main theorem we only need to consider the property 7,
with k > 2m (so that we may evenrestrict to k = 2m + 1); in the present section
we can even take k > m (for the most part even k > m); for the time being, we
will restrict to k = m and refer to the property 2, asthe property P.
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Fixed points. For adynamical system (¢, f) we consider its 1-jet extension
JX(p, f), whichmaps each x € M to (x, ¢(x), f(x), dp(x), df (x)). Generi-
cally this extension is transversal to the fixed point submanifold V, defined by
{x = @(x)}. Since V hasco-dimensionm in J1(M), thefixed points areisolated
for generic ¢.

Next we define the smaller subset V ¢ V by the conditions:

- x =¢()ad

— ([df(x),...,d(fe" 1) (x)) islinearly dependent in T*(M), or dp(x) has
an eigenvalue which is 0 or an /" root of unity with [ < 4m.

Since the second condition is algebraic (at least one of a finite number of
determinants has to be zero), V admits a stratification. We now show that V
is a proper subset of V and hence consists of strata whose co-dimension in
JY(M) is at least m + 1. For this we first show that there are a linear map
A R"™ — R™ and alinear function F : R" — R, i.e. an element of (R™)*,
suchthat (F, FA = A*(F), ..., FA"™ ! = (A*)"~1(F)) isabasisof (R")* and
such that A has no eigenvalue which is 0 or which is an I’ root of unity with
[ < 4m. One can take for example for A alinear map whose (rea) matrix is
diagonal with no multiple eigenvalues and no eigenvalues equal to 0 or +1 and
Foivenby F(uq, -+ ,upy) =uy+ -+ u,.

Inthevector space Lin(R™, R™) x (R™)* the set of thoseelements (A, F), for
which (F, FA, ... FA™Y) islinearly dependent or for which A has an eigen-
value which is 0 or an /" root of unity with I < 4m, is an algebraic set with
non-empty complement (by the above argument). Henceit hasnointerior points.
Soitisstratified with strata of co-dimension at least 1in Lin(R™, R™) x (R™)*.
This implies that V is stratified and that its strata have at least co-dimension
m+1in JY(M). 3

So for generic (¢, f) theimage of the 1-jet extension is digoint from V and
transversal to V. For dynamical systemswhich aregenericin thissensewe have:

— thefixed points are isolated (hence there is only afinite number of them)
and the derivative dy in such afixed point has no eigenvalue which is0 or
an " root of unity with/ < 4m (so that in asmall neighbourhood of these
fixed points there are no periodic points with period at least 2 and at most
dm);

— whenever x isafixed point, x is m-embedding and hence the property 27
holds at (x, x).

Weshall explainlater why weal so excluded theeigenvalue0, seethediscussion
on pre-periodic points in this section.

To the above generic conditions we add another condition which is clearly
generic: there should not be two different fixed points where the value of f is
the same. If this condition holds, then:
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— whenever x and x are fixed points, the property 2 holds at (x, x).

Due to the persistence of the property 2, and the other generic conditions,
we have for these generic (¢, f): there are aneighbourhood ‘U of (¢, f) inthe
C*-topology and a neighbourhood U of the set of fixed points of ¢ such that:

whenever (¢, f)isinU andx, X € U, then:
— the property P holdsfor (¢, f) at (x, %);

— if x isafixed point of ¢, then x € U and d¢(x) has no eigenvalue which
isOor an " root of unity with ! < 4m;

— the neighbourhood U contains no periodic points of ¢ with period at least
2 and at most 4m;

— if x # x are both fixed points of ¢, then f(x) # f(x).

Periodic points. We will need the analogue of the above result aso for all
periodic points of period at most 4m. We will treat the case of points of period
2 indetail and in such away that it is clear how to proceed by induction.

We assume that the dynamical system (¢, f) is generic in the above sense so
that there are neighbourhoods ‘U and U with the above mentioned properties.
We may assume that all the perturbations of (¢, f), which we describe below,
remain within U. Sincein U there are no points of period 2, we can restrict our
transversality arguments to the compact complement K of U in M.

With afirst arbitrarily small perturbation of ¢ we obtain that on K, the com-
plement of U, themap M > x — (x, ¢%(x)) € M x M is transversa with
respect tothediagona A ¢ M x M. Thisimpliesthat the points of period 2 are
isolated.

Asinthe case of fixed points, with asecongarbitrarily small, perturbation we
obtain that:

— for each x € K with ¢?(x) = x, theco-vectorsdf (x), ..., d(f¢" 1) (x)
form a basis of T*(M), so that x is m-embedding and dp?(x) has no
eigenvalue which is 0 or an /' root of unity with [ < 4m.

