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Abstract. The reconstruction theorem deals with dynamical systems which are given
by a map ϕ : M → M together with a read out function f : M → R. Restricting to the
cases where ϕ is a diffeomorphism, it states that for generic (ϕ, f ) there is a bijection be-
tween elements x ∈ M and corresponding sequences (f (x), f (ϕ(x)), . . . , f (ϕk−1(x)))

of k successive observations, at least for k sufficiently big. This statement turns out to
be wrong in cases where ϕ is an endomorphism.
In the present paper we derive a version of this theorem for endomorphisms (and which
is equivalent to the original theorem in the case of diffeomorphisms). It justifies, also for
dynamical systems given by endomorphisms, the algorithms for estimating dimensions
and entropies of attractors from obervations.
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1 Introduction

In this paper we discuss the analogue of the reconstruction theorem, see [T1],
[A], and [SYC], for dynamical systems which are given by an endomorphism.
We first give the statement of the reconstruction theorem for diffeomorphisms
and then discuss the situation for endomorphisms.

The original reconstruction theorem deals with dynamical systems, given by
a diffeomorphism ϕ : M → M on a compact manifold M together with a
function f : M → R. Both ϕ and f are supposed to be at least C1. The
diffeomorphism ϕ determines the time evolution, or dynamics, and the function
f is interpreted here as a read out function. This setup is supposed to represent
the situation of a dynamical system where one has only partial information about
the states as a function of time: if the system is in the state x ∈ M , one observes,
or measures, only the value of f (x). So an evolution {xn = ϕn(x0)} leads
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232 FLORIS TAKENS

to the observations {yn = f (xn)}; such a sequence of observations is called a
time series. The reconstruction theorem deals with the question whether one
can reconstruct from such observations information about the evolution of the
dynamical system itself.

In fact, the original reconstruction theorem also dealt with systems given by
a vector field (continuous time systems). Both in the case of systems given by
diffeomorphisms and by vector fields, the past and the future can be deduced
from the present. Systems given by endomorphisms are much like those given
by diffeomorphisms except that in the case of endomorphisms one cannot deduce
in general the past from the present. There is no such analogue for vector fields
where the present does not determine the past. Since we are primarily interested
here in systems given by endomorphisms we disregard systems given by vector
fields because they are not useful as analogues.

For the formulation of the theorem we need some definitions. Given a diffeo-
morphism (or endomorphism) ϕ : M → M and a read out function f as above,
we define for any k the reconstruction mapReck : M → R

k by

Reck(x) = (f (x), f (ϕ(x)), . . . , f (ϕk−1(x))).

The image of M under this map is denoted by Xk. We call vectors of the
form (f (x), f (ϕ(x)), . . . , f (ϕk−1(x))) ∈ R

k (k-dimensional) reconstruction
vectors.

If the dimension k is clear from the context we may write Rec orX instead of
Reck and Xk; if it is necessary to specify the dynamical system (ϕ, f ) which is
used in defining these objects, we write Rec(ϕ,k) and X(ϕ,f ).

Theorem 1. There is an open and dense subsetU ⊂ Diff1(M)× C1(M), the
product of the space ofC1-diffeomorphisms onM and the space ofC1-functions
onM, such that, whenever(ϕ, f ) ∈ U andk > 2m, thenReck is an embedding
ofM into R

k, implying thatXk is a submanifold ofRk which is diffeomorphic to
the state space manifoldM. �

This means that for generic (ϕ, f ), i.e. belonging to the open and dense
subset U, and k > 2m, each state x of the system is uniquely determined by
the k ‘measurements’ which one obtains if the systems follows ‘its dynamics’
starting at the state x.

In the case where ϕ is not a diffeomorphism but an endomorphism the above
theorem is no longer true: there are persistent examples where Reck is not an
embedding. We mean here persistent in the sense that there are no C1-small
perturbations of the given system (ϕ, f ) making Reck an embedding. Such
examples will be discussed in section 2. What one still can prove is that, under
generic assumptions, and for k > 2m, a sequence of k successive measurements
does determine the state of the system at the endof the sequence of measurements;
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THE RECONSTRUCTION THEOREM FOR ENDOMORPHISMS 233

in general, for each of these ‘final states’ there are however several corresponding
reconstruction vectors.

Theorem 2. There is an open and dense subsetU ⊂ End1(M)×C1(M), where
End1(M) denotes the space ofC1-endomorphisms onM, such that, whenever
(ϕ, f ) ∈ U andk > 2m, there is a mapπk : Xk → M with πk Reck = ϕk−1.

Moreover the mapπk has bounded expansion, or is Lipschitz, meaning that
for all p �= q ∈ Xk the the ratio of the distances

d(πk(p), πk(q))

‖ p − q ‖ ,

is bounded by some constantC which is independent ofp andq; d denotes the
distance onM with respect to some Riemannian metric. �

Remark. We should point out that without extra work we prove a somewhat
stronger statement: the map πk is differentiable, in the sense that it admits a
differentiable extension to a neighbourhood ofXk in R

k. This in spite of the fact
thatXk is in general not a manifold, so that it has no ‘differentiable structure’. For
the applications it is important that πk is Lipschitz; the fact that it is differentiable
is, as far as I know, of no use. �

Though this theorem is much weaker than in the case of diffeomorphisms in the
sense that neither Reck : M → Xk norπk needs to be a diffeomorphism, for many
practical purposes the result is just as good as in the case of diffeomorphisms.
We shall discuss this in section 6, but we indicate here already the applications
which we have in mind:

– under the generic assumptions, the set Xk, for k > 2m + 1, completely
determines the deterministic structure of the time series produced by the
dynamical system, in the sense that from any segment of at least k − 1
successive values of such a time series all future values can be deduced,
using the shape of Xk;

– the estimation of dimension and entropy from observed data, as discussed
in [GPa], [GPb], [T3] and [KS] is also justified for systems where the
dynamics is given by an endomorphism (provided the generic conditions
are satisfied).

The paper is organised as follows. In section 2 we discuss various examples,
essentially all the local singularities and self intersections which occur in re-
construction maps of generic dynamical systems with state space manifolds of
dymension 1 or 2. These examples show indeed that in the case of dynamical
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systems given by an endomorphism self intersections and non-immersion points
occur in a persistent way so that in general Xk is not a manifold. In section 3
we formulate the reconstruction condition, which has to be satisfied in the case
of endomorphisms for the conclusion of theorem 2 to be valid. In section 4 we
prove that this reconstruction condition is indeed generically satisfied if k > 2m.
In section 5 we prove that the reconstruction condition implies the existence of
the map πk with the properties as announced in the above theorem 2. Finally, in
section 6, we discuss the applications refered to above.

2 Examples

In this section we give examples of the local structure of reconstruction maps of
generic dynamical systems. We restrict to the cases where the state space mani-
foldM is low dimensional (in fact only the dimensions 1 and 2 are considered).
Also we shall assume that there are no fixed points and periodic orbits (of low
period) and that the dynamical systems are sufficiently differentiable (this may
mean more than just C1). Within all these restriction we describe all local phe-
nomena which occur in reconstruction maps of generic dynamical systems. The
examples are mainly intended to explain the rather complicated reconstruction
condition in section 3.

2.1 Generic reconstructions of 1-dimensional systems

For a generic dynamical system (ϕ, f ) on a 1-dymensional manifold M , the
derivative of f is only zero at isolated points. At the points where the derivative
of f is non-zero, the reconstruction map Reck, for k ≥ 1, is an immersion. Now
we consider such an exceptional point p ∈ M where the derivative of f is zero.
Since we assume that the dynamical system (ϕ, f ) is generic we may assume that
at these exceptional points there are no other exceptional things. Otherwise we
would have a situation with co-dimension at least 2 and this should not happen
in the 1-dimensional manifold M (for the use of the notion of co-dimension in
relation with genericity arguments, see section 4). In particular, we may assume
that dϕ(p) is non-zero, that ϕ(p) �= p, and that the derivative of f in ϕ(p) is
non-zero. It is easy to see that this implies that Reck, for k ≥ 2 is an immersion
at p. So as a first result we have:

Lemma 1. For generic dynamical systems on a 1-dimensional manifoldM the
reconstruction mapReck, for k ≥ 2, is an immersion (in each point ofM). �

Next we consider possible self-intersections. For this we have to consider
pairs of points (p, q) ∈ M × M with p �= q. For such points to have the
same image under a reconstruction map we need at least that f (p) = f (q).
This is a co-dimension 1 condition, so in M × M there will be generically a
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1-dimensional submanifold, i.e. a curve, where this condition is satisfied. For
such a pair to have the same image under Rec2, we must have that ϕ(p) =
ϕ(q), a co-dimension 1 condition, or ϕ(p) �= ϕ(q) and f (ϕ(p)) = f (ϕ(q)),
which is also a co-dimension 1 condition. If the former of these conditions is
satisfied, then we have that Reck(p) = Reck(q) for all k; generically this will
happen at isolated points of the 1-dimensional manifold inM×M defined by the
condition f (p) = f (q). If the latter of these conditions is satisfied, then we have
Reck(p) = Reck(q) for k = 1, 2; in order to have the same for k = 3 we need
a further condition to be satisfied, namely ϕ2(p) = ϕ2(q) or ϕ2(p) �= ϕ2(q)

but f (ϕ2(p)) = f (ϕ2(q)). Again both these conditions imply one more co-
dimension. So this would be a co-dimension 3 situation. Generically this does
not happen on the 2-dimensional manifold M ×M . So the only way in which
self-intersections for Reck, k ≥ 3 can occur for generic 1-dimensional systems
is at pairs p, q with p �= q, f (p) = f (q) and ϕ(p) = ϕ(q). It is not hard
to show by similar arguments that generically there are no triple points, i.e. no
three points p �= q �= r �= p such that Reck(p) = Reck(q) = Reck(r) with
k ≥ 2.

Lemma 2. For generic dynamical systems on a 1-dimensional manifoldM the
reconstruction mapReck, k ≥ 3 may have double points but not triple points.
Moreover, if Reck(p) = Reck(q), withp �= q andk ≥ 3, thenϕ(p) = ϕ(q). �

So we see here the first instance of a reconstruction map of a generic dynamical
system which is not generic as map: generic maps from a 1-dimensional manifold
in R

3 are embeddings.

2.2 Generic reconstruction maps of 2-dimensional systems

A similar analysis can be carried out in the case the dimension of M is 2, the
details are however more extensive. The first difference is that, even for generic
dynamical systems, the reconstruction maps are in general no longer immersions.
This can be seen as follows. For a point p ∈ M it is a co-dimension 1 condition
that the derivative dϕ is not invertible in p. So this happens generically along
so-called fold curves. Along these fold curves it is another co-dimension 1
condition that the kernels of dϕ and df coincide. So this will occur (persistently)
in isolated points for generic 2-dimensional dynamical systems. In such a point
a reconstruction map cannot be an immersion: if v is a non-zero vector in the
common kernels of dϕ and df , then this vector will be mapped to zero by the
derivative of any reconstruction map. This is in fact the only way in which the
reconstruction maps Reck, with k ≥ 4 can fail to be immersions. If the dynamical
system is sufficiently differentiable and if the higher order terms of ϕ and f are
generic, then the resulting singularity in Rex3 forms a Whitney umbrella, see
[W4]. This singularity remains in Reck for k > 3. So we have:
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Lemma 3. For a generic dynamical system(ϕ, f ) on a 2-dimensional manifold
M the reconstruction mapReck, with k ≥ 4 can have isolated points where it is
not an immersion; in these points it has a singularity in the form of a Whitney
umbrella. �

With arguments similar to those used in the 1-dimensional case, we obtain for
generic 2-dimensional systems that Reck, with k ≥ 5 may have curves of double
points and also isolated double points. The former ones correspond to those pairs
of points p �= q for which ϕ(p) = ϕ(q), the latter correspond those pairs p �= q

for which ϕ(p) �= ϕ(q), but ϕ2(p) = ϕ2(q). Also there will be isolated tripple
points; in fact they will be the intersection of 3 lines of double points of the first
kind. However there will never be four different points which are mapped to the
same reconstruction vector.

3 The reconstruction condition for endomorphisms

In this section we formulate the condition which has to be satisfied by (ϕ, f ) in
order to belong to the set U in theorem 2. For this we need some definitions.