Finally, with athird arbitrarily small perturbation we can arrange that for any
two pointsx # x, belonging to the set of points with period at most 2 (including
the fixed points), we have f(x) # f(X).

For dynamical systems (¢, f) which have generic fixed points and points of
period 2 in the above sensg, is follows that whenever x, X belong to the set of
points of period at most 2 (including fixed points), then the property 2 holds at
(x, x). Dueto persistence we have for such generic (¢, f):

There are aneighbourhood ‘U’ of (¢, f) in the C*-topology and a neighbour-
hood U’ of the set of points with period at most 2 (including the fixed points)

such that for x, ¥ € U’ and (¢, f) € U
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— the property P holdsfor (¢, f) at (x, %);

— inthe neighbourhood U’ there are no points of period greater than 2 and
at most 4m;

— if x isafixed point or a point of period 2 of ¢, then x € U’ and dg(x),
respectively d@?(x), has no eigenvalue which is 0 or an /" root of unity
with! < 4m;

— if x # x and both x and x have period at most 2, then f(x) # f(x).

Itisnow clear how one can proceed with the successive periods 3, 4 etceteraup
to period 4m. Thefinal result will be stated explicitely after we have considered
also the pre-periodic points.

Pre-periodic points. We assume that (¢, f) isadynamical system which is
generic in the above sense (for al periodic orbits of periods up to 4m). Let
P denote the set of al these points of low period, i.e. of period at most 4m.
We now consider the set of first pre-low-periodic pointsP! which is defined as
Pl = ¢~%(P)\ P. We note that, due to the fact that in the case of periodic
points of low period we avoided derivatives with eigenvalue 0, P* is bounded
away from P (in fact it was for this reason that we excluded the eigenvalue 0).
From this it easily follows that it is a generic property for ¢ that the points of
P! areisolated and that the derivative dy in each point of P! isinvertible: this
is equivalent with the property that ¢, restricted to the complement of a small
neighbourhood of P, istransversal with respect to P.

The next property for these first pre-low-periodic points which we need to be
generic isthat for each x € P we have that

df (x), ..., d(fe" H(x)

isabasisof T (M), i.e. that x ism-embedding. In order to see that also thisis
generic, we observe that for each x € P wehave ¢(x) € P; dueto the generic
conditions, holding for P, we have that

df (@(x)), ..., d(fe" Hpx))

isabasis of T3 (M) and hence

df (@(x)), ..., d(fe" 2 (p(x))

are linearly independent; due to the fact that dp (x) isinvertible, dlsothem — 1
Co-vectors

d(f)(x), ..., d(fe™ D (x)
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are linearly independent. So for generic f, df (x) is linearly independent of
the above m — 1 co-vectorsin 77 (M), and hence df (x) completes the basis as
required. Thisimpliesthat generically the property 7 holds at (x, x).

Finally, thelast generic property isthat for each pair of pointsx # xin PU P2,
we have f(x) # f(x). Thislast property impliesthat also for x # x, bothin
P U P, the property P holds at (x, ¥).

Next we define the second pre-low-periodic pointB? as P2 = ¢~ (P} =
e Y(P U PYH\ (P U PL. From thisdefinition it is clear that one can prove, by
induction, the same type of generic propertiesfor P? asfor P. Inthefollowing
we mainly need this genericity up to P4".

Statement of the generic propertiesfor pre-low-periodic points. For ady-
namical system (¢, f) we define the set (P(¢)) of pre-low-periodic points as
the set of al periodic points (fixed points including) whose period is at most
4m (thisisthe set of low-periodic points) together with all those points which
are mapped by ¢*" into this set of low-periodic points. Now from the above
consideration it follows that in the space of C!-dynamical systems there is an
open and dense subset (of generic dynamical systems) such that for each dy-
namical system (¢, f) inthissubset we have neighbourhoods U of (¢, f) inthe
C*-topology and U of P () in M such that for each (¢, f) € Uandx, % € U
we have:

— P(¢) iscontained in U;
— if x # % and if they areboth in P(¢), we have f(x) # f(%);

— the co-vectors df (x), ... , d(f¢" 1) (x) form abasisof T*(M), i.e. x is
m-embedding;

— the property 2 holdsfor (¢, f) at (x, X):

— if x is alow-periodic point with period i < 4m, then d(¢)'(x) has no
eigenvalue whichis 0 or an /" root of unity for I < 4m;

— d@(x) isinvertible.