Definition (meeting number). Let (ϕ, f ) be a dynamical system on M and
let (x, x̃) be an element of M ×M . The meeting number j (x, x̃) of x and x̃ is
the smallest integer such that ϕj(x,x̃)(x) = ϕj(x,x̃)(x̃). If no such number exists,
then the meeting number is ∞. This meeting number depends on ϕ; if this needs
to be expressed in the notation, we write jϕ(x, x̃). Note that j (x, x̃) = 0 if and
only if x = x̃. �

Definition (s-embedding). Let (ϕ, f ) be a dynamical system on a manifold
M . We say that a point x ∈ M is s-embedding if the co-vectors df (x),
d(f ϕ)(x), . . . , d(f ϕs−1)(x) contain a co-basis of Tx(M). Note that this condi-
tion is equivalent with the condition that Recs , restricted to some neighbourhood
of x, is an embedding into R

s .
Note that if x is s-embedding for (ϕ, f ), then this is still so for x̃ sufficiently

close to x and (ϕ̃, f̃ ) C1 sufficiently close to (ϕ, f ); this is due to the fact that
‘forming a basis’ is persistent under small perturbations. �

Definition (property P). Let (ϕ, f ) be a dynamical system on a manifoldM ,
and let k be an integer. We say that a pair of points (x, x̃) ∈ M × M has the
property Pk if:

– Reck(x) �= Reck(x̃), or

– for some j (x, x̃) ≤ j < k, ϕj (x) = ϕj (x̃) is (k − j)-embedding.
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We note that in this definition we do not exclude the case x = x̃. Also observe
that if the pair x, x̃ has the property Pk then it has the property Pl for l ≥ k.

When the value of k is irrelevant, or clear from the context, we write P instead
of Pk. �

Definition (reconstruction condition). Let (ϕ, f ) be a dynamical system on
a manifold M and let k be some integer. We say that (ϕ, f ) satisfies the k-
reconstruction condition if each pair of points (x, x̃) ∈ M ×M has the property
Pk. �

There is an equivalent form of the reconstruction condition which will be useful
in section 5.

Lemma. A dynamical system(ϕ, f ) on a manifoldM satisfies thek-recons-
truction condition if and only if for eachk-dimensional reconstruction vectorξ
there are an integerj (ξ)and a pointp(ξ) ∈ M such that, wheneverReck(x) = ξ ,
then

– ϕj(ξ)(x) = p(ξ);

– p(ξ) is (k − j (ξ))-embedding. �

Proof. First we assume that (ϕ, f ) satisfies the k-reconstruction condition. For
x ∈ M the property Pk then holds for the pair (x, x). This means that there
is some j < k such that ϕj (x) is (k − j)-embedding. We define j (x) to be
the biggest such integer. Then, if, for x �= x̃, we have Reck(x) = Reck(x̃),
it follows from the property Pk that there is some j such that ϕj (x) = ϕj (x̃)

and such that ϕj (x) is (k − j)-embedding. This however implies that we have
j (x) = j (x̃) (since we required j (x) respectively j (x̃) to be the biggestinteger
such that ϕj(x)(x) respectively ϕj(x̃)(x̃) is (k − j (x)), respectively (k − j (x̃))-
embedding). In other words we can define for a k-dimensional reconstruction
vector ξ the integer j (ξ) as j (x) for any x with Reck(x) = ξ . Also we can define
p(ξ) as ϕj(x)(x) whenever Reck(x) = ξ . With these definitions it is clear that
j (ξ) and p(ξ) have the properties as announced in the lemma.

Next we assume that we have for each reconstruction vector ξ an integer j (ξ)
and a point p(ξ) ∈ M with the properties as formulated in the lemma. Let (x, x̃)
be any pair of points in M ×M . If Reck(x) �= Reck(x̃) then the pair (x, x̃) has
the property Pk. If Reck(x) = Reck(x̃) = ξ , then it follows from the various
definitions that j (x, x̃) ≤ j (ξ) and that the pair (x, x̃) has the property Pk with
j = j (ξ). �
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4 The proof of the genericity

Our first step, in section 4.1, is to prove that for a pair (x, x̃) ∈ M × M the
property Pk is persistent, both under C1-small perturbations of ϕ and f and
under small perturbations of x and x̃. The rest of the proof of genericity is based
on transversality. In section 4.2 we recall the basic ideas of this method as we
will use it. In section 4.3 we prove the genericity result for pairs (x, x̃) where
x or x̃ is close to a periodic point of ϕ with ‘low’ period or to ‘some of the
pre-images’ of such periodic points with low period. In section 4.4 we finally
complete the genericity proof.

4.1 Persistence of the property P
We assume we are given a dynamical system (ϕ, f ), and an integer k such that
the property Pk holds for (x, x̃) ∈ M × M . We shall prove that this property
remains if the points x and x̃ are slightly perturbed and also if ϕ and f are
slightly perturbed in the C1-sense. In order to prove this, we assume that we
have sequences xn, x̃n, ϕn, and fn converging to x, x̃, ϕ, and f respectively and
derive a contradiction from the assumptionthat for each n the property Pk does
not hold for (ϕn, fn) at (xn, x̃n).

If for (x, x̃) the first alternative holds, i.e., if for some 0 ≤ j < k we
have f (ϕj (x)) �= f (ϕj (x̃)) then we also have, for n sufficiently large, that
fn(ϕ

j
n(xn)) �= fn(ϕ

j
n(x̃n)) which implies property Pk for n sufficiently large:

a contradiction with our assumption. This means that from now on we may
assume that for (x, x̃) the second alternative holds, and even that for each
0 ≤ j < J = j (x, x̃) we have f (ϕj (x)) = f (ϕj (x̃)) (j (x, x̃) is the meet-
ing number as defined in section 3).

If necessary by restricting to a subsequence, we may assume that the values of
jϕn(xn, x̃n) are independent of n. We denote this value by J ′. Clearly J ≤ J ′.
If J = J ′ we obtain a contradiction because the property of being s-embedding
is persistent under small perturbations, see section 3.

For J ≤ j < J ′ the points ϕjn(xn) and ϕjn(x̃n) are very close, but not equal. We
can interpret the difference between these points as ‘infinitesimal vectors’. This
can be made precise by taking local coordinates in a neighbourhood of each of the
pointsϕj (x) = ϕj (x̃). With respect to such coordinates, we have unit vectorsvn,j
and positive real numbers εn,j (converging to zero forn → ∞) such thatϕjn(xn)−
ϕ
j
n(x̃n) = εn,j vn,j . If necessary by restricting again to a subsequence, we have

that for each j (still with J ≤ j < J ′) the limit vj = limn→∞ vn,j exists. These
limit vectors belong toTϕj (x)(M) and are independent, up to scalar multiplication,
of the coordinates which we used. One easily verifies that, for some real λj ,
dϕ(vj ) = λjvj+1 for J ≤ j < J ′ − 1 and that dϕ(vJ ′−1) = 0. Furthermore,
for each j such that J ≤ j < J ′, we have that df (vj ) = 0, because otherwise,
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for n sufficiently large, we would have fn(ϕ
j
n(xn)) �= fn(ϕ

j
n(x̃n)) which would

imply property Pk to hold for such n which is again against our assumption.
This means that each of the vectors vj is in the kernel of d(f ϕj

′
)(ϕj (x)) for all

j ′ ≥ 0.
We return to the fact that the second alternative in the condition Pk holds for

(ϕ, f ) at (x, x̃). This means that there is an integer j̄ ≥ J such that ϕj̄ (x) is
(k − j̄ )-embedding. We concluded above that for every j with J ≤ j < J ′
there is a non-zero vector in Tϕj (x)(M), namely vj , which is in the kernel of
d(f ϕj

′
)(ϕj (x)) for all j ′ ≥ 0. This means that we must have j̄ ≥ J ′. Now

it follows that, for n sufficiently large, also ϕj̄n(xn) is (k − j̄ )-embedding for
(ϕn, fn), meaning that the property Pk holds for such (ϕn, fn) at (xn, x̃n). This
is the final contradiction which completes the proof of the persistence of the
property Pk.

4.2 Transversality

For a good exposition of the theory of transversality we refer to [B] and [H].
We recall here the definition of transversality, prove the transversality theorem
for a simple situation, and indicate the role of the perturbing familieswhich are
necessary in the proof of our transversality results.

Definition. Let V be a submanifold of a manifold W and let f be a C1-
map from another manifold N intoW . We say that f is transversal with respect
to V if we have for each x ∈ N either f (x) �∈ V or df (Tx(N)) + Tf (x)(V ) =
Tf (x)(W). �

Remarks.

1. Note that if the derivative of f is, for each x ∈ N , a surjective map from
Tx(N) to Tf (x)(W), then f is transversal with respect to any submanifold
of W .

2. Note that if the dimension of N is smaller than the co-dimension of V in
W , i.e. smaller than dim(W)− dim(V ), then f is transversal with respect
to V if and only if f (N) is disjoint from V .

3. It is easy to see that if V is a topologically closed submanifold and if
N is compact, then the set of Ck-maps, k ≥ 1, from N to W which are
transversal with respect to V is open in theCk-topology; in the case where
moreover the dimension ofN is smaller than the co-dimension of V inW ,
as in the above remark, transversality is even open in the C0-topology.
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4. If f is transversal with respect to V , then Ṽ = f −1(V ) is a submanifold
of N and, if Ṽ is nonempty, the co-dimension dim(N)− dim(Ṽ ) of Ṽ in
N equals the co-dimension dim(W)− dim(V ) of V in W .

Theorem (Thom’s transversality lemma [T6], [H]). LetV be a submanifold
ofW which is topologically closed and letN be a compact manifold. Then the
set ofCk-maps,k ≥ 1, which are transversal with respect toV is open and dense
in theCk-topology. �

Sketch of the proof for the case that W is a vector space. As we observed
before, transversality is open in the C1-topology. Since Cl- and even C∞-maps
are dense in the C1-maps, it is enough to prove only density of the transversal
maps in some Cl-topology with l ≥ 1.

Here we only indicate the proof for the case where W = R
L for some L. Let

f : N → R
L be aCl-map. We want to show that we can approximate f by a map

which is transversal with respect to V . For this we take a parametrised family
fµ : N → R

L, where the parameter µ has values in an open neighbourhood P
of the origin in some vector space, such that

– f0 = f ;

– the map F : P × N → R
L, defined by F(µ, x) = fµ(x) is Cl and

transversal with respect to V .

In this case one can take P = R
L and fµ(x) = f (x)+ µ. It is easy to see that

with this definition the above two conditions are satisfied. Note that we don’t
have to specify V ⊂ R

L since the derivative of F is surjective everywhere.
Next we consider the submanifold Ṽ = F−1(V ) and its projection π on

the parameter space P . According to Sard’s theorem, e.g. see [B] or [H],
the set Cπ of critical values of π , i.e. the set of parameter values, which is
defined by Cπ = {µ ∈ P | ∃(µ, x) ∈ Ṽ such that dπ(µ,x) : T(µ,x)(Ṽ ) →
Tµ(P ) is not surjective}, has Lebesgue measure zero. In fact, for Sard’s theorem
to apply we need π and hence f to be sufficiently differentiable (the required
differentiability l is the maximum of 1 and (dim(Ṽ )−L+ 1)). As we observed
in the beginning of the proof this is no problem: we could assume f to be as
differentiable as needed. Finally it is not hard to verify that a parameter value µ
is non-critical if and only if fµ is transversal with respect to V . This means that
arbitrarily close to 0 there are parameter values for which fµ is transversal with
respect to V . �
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Remarks.

1. In the statement of the transversality theorem, and in its proof, we can
take N to be a non-compact manifold with a compact subset K . Then
the conclusion is that for an open and dense set of maps from N to W
transversality holds on K . We say that f : N → W is transversal
with respect to V on K if for any x ∈ K we have either f (x) �∈ V or
df (Tx(N)) + Tf (x)(V ) = Tf (x)(W). The conclusion holds both for the
strong and the weak topology on the space of Ck-maps from N to W ,
k ≥ 1. Also, if the manifold V is not closed as a subset ofW , but contains
a subset L which is closed in W the conclusion of the theorem holds for
transversality with respect to V restricted to L. We say that f : N → W

is transversal with respect to V restricted to L if for each x ∈ N we have
either f (x) �∈ L or df (Tx(N))+ Tf (x)(V ) = Tf (x)(W).

2. We call the parametrised family fµ in the above proof a perturbing family.
If one wants to prove the above theorem for an arbitrary manifold W , the
only part of the proof which needs adaptation is the construction of the
perturbing family.

Perturbing families for dynamical systems. In the proof that the reconstruc-
tion condition is generic (for appropriate k), we shall use several times an argu-
ment of the following type:

We have some construction C which assigns to each endomorphism ϕ : M →
M and read out function f : M → R a map C(ϕ, f ) : CM → CM ′, where CM
and CM ′ are smooth manifolds and where CM ′ has a submanifold SM . We then
need to show that for generic (ϕ, f ),C(ϕ, f ) is transversal with respect toSM . So
what we will have to show then is that we can perturb C(ϕ, f ) in a sufficiently
general way by perturbing ϕ and f . More precisely, we need a parametrised
family (ϕµ, fµ), µ in some parameter space, such that µ �→ C(ϕµ, fµ) is a
perturbing family as introduced in the proof of the transversality theorem. It
happens that there is one parametrised family (ϕµ, fµ) (still depending on k)
which is sufficiently rich to generate the required perturbing families for all the
constructions which we will need. It is this parametrised family (ϕµ, fµ) which
we will now construct. It will be denoted by the perturbing family of(ϕ, f ); note
that we use here the term ‘perturbing family’ in a meaning which is somewhat
different from the original one, namely a family of perturbations of (ϕ, f )which
inducesa perturbing family in the original sense of maps like C(ϕ, f ).