Remark. In the above discussion, extending the generic propertiesto the pre-
periodic points, we could just as well have stopped the process to include pre-
images at a different order, say up to ¢ (P (¢)). Thiswill be needed in one of
the arguments below. We will denote the set ¢~/ (P(¢)) by P!(¢); so P(¢p) =
P*"(). If we want to refer to this version of the above generic properties, we
will refer to genericity onP! (¢).
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Consequencesfor reconstruction maps. Wediscusshere consequencesof the
above generic properties for reconstruction maps as introduced in the introduc-
tion. We also derive one further generic property which implies that generically
for k > m the property 7, holds at any pair (x, x) with x or x close to a pre-
low-periodic point; this means that in the rest of the proof of the density of the
k-reconstruction condition, we may assume that there are no periodic point with
low period.

First we recal the definition of the k-dimensional reconstruction map Rec; :
M — R for adynamical system (¢, f):

Reci(x) = (f(x), f(@()), ..., f(@H0))).

For k > m, the above generic properties imply that, for a sufficiently small
neighbourhood U of P (¢), Rec, |y isan embeddinginto R¥, and henceinjective.

Our first objective here is to show that with an arbitrarily small perturbation
of (¢, f) we can obtain, for k > m, that, whenever x € P(¢) and ¥ # x we
have Rec; (x) # Reci(x). We call this the injectivety property If this property
holdsfor k = m + 1, it holdsfor all k > m. We note that thisisthefirst instance
where we need to restrict to P, with k > m.

With afirst small perturbation we obtain that the above generic property also
holds on P>"*1(¢). Then there is a neighbourhood U of P5*+1(¢) such that
Rec,, 11|y 1S an embedding, and hence injective. We show that with a second
small perturbation of f alonewe can obtain the required injectivity property. So
we have to show that we can obtain that the image under Rec,,,; of the com-
plement of some neighbourhood of P (¢) isdisioint from Rec,,+1(P (¢)). Since
Rec,,.1(P(¢)) is 0-dimensional (it contains only afinite number of points) this
means that Rec,,,1 has to be transversal to Recmﬂ(ﬁ((p)) when restricted to
the compact complement of some neighbourhood of P(p). For this we con-
sider perturbations of f which vanish on P(¢) and which are so small that
Rec,, 1|y remains an embedding, where U’ is some open neighbourhood such
that P5"*t1(¢) ¢ U’ c U. Now we observe that in each point x ¢ U’ we
have that the points x, ¢(x), ... , 9" (x) are pairwise different and non of them
is contained in P(¢). This means that the perturbations of f in these m + 1
different points are ‘free’ and independent. From this it easily follows that
with such asmall perturbation of f we can make Rec,, 1, restrictedto M — U’
transversal with respect to Recm+1(13(<p)). ThenRec,, .1 (M \U’) isdigoint from
ReC,,+1(P(¢)).

Next we show that the injectivety property is persistent under C*-small pertur-
bations of (¢, f), provided (¢, f) is generic in the sense discussed before. We
know already that the generic condition on P (¢) impliesthat thereare neighbour-
hoods U and U of (¢, f) and P (¢) respectively such that whenever (¢, f) € U,

P($) c U, and Rec?;’), restricted to U, is an embedding. Since M — U is
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compact and since Rec,,;1(M — U) and Recmﬂ(ﬁ((p)) are digoint, they have
a positive distance. This means that this property of Rec,,.1(M — U) being
disioint from P (¢) isindeed open, even in the C°-topology.

This indeed implies the persistence of the injectivety property for generic
(¢, ). Hence the injectivety property holds for an open and dense set of dy-
namical systems.

We now formulate the main conclusion of this section.

Proposition. For C* dynamical systemg, f) on M generically the following
is true:

There are a neighbourhoa of (¢, f) in the C*-topology and a neighbour-
hoodU of P(¢), the set of periodic points with period at mdst together with
those point which are mapped p¥" to a point with period at mostm, such
that for any(¢, f) € U we have

i) P(@)CU;
iy Rec?/ | U is an embedding;
iii) Rec”) (1) andRec?,}) (M — U) are disjoint;
iv) whenever andx are inU, the property?,,.1 holds for(@, f) at (x, %).
Due to the itemii, we conclude even that:

iv') wheneverx or X is in U, the propertyP,,.1 holds for(¢, f) at (x, %). O

We note here that whenever, in the notation of the above proposition, x ¢ U,
the pointsx, ¢(x), ... , " (x) are pairwise different. Thiswill be important in
the next section. It was also the justification of the hypothesisin the proposition
in section 4.2.2 that the orbit segments x, ¢(x), ... , *~?(x) (and the samefor
X) consist of 2k — 1 pairwise different points.