In order to construct this perturbing families for ϕ and f , we need to fix the
value k in the reconstruction condition and to identify the state space manifold
M with a submanifold of R

L, which certainly can be done if L > 2dim(M), see
[H]. We denote by p a smooth projection of a (small) neighbourhood U ofM in
R
L toM so that p|M is the identity inM . We then defineE as the linear space of

Bull Braz Math Soc, Vol. 33, N. 2, 2002



242 FLORIS TAKENS

polynomials of degree at most (4k − 1) on R
L. This degree is chosen to ensure

that for each collection of 2k pairwise different points X1, . . . , X2k ∈ R
L, real

numbers α1, . . . , α2k and co-vectors β1, . . . , β2k ∈ (RL)� there is an element
g ∈ E such that g(Xi) = αi and dg(Xi) = βi for all i = 1, . . . , 2k. In order to
see that this degree (4k − 1) suffices, we note the following:

There is a polynomial p of degree (4k− 2) on R
L which is zero, and has zero

derivative, in the points X1, . . . , X2k−1 and which is nonzero everywhere else,
e.g. take p(x) = ∏2k−1

i=1 ‖ Xi − x ‖2. Then, multiplying this polynomial with a
polynomial of degree one, we kan make the value and the first derivative in X2k

whatever we want, without changing the values or derivatives in the other points
X1, . . . , X2k−1.

As a parameter space P for our perturbations of ϕ and f we take the (L+ 1)-
fold power EL+1 of E, or at least a neighbourhood of the origin 0 in that vector
space. For µ = (g0, . . . , gL) ∈ P we define

– fµ = f + g0|M ;

– ϕµ = p(ϕ + (g1, . . . , gL)), where (g1, . . . , gL) should be interpreted as
the restriction, of the polynomial map (g1, . . . , gL) on R

L, to M .

The neighbourhood P of the origin in EL+1 should be so small that the image
ofϕ+(g1, . . . , gL) is contained inU , the neighbourhood on which the projection
p on M is defined, whenever (g0, . . . , gL) ∈ P .

The use of this perturbing family is further explained in connection with the
jet extensions to be discussed below.

Jet extensions. For any smooth map g : V → W , the 1-jet of this map in
a point y ∈ V consists of the pair y, g(y) together with the derivative dg(y)
of g at the point y. For the dynamical systems which we are considering here,
consisting of a smooth endomorphism ϕ and a smooth read out function f , both
defined on M , the 1-jet at a point x ∈ M consists of x, ϕ(x) and f (x), together
with the derivatives dϕ(x) and df (x). We call the map, assigning to each x ∈ M
the 1-jet of (ϕ, f ), the 1-jet extension of(ϕ, f ); it is denoted by J 1(ϕ, f ) and
it is a map whose degree of differentiability is one less than that of (ϕ, f ); its
range can obviously be given the structure of a smooth manifold. This range is
a vector bundle over M ×M × R, whose fibre over (x1, x2, s) is the product of
the set of linear maps Lin(Tx1(M), Tx2(M)), from the tangent space at x1 to the
tangent space at x2, and T �x1

(M); in this representation the 1-jet of (ϕ, f ) at x
corresponds to the ‘base point’ (x, ϕ(x), f (x)), while the element of the fibre
determines the derivatives of ϕ and f respectively at x. The space of all these
1-jets is denoted by J 1(M).

Apart from 1-jets, we also consider multi-1-jets. First we define M∼K as the
set of K-tuples (X1, . . . , XK) of points in M which are pairwise different. The
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K-1-jet of (ϕ, f ) at (X1, . . . , XK) is the sequence of 1-jets of (ϕ, f ) at the
successive points X1, . . . , XK ; the map assigning to each such (X1, . . . , XK)

its K-1-jet is the K-1-jet extension of (ϕ, f ) and is denoted by JK,1(M), its
range by J 1(M)∼K . The proposition below formulates the main property of our
perturbing family of (ϕ, f ) in terms of multi-1-jets. Its proof is straightforward.

Proposition. For the parametrised family(ϕµ, fµ), as constructed above, the
map which assigns to each element(µ,X1, · · · , X2k) ofP ×M∼2k the2k-1-jet
of (ϕµ, fµ) at (X1, . . . , X2k) has a derivative which is everywhere surjective,
and hence is transversal with respect to any submanifold ofJ 1(M)∼2k. �

Remark. In order to prove that the k-reconstruction condition is generic (for
appropriate values of k) we will need to apply the transversality argument to 2k-
1-jet extensions of (ϕ, f ), or to maps which are derived from such extensions.
Since in the transversality theorem one assumes maps to be at least C1, one
would expect that (ϕ, f ) should belong to some open and dense subset in the
C2-topology. The reason that the C1-topology is sufficient is due to the fact
that, wherever 1-jet extensions are involved, we will only use the transversality
argument in situations where transversality means ‘no intersection’ in which case
transversality is even open in the C0-topology. Another argument, showing that
theC1-topology is sufficient, is based on the fact that the propertyPk is persistent
under C1-small perturbations.

4.2.1 Transversality with respect to a (semi-)algebraic subset

The Thom transversality theorem concerning maps from N to W can be gener-
alised to the case where the subset V of W is no longer a submanifold but an
algebraic, or even a closed semi-algebraic, subset (an algebraic subset is given by
algebraic equalities, in the definition of a semi-algebraic subset also (algebraic)
inequalities may occur). The reason that such a generalisation is possible is based
on the fact that closed (semi-)algebraic subsets admit Whitney stratifications; for
the proof we refer to [L], see also [T9] or [GWPL]. A Whitney stratification of
a closed set is a decomposition of the set into a finite number of manifolds, or
strata, such that for each stratum S, its topological boundary S̄ \ S, is contained
in the union of strata of lower dimension, and such that certain compatibility
conditions are satisfied. These compatibility conditions imply that for any point
x of a stratified set, belonging to a stratum S and any sequence xi converging to
x and belonging to a stratum S ′ and such that the tangent spaces Txi (S

′) converge
to a limit, the tangent space Tx(S) is contained in that limit. Moreover, in a
stratified set V , the union of all strata of dimension smaller than or equal to i,
also called the i-dimensional skeleton of V and denoted by V i , is again a closed
stratified set.
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It follows from this compatibility condition that, whenever the manifold N
is compact, the maps from N to W which are transversal with respect to all
the strata of some closed (semi-)algebraic subset V , or, more generally a closed
stratified subset V , of W form an open subset in the C1-topology. The density
of transversal maps is obtained by induction on the dimension of the skeletons:

Transversality with respect to V 0 is certainly dense because V 0 is a topologi-
cally closed submanifold. Maps which are transversal with respect to all strata in
V i are, in a sufficiently small neighbourhood of V i , also transversal with respect
to the strata in V i+1 (due to the compatibility conditions). The remaining part of
V i+1 is a closed subset of a smooth manifold, so there transversality follows as
usual. In this way we obtain transversality with respect skeletons of increasing
dimensions and finally with respect to all of V .