4.4 Theproperty P away from the periodic points

We now come to the last part of the genericity proof. From the formulation of
the property 2 it is clear that we have to investigate, what we will call linear
systems of length+ 1. Wewill give the formal definition below, but in terms of
adynamical system (¢, f) one can give the following description. They consist
of asequence of [ 4+ 1 vector spaces of dimension m, like

T.(M), Tyy(M), ..., Ty (M)
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connected by linear maps, like

de(x), dp(p(x)), ..., dp(¢'*(x)),
and with each of the vector spaces equipped with alinear function like

df(x), ..., df(g'(x)).

In particular weareinterested in the question how exceptional (in the sense of co-
dimension) it isthat one cannot select for any 0 < i </ aco-basisin 7, (M)
from the co-vectors df (¢ (x)), ... , d(f¢' ™) (¢’ (x)). It will be (notationally)
more convenient to formulate the results on these linear systems in a somewhat
more abstract setting.

441 Linear systems

We assume that we are given an infinite collection of m-dimensional vector
spaces Vy, V1, .... Wethen define alinear system of length/ + 1 asacollection
C consisting of / linear maps Ay : Vo — Vi,...,A; : Vi_y — Viandof [ + 1
linear functions fo: Vo — R, ..., f; : V; = R. Sothe set of linear systems of
length / + 1 isthe vector space

(@) _1Lin(Vi_1, V) ® (@}_oV})

where Lin(V;_1, V;) denotes the vector space of linear maps from V;_; to V;.
This meansthat we can speak of the co-dimension of certain properties of linear
systems. for such a property there is a corresponding subset of those linear
systems which have the property in question. The co-dimension of a property is
then the co-dimension of the corresponding set in the vector space of all linear
systems (in our considerations these subsets will aways be closed algebraic
subsets so that the co-dimension iswell defined).

In some situations we shall also consider linear systems of length / + 1 which
arenot based on the vector spaces Vg, ... , V;buton V;, ..., V;,;. Alsowewill
use the notion of arestricted linear systerof length / + 1. This means just that
thelast linear map (f; : V; — R) isnot included.

Definition. Let C = (As, ..., A, fo,..., f1) be alinear system of length
I + 1. We say that a pair of indices0 < i < j < [ isablocking pairif the
following holds:

— on the kernel K of the composition Ajy1...A;41 1 Vi — Vi1 there
strictions of the linear functions f;, fi414i41,..., fjAj... Aix1 do not
contain aco-basisof K

— thereisnoindex j' withi < j < j sothat theaboveitem aso holdswhen
j isreplaced by j'. O
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The term blocking pairindicates that, even if we modify the linear system
after f; and A 1, where this modification may include extending the length
of the linear system, it will never be possible that the co-vectors f;, fi 1411,
fizoAii24i41, ... contain aco-basisof V;. Notethat i, j being ablocking pair
isredly a property of the restrictedlinear system of length j — i + 2 based on
the vector spaces V;, ... , Vji1.

Lemma 1. In the space of restricted linear systems of length 1, the set of
those restricted systems, for which the indibes — 1 form a blocking pair, is
algebraic and has co-dimension at least 1. O

Proof. FortheindicesO, s — 1 to form ablocking pair for the restricted linear
system C = (A4, ..., Aq, fo,..., fs;_1) of length s + 1, the kernel K of the
compoasition A; ... A; should have positive dimension.

Since the dimension of K is at most equal to the sum of the dimensions of
the kernels of A; up to A, and since in the space of linear maps between m-
dimensional spaces, the elements with a¢-dimensional kernel form an algebraic
subset of co-dimension at least ¢ (in fact that co-dimension is #?). This means
that the conditiononthemaps A4, ... , A, that their composition has akernel of
dimension ! has co-dimension at least [. If I > s we even don’t have to consider
possible conditions on the linear functions fy, ... , fi_1.

If weassumethat thelinear maps Aq, ... , A, aregivenandthat thekernel K of
their composition hasdimension Z, then, in order that C has0, s — 1 asablocking
pair weneedthat amongtheco-vectors fy, f1A1, ..., fs_1As_1...Aq, restricted
to K, thereisno co-basisfor K . Wedenotethedimension of thelinear subspace of
the dual K* of K, spanned by the co-vectors folk, fililk, ..., fiAi...A1lk
by n;, wherei = 0,...,s — 1, and definen_; = 0. Clearly, for eachi =
—-1,...,s —2wehaven; < n;y1 < n; + 1. Since, in order that the indices
0,s — 1 form ablocking pair, we need n,_; < [. Thisimplies that there must
be a collection of at least s — [ + 1 indicesi for which n; = n;, (note that if
s —1+1<0,then! > s and, as we saw above, we know already that this
corresponds to a situation which has co-dimension at least s + 1). For each
index i with n; = n;,1 there are two aternatives. either f;,1 has to satisfy
a condition, which has at least co-dimension 1, in order to make n;;1 = n;
or f;y1 does not have to satisfy any condition because, due to the previous
A1,...,Ai1, fo,..., fi,nochoiceof f;,1 couldleadton;,, beingn; + 1. In
the latter case however the indices 0, i would already form a blocking pair. In
that case, sincei < s — 1, theindices 0, s — 1 cannot form a blocking pair. So
the former aternative hasto hold. This meansthat each of thes — [ 4+ 1 indices,
for which n; = n; 1, represents arestriction on fy, - - - , fy_1 corresponding to
one co-dimension. So we conclude that the whole linear system has to satisfy
a collection of conditions with total co-dimension s + 1: [ for the restrictions
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onAq, ..., A inordertoobtain!/ asthedimensionof K ands — [ + 1 for the
restrictionson fy, ..., fy_1. (Sofor each dimension! of the kernel we arrive at
the same total co-dimension and hence the value of I does not appear in the final
result.) This comples the proof. 0