4.2.2 Reconstruction maps of generic dynamical systems

Here we show how the method of perturbing families can be used for our recon-
struction problem. In fact, what we do here is to prove, as an example, a part of
our general genericity theorem.

Proposition. Let ϕ : M → M be an endomorphism, letk > 2 dim(M) be
an integer and letK ⊂ M × M be a compact subset such that for any pair
(x, x̃) ∈ K we have:

– the meeting numberjϕ(x, x̃) is at leastk;

– the first2k − 1 iterates ofx, namelyx, ϕ(x), . . . , ϕ2k−1(x) are pairwise
different;

– the first2k − 1 iterates ofx̃, namelyx̃, ϕ(x̃), . . . , ϕ2k−2(x̃) are pairwise
different.

Then there is an open and dense subset inC1(M), the space of
C1-functions onM, such that forf in that subset and(x, x̃) ∈ K we have
Rec(ϕ,f )k (x) �= Rec(ϕ,f )k (x̃). �

Proof. Let E be a vector space of functions on M such that, whenever
X1, . . . , X2k are pairwise different points on M and α1, . . . , α2k ∈ R, there is
a function g ∈ E such that g(Xi) = αi for i = 1, . . . , 2k. For the construction
of those (finite dimensional) vector spaces we refer back to the discussion of
the pertubing families in section 4.2. For a function f0 on M we consider the
perutbing family fµ, with µ ∈ E given by:

fµ(x) = f0(x)+ µ(x).
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To each µ we associate the map Rµ : M ×M → R
k, defined by

Rµ(x, x̃) = Rec
(ϕ,fµ)

k (x)− Rec
(ϕ,fµ)

k (x̃),

and the corresponding map R : E ×M ×M → R
k by

R(µ, (x, x̃)) = Rµ(x, x̃).

Our proposition follows (by the transversality argument) if the map R has, in
each point of E ×K , a surjective derivative.

For a pair (x, x̃), such that all the 2k points ϕi(x) and ϕi(x̃), for i = 0, . . . , k−
1, are pairwise different it is obvious that the derivative of R is surjective in each
point (µ, (x, x̃)). For a pair (x, x̃) ∈ K , the only way in which parts of the two
orbit segments x, . . . , ϕk−1(x) and x̃, . . . , ϕk−1(x̃) may coincide is

– for some 0 ≤ i < j , ϕi+s(x) = ϕj+s(x̃) for s ≥ 0 and no other points
coincide;

– the same as above with the roles of x and x̃ interchanged.

(Here we made heavily use of the second and third condition in the proposition
which for example exclude the possibility that x̃ = ϕk−1(x) and at the same time
x = ϕk−1(x̃).)

It is however not hard to verify that also in these cases, one can find for each
(α0, . . . , αk−1) ∈ R

k an element µ ∈ E such that for each i = 0, . . . , k− 1, we
have µ(ϕi(x)) − µ(ϕi(x̃)) = αi . This implies that in each point of E × K the
derivative of R is surjective. This completes the proof. �

4.3 The property P at (pre-)periodic points of low period

We now proceed to the actual genericity proof, or rather to the density proof since
we have already the openness of the property P. In this proof the periodic points
of low period (and a number of their inverse images) need a special treatment.
That is the subject of the present section.

As before we consider dynamical systems, given by an endomorphism ϕ and
a function f on a closed manifold M of dimension m. Since we only have to
establish the density of the reconstruction condition, and since theC∞-mappings
are dense in the C1-mappings, we may assume ϕ and f to be as differentiable
as needed.

For the proof of the main theorem we only need to consider the property Pk
with k > 2m (so that we may even restrict to k = 2m+1); in the present section
we can even take k > m (for the most part even k ≥ m); for the time being, we
will restrict to k = m and refer to the property Pm as the property P.
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Fixed points. For a dynamical system (ϕ, f ) we consider its 1-jet extension
J 1(ϕ, f ), which maps each x ∈ M to (x, ϕ(x), f (x), dϕ(x), df (x)). Generi-
cally this extension is transversal to the fixed point submanifold V , defined by
{x = ϕ(x)}. Since V has co-dimensionm in J 1(M), the fixed points are isolated
for generic ϕ.

Next we define the smaller subset Ṽ ⊂ V by the conditions:

– x = ϕ(x) and

– (df (x), . . . , d(f ϕm−1)(x)) is linearly dependent in T �x (M), or dϕ(x) has
an eigenvalue which is 0 or an lth root of unity with l ≤ 4m.

Since the second condition is algebraic (at least one of a finite number of
determinants has to be zero), Ṽ admits a stratification. We now show that Ṽ
is a proper subset of V and hence consists of strata whose co-dimension in
J 1(M) is at least m + 1. For this we first show that there are a linear map
A : R

m → R
m and a linear function F : R

m → R, i.e. an element of (Rm)�,
such that (F, FA = A�(F ), . . . , FAm−1 = (A�)m−1(F )) is a basis of (Rm)� and
such that A has no eigenvalue which is 0 or which is an lth root of unity with
l ≤ 4m. One can take for example for A a linear map whose (real) matrix is
diagonal with no multiple eigenvalues and no eigenvalues equal to 0 or ±1 and
F given by F(u1, · · · , um) = u1 + · · · + um.

In the vector space Lin(Rm,Rm)× (Rm)� the set of those elements (A, F ), for
which (F, FA, . . . FAm−1) is linearly dependent or for which A has an eigen-
value which is 0 or an lth root of unity with l ≤ 4m, is an algebraic set with
non-empty complement (by the above argument). Hence it has no interior points.
So it is stratified with strata of co-dimension at least 1 in Lin(Rm,Rm)× (Rm)�.
This implies that Ṽ is stratified and that its strata have at least co-dimension
m+ 1 in J 1(M).