Lemma2. Inthe space of linear systems of length 1, withs + 1 > m, the
set of those systems for which there ishng i < s such that0, i is a blocking
pair and such that the co-vector®, f1A1, ..., fiAs...A; do not contain a
co-basis of;y, have co-dimension at least- m + 2. O

Proof. LetC = (A, ..., Ay, fo,..., fs) bealinear system of length s + 1
such that thereisnoindex 0 < i < s suchthat 0, i isablocking pair (thisisan
‘open’ condition) and suchthat theco-vectors f, ... , f;A, ... A;donotcontain
a co-basis of V. We denote by n;,i = 0O, ..., s, the dimension of the linear
subspace in Vj spanned by the co-vectors fy, f1A1, ..., fiA;... A1, wedefine
n_; = 0. Asinthe proof of the previouslemmawe havefori = —1,... ,5s —1
that n; < n;.1 < n; + 1. By our assumption n; < m. This means that the
set of indices i for which n; = n;,; has at least s — m + 2 elements. For
each of these indices, assuming A1, ... A; and fo, ... f; aregiven, f;,1 hasto
satisfy a co-dimension 1 condition: the argument is similar to the argument we
used in the proof of lemma 1: if there is no linear function f;.;, on Vi1 such
that fi11A;41... Arislinearly independent of fo, ..., fiA;... A1, then0,iisa
blocking pair, contradicting our assumption. This meansthat f;; indeed had to
satisfy a condition with at least co-dimension 1 in order to haven; 1 = n;. S0
in total the co-dimensionisat least s — m + 2. This proves the lemma. O

Proposition. In the space of linear systems of length 1 > m we consider
the subset of (exceptional) linear systems for which there are no intBgers
j<s+1land0< j; <... < j,suchthatj 4+ j, <s and such that

FivinAjrin - Ajits oo s FitimAjam - Ajt1

is a co-basis ofV;. This subset of these exceptional linear systems has co-
dimension at least — m + 2. (The statement of this proposition should be
compared with the definitions in section 3.) O

Proof. LetC = (Ay,..., Ay, fo,..., fs) bealinear system which belongsto
the above (exceptional) set. There are two possibilities: either thereis an index
0 <i < s suchthat 0, i isablocking pair or there is no such index. If thereis
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no such index we conclude, by assumption, that there are no integers j = 0 and
0<j; <...< j, suchthat the co-vectors

finAj .. Ao, [ A, - Al

form a co-basis of V. This means, by lemma 2, that C belongs to the co-
dimension s — m + 2 subset defined in that lemma. So we only have to consider
the case that thereisablocking pair O, i.

Theexistenceof ablockingpair O, i meansthat (A4, ... , Ai41, fo, ..., f;) be
long to asubset of co-dimensioni +2. Theremaining (A; .o, ..., As, fiz1, ...,
fs) form alinear system of length s — i. If s — i is smaller than m, then the
co-dimension, corresponding to the blocking pair 0, i, is aready at least equal
tos —m + 2 and we arefinished. If s —i > m we useinduction on the length of
the linear system. If the proposition holds for linear systems of length smaller
than s + 1, then we conclude that we have already ‘i + 2 co-dimensions’ for the
blocking pair and ‘s —m — i 4+ 1 co-dimensions’ for theremaining linear system
of length s — i. Thisgivesin total even s — m + 3 co-dimensions.

So finally we only have to prove the proposition for the smallest length, which
iss +1 = m. Inthiscasethe proposition isadirect consequence of thelemma's
land 2. O

This concludes the discussion of general linear systems and we return to:

4.4.2 Continuation of the genericity proof

We have to show that for generic (¢, f), for k > 2m + 1, and for each pair
(x,X) € M x M the property P, holds. We may and do assume, without |oss of
generality, that k = 2m + 1. Sincewe know that the property P is persistent, we
only haveto show that wecan change (¢, f), by aperturbationwhichisarbitrarily
small inthe C* sense, so that after the perturbation the property P,,,.1 holds for
al thepairsin M x M. Aswe remarked before we may ignore periodic orbits
with period at most 4m.

Werecall the definition of themeeting number j (x, X): itisthesmallestinteger
such that /9 (x) = ¢/ (%); if no such integer exists, then j (x, X¥) = oo.
We denote by 7' the subset of M x M of the pairs (x, ¥) with j(x, %) = L.
It isclear that 7° = A ¢ M x M, which is an m-dimensiona submanifold.
For each (x, x) € A we consider the linear system of length 2m + 1 on the
vector spaces T (M), Ty (M), ..., Tyom(y (M) with linear maps do (¢ (x)),
i=0,...,2m—1,andlinear functionsd f (¢’ (x)),i =0, ..., 2m. Wenotethat
al thepointsx, g(x), ... , 9?"(x) are pairwise different (due to the proposition
in 4.3 we may disregard periodic points of periods up to 4m and their pre-images
up to order 4m, so that orbit segments of length 2m + 1 do not ‘revisit’ points).
So we can perturb both df and dg in all these points independently. Hence,
for any property of linear systems of length 2m + 1 with co-dimension at least
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m 4+ 1it isgeneric that it does not occur for any pair (x, x) € A. By the above
proposition, this means that generically the property 2,1 holds for all pairs
(x, x) € A because for each such x there should be some j < 2m + 1 such that
@/ (x) is(2m — j + 1)-embedding. (In fact, the proposition in 4.4.1, applied to
linear systems of length 2m + 1, yieldsaco-dimension m + 2 which is one more
than needed.) By persistence, the property 2,1 aso holdsin aneighbourhood
of A.

Now we consider 7 and will show that also there generically the property
Pyni1 holds. We will show this in such a way that it will be clear how to
continue by inductionto 72, ... , 72"; after this the situation becomes different.
As we observed above we can restrict ourselves to a (compact) complement
of a neighbourhood of A. We first observe that generically the map (¢, ¢) :
M x M — M x M, restricted to the complement of a neighbourhood of A, is
transversal withrespectto A. Thismeansthat generically 7' isanm-dimensional
submanifold, except possibly in a small neighbourhood of A = J* where the
propery P,,,+1 holdsanyway. From now onweassume J* issuch asubmanifold.

Let (x,x) € 1 If f(x) # f(X), thethe property P, 1 holdsfor thispair. If
f(x) = f(x), weconsider the linear system of length 2m on the tangent spaces
at o(x) = p(X),..., 9% (x) = ¢?"(%). In order that property P,,,1 does not
hold in (x, x), conditions with a total co-dimension of at least m + 2 must be
satisfied: 1 co-dimension for f(x) = f(x) and m + 1 co-dimensions for the
linear system of length m to be exceptional in the sense of the proposition in
section 4.4.1.

Aswe observed above we can continue by inductiontill 72". Now we havethe
property P,,,.1 holdingonal of 7 = Uf;”o 7%, and hence also on a neighbour-
hood of this set. For each pair (x, x) outside 7 we have that ¢’ (x) # ¢’ (X) for
i =0,...,2m. Sonow we can apply the propositionin 4.2.2 withk = 2m + 1
and obtain that generically for all these pairs (x, x) the corresponding recon-
struction vectors are unequal: Recy,,11(x) # Recy,11(X).

This completes the proof that generically al pairs (x, x) have the property

Pomt1-

5 Reconstruction of endomor phisms

In this section we assume that ¢ : M — M is an endomorphism on the closed
m-dimensional manifold M andthat f : M — R isaread out function, both at
least C* and such that, for some k, the k-reconstruction condition holds, i.e. that
for all pairs (x, x) € M x M the property P, holds. We prove here that there
is adifferentiable map 7 : X — M such that m; Rec; = ¢*~1. So this holds
evenfor k < 2m.
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Lemma l. Under the above hypothesis there is a unique map X;, — M
such thaty*~1 = 7, Rec,. O

Proof. The uniqueness, in case of existence, is clear. For each & € X there
isan x € M such that Rec;(x) = £. So then m;(£) hasto be equal to ¢*~1(x).
The only problem with existence could be that there are different x # x with
the same reconstruction vectors Rec, (x) = Rec;(x). Due to the property 2
however, in that case we have o ~1(x) = ¢*~1(¥) so that there is no ambiguity
in the definition of 7 (§). O