So for generic (ϕ, f ) the image of the 1-jet extension is disjoint from Ṽ and
transversal to V . For dynamical systems which are generic in this sense we have:

– the fixed points are isolated (hence there is only a finite number of them)
and the derivative dϕ in such a fixed point has no eigenvalue which is 0 or
an lth root of unity with l ≤ 4m (so that in a small neighbourhood of these
fixed points there are no periodic points with period at least 2 and at most
4m);

– whenever x is a fixed point, x is m-embedding and hence the property P
holds at (x, x).

We shall explain later why we also excluded the eigenvalue 0, see the discussion
on pre-periodic points in this section.

To the above generic conditions we add another condition which is clearly
generic: there should not be two different fixed points where the value of f is
the same. If this condition holds, then:
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– whenever x and x̃ are fixed points, the property P holds at (x, x̃).

Due to the persistence of the property P, and the other generic conditions,
we have for these generic (ϕ, f ): there are a neighbourhood U of (ϕ, f ) in the
C1-topology and a neighbourhood U of the set of fixed points of ϕ such that:
whenever (ϕ̃, f̃ ) is in U and x, x̃ ∈ U , then:

– the property P holds for (ϕ̃, f̃ ) at (x, x̃);

– if x is a fixed point of ϕ̃, then x ∈ U and dϕ̃(x) has no eigenvalue which
is 0 or an lth root of unity with l ≤ 4m;

– the neighbourhood U contains no periodic points of ϕ̃ with period at least
2 and at most 4m;

– if x �= x̃ are both fixed points of ϕ̃, then f (x) �= f (x̃).

Periodic points. We will need the analogue of the above result also for all
periodic points of period at most 4m. We will treat the case of points of period
2 in detail and in such a way that it is clear how to proceed by induction.

We assume that the dynamical system (ϕ, f ) is generic in the above sense so
that there are neighbourhoods U and U with the above mentioned properties.
We may assume that all the perturbations of (ϕ, f ), which we describe below,
remain withinU. Since in U there are no points of period 2, we can restrict our
transversality arguments to the compact complement K of U in M .

With a first arbitrarily small perturbation of ϕ we obtain that on K , the com-
plement of U , the map M  x �→ (x, ϕ2(x)) ∈ M × M is transversal with
respect to the diagonal	 ⊂ M ×M . This implies that the points of period 2 are
isolated.

As in the case of fixed points, with a second, arbitrarily small, perturbation we
obtain that:

– for each x ∈ K with ϕ2(x) = x, the co-vectors df (x), . . . , d(f ϕm−1)(x)

form a basis of T �x (M), so that x is m-embedding and dϕ2(x) has no
eigenvalue which is 0 or an lth root of unity with l ≤ 4m.

Finally, with a third arbitrarily small perturbation we can arrange that for any
two points x �= x̃, belonging to the set of points with period at most 2 (including
the fixed points), we have f (x) �= f (x̃).

For dynamical systems (ϕ, f ) which have generic fixed points and points of
period 2 in the above sense, is follows that whenever x, x̃ belong to the set of
points of period at most 2 (including fixed points), then the property P holds at
(x, x̃). Due to persistence we have for such generic (ϕ, f ):

There are a neighbourhood U′ of (ϕ, f ) in the C1-topology and a neighbour-
hood U ′ of the set of points with period at most 2 (including the fixed points)
such that for x, x̃ ∈ U ′ and (ϕ̃, f̃ ) ∈ U′:
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– the property P holds for (ϕ̃, f̃ ) at (x, x̃);

– in the neighbourhood U ′ there are no points of period greater than 2 and
at most 4m;

– if x is a fixed point or a point of period 2 of ϕ̃, then x ∈ U ′ and dϕ̃(x),
respectively dϕ̃2(x), has no eigenvalue which is 0 or an lth root of unity
with l ≤ 4m;

– if x �= x̃ and both x and x̃ have period at most 2, then f (x) �= f (x̃).

It is now clear how one can proceed with the successive periods 3, 4 etcetera up
to period 4m. The final result will be stated explicitely after we have considered
also the pre-periodic points.

Pre-periodic points. We assume that (ϕ, f ) is a dynamical system which is
generic in the above sense (for all periodic orbits of periods up to 4m). Let
P denote the set of all these points of low period, i.e. of period at most 4m.
We now consider the set of first pre-low-periodic pointsP 1 which is defined as
P 1 = ϕ−1(P ) \ P . We note that, due to the fact that in the case of periodic
points of low period we avoided derivatives with eigenvalue 0, P 1 is bounded
away from P (in fact it was for this reason that we excluded the eigenvalue 0).
From this it easily follows that it is a generic property for ϕ that the points of
P 1 are isolated and that the derivative dϕ in each point of P 1 is invertible: this
is equivalent with the property that ϕ, restricted to the complement of a small
neighbourhood of P , is transversal with respect to P .

The next property for these first pre-low-periodic points which we need to be
generic is that for each x ∈ P 1 we have that

df (x), . . . , d(f ϕm−1)(x)

is a basis of T �x (M), i.e. that x is m-embedding. In order to see that also this is
generic, we observe that for each x ∈ P 1 we have ϕ(x) ∈ P ; due to the generic
conditions, holding for P , we have that

df (ϕ(x)), . . . , d(f ϕm−1)(ϕ(x))

is a basis of T �ϕ(x)(M) and hence

df (ϕ(x)), . . . , d(f ϕm−2)(ϕ(x))

are linearly independent; due to the fact that dϕ(x) is invertible, also the m− 1
co-vectors

d(f ϕ)(x), . . . , d(f ϕm−1)(x)
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are linearly independent. So for generic f , df (x) is linearly independent of
the above m− 1 co-vectors in T �x (M), and hence df (x) completes the basis as
required. This implies that generically the property P holds at (x, x).

Finally, the last generic property is that for each pair of points x �= x̃ inP ∪P 1,
we have f (x) �= f (x̃). This last property implies that also for x �= x̃, both in
P ∪ P 1, the property P holds at (x, x̃).

Next we define the second pre-low-periodic pointsP 2 as P 2 = ϕ−1(P 1) =
ϕ−1(P ∪ P 1) \ (P ∪ P 1). From this definition it is clear that one can prove, by
induction, the same type of generic properties for P 2 as for P 1. In the following
we mainly need this genericity up to P 4m.