Lemma?2. The mapr; is differentiable. O

Proof. For areconstruction vector & we construct a differentiable extension of
7 to aneighbourhood of £ in R¥. We make use of the second and equivalent
formulation of the k-reconstruction condition, see the lemma in section 3. It
implies the existence of an integer j(¢) and a point p(¢) such that for each
x € Rec™1(§), /@ (x) = p(&) and such that p(£) is (k — j(£))-embedding.
This meansthat thereareintegers0 < j; < ... < j, < (k — j(&)) such that

f‘p'il?"' ’f‘pjm

form alocal coordinate system in a neighbourhood U of p(&). Then we define
a smooth map A from a neighbourhood V of £ in R¥ to U such that for n =
(1, ..., nx) € V, thevaluesof f¢/ (A(n)) agree with the coordinates n; )+,
fori =1,...,m. Thenitisclear that for al points

FeW =9 ®OW) [ \Rec; (V) we have ¢/® (%) =1rRec(%).

So A = 7 ®~1) if necessary after restricting to a subset of V, is a smooth
extension of ;. Inorder to seethat A canindeed be defined on aneighbourhood
of &£, we observe that M \ W and hence Rec, (M \ W) is compact and that the
|atter set does not contain £. We cantake V \ Rec, (M \ W) asthedomain of A.

This completes the proof of the lemma and also of the theorem 2 as stated in
the introduction. O

6 Applications: deterministic structure and the estimation of dimensions
and entropies

Also in this section we assume that (¢, f) isadynamical system on a compact
manifold M and that for some k the k-reconstruction condition is satisfied.
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6.1 Thedynamicson X;

The set of k-dimensional reconstruction vectors X, can also be considered asthe
state space of adynamical system with map @ (in this case we have adynamical
system without read out function) in such a way that Rec,¢p = ®Rec;. The
argument issimple:

Ifw e Xandx € M withRec; (x) = wthenwewant ® (w) tobeRec, (¢p(x)).
The problem isthat the element x may not be uniquely determined by w. How-
ever, inany case, thefirst k—1 coordinatesof ® (w) shouldbeequal tothelastk—1
coordinates of w. Thelast coordinate of ®(w) should be equal to f (¢ 1(x)).
Though x may not be uniquely determined by w, ¢*~1(x) = m;(w) is uniquely
determined by w; 7, isthe map discussed in the previous section. So the map
® has the explicit form

O (w) = (wo, ..., wr, fom(w)), wherew = (wq, ..., wy).

We have derived the dynamics in X; from the dynamics in M defined
by ¢. This can be done differently: if the k-reconstruction condition
holds, then the dynamics on X; can be deduced from X;,;. This is
done in the following way: if w = (wq,...,w) € X;, then ®(w) should
have the form (wo, ..., wy, h(wy, ..., w)) and it should be such that
(w1, ..., wg, h(wa, ..., wy)) belongsto X, 1. From the above considerations
it follows that this determines i (wy, ... , wy) uniquely.

So, from the k-reconstruction condition it follows that X, completely de-
termines which (finite or infinite) time series the dynamical system (¢, f) can
produce.

6.2 Dimensionsand entropies

We first recall the definitions of the correlation dimensions and entropies. We
assume that we have a dynamical system with state space K and map ¢ (also
here we don’t have aread out function). We assume K to be a compact metric
space with metric d and  to be continuous. We also assume that there is a
Y-invariant Borel probability measure .

The dimensionsD, (i), with g # 1 are defined in terms of the metric 4 and
the measure 1, and are independent of the map :

log [ (u(B(x, €))7 tdu
(g —1loge

where B(x, ¢) denotesthe e-neighbourhood of x. Thelimit may not exist (in the
sensethat liminf and lim sup are different) in which case one can define alower
and an upper dimension, or the limit may diverge to infinity, in which case the
corresponding dimensionisco. For g = 1thereisadifferent definition whichis

’

Dy () = lim
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suggested by continuity considerations. Also for that dimension the arguments
below are still valid, but we omit the details.

For the definition of theentropiesH, (v, 1) we need metricswhich are derived
fromd and ¥ d;(x,y) = maxj_o . ;i—1d(¥/(x), ¥/ (y)); Bi(x,¢) isthe e-
neighbourhood of x with respect to the metric d;. For ¢ # 1 we define:

log [ (1 (B,(x, €))7 tdu
(1—g)n

For these definitions, seedso [P], [TV], and [V].

Next we introduce the notion of amorphism between two dynamical systems
Sowelet (K, v, ) and (K, ', ') denotetwo dynamical systemsasabove, i.e.
K, K’ are compact metric spaceswith metricsd and d’, ¢ and v are continuous
maps on K and K’ respectively, and u and 1’ are invariant Borel probability
measures. A map g : K — K’ iscalled a morphism between these dynamical
systemsif:

— g iscontinuous and even Lipschitz in the sense that for some constant C
andany x, y € K wehaved'(g(x), g(y)) < Cd(x, y);

- V'g =gy,
— ' = g.(n),i.e formeasurable U’ C K’, we have u(g=X(U") = W/ (U').

Hy10 =l in

Proposition. If g : K — K'is a morphism between two dynamical systems as
above, then we have

D,(n) = D,(u') and Hy (W, w) = Hy (', ). O

Proof. We define the functions 4, (x, &) = w(B,(x, ¢)), see the above defini-
tions of dimensions and entropies; the corresponding functions for the second
dynamical system (on K’) are denoted by 4/,. If C denotes a Lipschitz con-
stant for g, i.e. if d'(g(x),g(y)) < Cd(x,y) foral x,y € K, then clearly
h,(x,€e) < h,(g(x), Ce). Thismeansthat, for ¢ > 1 we also have that

/ (. )72 (x) < f (I (', C)T M (v,

So, apart from the fact that ¢ changed to Ce, thisimpliesthat D, (i) > D, (1)
and H,(y, n) > H,(y', u'). Thisfactor C in front of the epsilon disappears
in the limits defining the dimensions en entropies. This completes the proof for
g > 1. For g < 1, the above inequality between integrals reverses, but also
the factor (1 — ¢) in the denominators in the definitions of the dimensions and
entropies changes sign, so the outcome isthe sameinequality for g < 1. Wedid
not spell out the definitions of D, and H, but the same arguments also lead to
the same result in that case. O
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From the above proposition on (abstract) morphisms between dynamical sys-
tems, we obtain, by applying then to the ‘morphisms’ Rec, : M — X, and
i » Xy — M thefollowing:

Theorem. Let(p, f)define asmooth dynamical system (with read out function)
on the closed manifold/, which satisfies thé-reconstruction condition. Let

® : X — X, define the corresponding dynamics (without read out function)
on X;. Letu be somep-invariant Borel probability measure oM and let

u = (Recy). (). ThenRec, andrm; are morphisms in the above sense between
the dynamical systenid?, ¢, 1) and(X;, ®, ') and hence the dimensions and
entropies of these systems are the same. d

Estimates of dimensionsand entropies. The estimates of dimension and en-
tropy (for convenience we restrict to the correlation dimension D, and entropy
H,) of adynamical system from time series are based on the following consider-
ations. We consider an orhit xo = x, x; = ¢(x), ... of thedynamical system on
M defined by ¢ and assume that this orbit defines a Borel probability measure
wu on M so that for each continuous function g : M — R we have

n—1
1
du = lim = " g(x)).
/Mgu Hoonizog(X)

(Thisiscalled the natural measure defined by the orbit. For the existence or non-
existence of such measures see [RU].) Such ameasure i isg-invariant. Next we
assumethat the k-reconstruction condition is satisfied for (¢, f). Thenthe maps
Rec, : M — X and  : X; — M are morphisms between dynamical systems
(the dynamics on X, being defined by the map @ asintroduced in section 6.1).
We want to estimate, from the time series corresponding to the orbit xgq, x1, . . .,
whichisyg = f(xg), y1 = f(x1), ..., thecorrelation dimension and entropy of
@ with respect to the measure .

From the above theorem it follows that this is the same as estimating these
guantities of ® with respect tothemeasure’ = (Rec;), (). Thiscanbedonein
terms of the correlation integrals C,, (), which are defined as the probability that
two ‘random’ reconstruction vectors of dimension n are coordinate wise within
distance ¢. This quantity is estimated by counting the number Ny ,,(¢) of pairs
(@, jywith0O <i < j < Nsuchthat | y; —y; |<eé&, ..., | Yign-1—Yj4n-1 I< &.
Then

C,(¢) = lim _ wa®)
N—oo (N(N + 1)/2)
So the quantities
N .n(€)

(N(N +1)/2)°
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for N sufficiently big, are estimatesfor C, (¢).
The relation between these quantities and the definitions of the dimension and
entropy (with g = 2) for ® with respect to u’ is

/ W (By(x, ) (¥) = Cras(e)
Xk

wherethedistancefunctiond’ on X isgivenby d’'((z1, . .. , zk), (24, - -+ 2})) =
maX1<;<x | 2 — z; |. Thismeansthat we find for the correlation dimension and
entropy the usual expressions

D2=Iimwf

orn >k
e—0 In(g)

and Inc
Hy = lim lim —XCnE)
e—>0n—o00 n
This justifies the use of the standard algorithms, see e.g. [GPa] and [T3], for
estimating the dimension and entropy of the natural measure of agiven orbit also
for endomorphisms.
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