Statement of the generic properties for pre-low-periodic points. For a dy-
namical system (ϕ, f ) we define the set (P̃ (ϕ)) of pre-low-periodic points as
the set of all periodic points (fixed points including) whose period is at most
4m (this is the set of low-periodic points) together with all those points which
are mapped by ϕ4m into this set of low-periodic points. Now from the above
consideration it follows that in the space of C1-dynamical systems there is an
open and dense subset (of generic dynamical systems) such that for each dy-
namical system (ϕ, f ) in this subset we have neighbourhoodsU of (ϕ, f ) in the
C1-topology and U of P̃ (ϕ) in M such that for each (ϕ̃, f̃ ) ∈ U and x, x̃ ∈ U
we have:

– P̃ (ϕ̃) is contained in U ;

– if x �= x̃ and if they are both in P̃ (ϕ̃), we have f̃ (x) �= f̃ (x̃);

– the co-vectors df̃ (x), . . . , d(f̃ ϕ̃m−1)(x) form a basis of T �x (M), i.e. x is
m-embedding;

– the property P holds for (ϕ̃, f̃ ) at (x, x̃);

– if x is a low-periodic point with period i ≤ 4m, then d(ϕ̃)i(x) has no
eigenvalue which is 0 or an lth root of unity for l ≤ 4m;

– dϕ̃(x) is invertible.

Remark. In the above discussion, extending the generic properties to the pre-
periodic points, we could just as well have stopped the process to include pre-
images at a different order, say up to ϕ−l(P (ϕ)). This will be needed in one of
the arguments below. We will denote the set ϕ−l(P (ϕ)) by P̃ l(ϕ); so P̃ (ϕ) =
P̃ 4m(ϕ). If we want to refer to this version of the above generic properties, we
will refer to genericity onP̃ l(ϕ).
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Consequences for reconstruction maps. We discuss here consequences of the
above generic properties for reconstruction maps as introduced in the introduc-
tion. We also derive one further generic property which implies that generically
for k > m the property Pk holds at any pair (x, x̃) with x or x̃ close to a pre-
low-periodic point; this means that in the rest of the proof of the density of the
k-reconstruction condition, we may assume that there are no periodic point with
low period.

First we recall the definition of the k-dimensional reconstruction map Reck :
M → R

k for a dynamical system (ϕ, f ):

Reck(x) = (f (x), f (ϕ(x)), . . . , f (ϕk−1(x))).

For k ≥ m, the above generic properties imply that, for a sufficiently small
neighbourhoodU of P̃ (ϕ), Reck|U is an embedding into R

k, and hence injective.
Our first objective here is to show that with an arbitrarily small perturbation

of (ϕ, f ) we can obtain, for k > m, that, whenever x ∈ P̃ (ϕ) and x̃ �= x we
have Reck(x) �= Reck(x̃). We call this the injectivety property. If this property
holds for k = m+ 1, it holds for all k > m. We note that this is the first instance
where we need to restrict to Pk with k > m.

With a first small perturbation we obtain that the above generic property also
holds on P̃ 5m+1(ϕ). Then there is a neighbourhood U of P̃ 5m+1(ϕ) such that
Recm+1|U is an embedding, and hence injective. We show that with a second
small perturbation of f alone we can obtain the required injectivity property. So
we have to show that we can obtain that the image under Recm+1 of the com-
plement of some neighbourhood of P̃ (ϕ) is disjoint from Recm+1(P̃ (ϕ)). Since
Recm+1(P̃ (ϕ)) is 0-dimensional (it contains only a finite number of points) this
means that Recm+1 has to be transversal to Recm+1(P̃ (ϕ)) when restricted to
the compact complement of some neighbourhood of P̃ (ϕ). For this we con-
sider perturbations of f which vanish on P̃ (ϕ) and which are so small that
Recm+1|U ′ remains an embedding, where U ′ is some open neighbourhood such
that P̃ 5m+1(ϕ) ⊂ U ′ ⊂ U . Now we observe that in each point x �∈ U ′ we
have that the points x, ϕ(x), . . . , ϕm(x) are pairwise different and non of them
is contained in P̃ (ϕ). This means that the perturbations of f in these m + 1
different points are ‘free’ and independent. From this it easily follows that
with such a small perturbation of f we can make Recm+1, restricted to M − U ′
transversal with respect to Recm+1(P̃ (ϕ)). Then Recm+1(M \U ′) is disjoint from
Recm+1(P̃ (ϕ)).

Next we show that the injectivety property is persistent underC1-small pertur-
bations of (ϕ, f ), provided (ϕ, f ) is generic in the sense discussed before. We
know already that the generic condition on P̃ (ϕ) implies that there are neighbour-
hoodsU andU of (ϕ, f ) and P̃ (ϕ) respectively such that whenever (ϕ̃, f̃ ) ∈ U,

P̃ (ϕ̃) ⊂ U , and Rec(ϕ̃,f̃ )m+1 , restricted to U , is an embedding. Since M − U is
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compact and since Recm+1(M − U) and Recm+1(P̃ (ϕ)) are disjoint, they have
a positive distance. This means that this property of Recm+1(M − U) being
disjoint from P̃ (ϕ) is indeed open, even in the C0-topology.

This indeed implies the persistence of the injectivety property for generic
(ϕ, f ). Hence the injectivety property holds for an open and dense set of dy-
namical systems.

We now formulate the main conclusion of this section.

Proposition. ForC1 dynamical systems(ϕ, f ) onM generically the following
is true:

There are a neighbourhoodU of (ϕ, f ) in theC1-topology and a neighbour-
hoodU of P̃ (ϕ), the set of periodic points with period at most4m together with
those point which are mapped byϕ4m to a point with period at most4m, such
that for any(ϕ̃, f̃ ) ∈ U we have

i) P̃ (ϕ̃) ⊂ U ;

ii) Rec(ϕ̃,f̃ )m | U is an embedding;

iii) Rec(ϕ̃,f̃ )m+1 (U) andRec(ϕ̃,f̃ )m+1 (M − U) are disjoint;

iv) wheneverx and x̃ are inU , the propertyPm+1 holds for(ϕ̃, f̃ ) at (x, x̃).

Due to the itemiii, we conclude even that:

iv’) wheneverx or x̃ is inU , the propertyPm+1 holds for(ϕ̃, f̃ ) at (x, x̃). �

We note here that whenever, in the notation of the above proposition, x �∈ U ,
the points x, ϕ̃(x), . . . , ϕ̃4m(x) are pairwise different. This will be important in
the next section. It was also the justification of the hypothesis in the proposition
in section 4.2.2 that the orbit segments x, ϕ(x), . . . , ϕ2k−2(x) (and the same for
x̃) consist of 2k − 1 pairwise different points.

4.4 The property P away from the periodic points

We now come to the last part of the genericity proof. From the formulation of
the property P it is clear that we have to investigate, what we will call linear
systems of lengthl+ 1. We will give the formal definition below, but in terms of
a dynamical system (ϕ, f ) one can give the following description. They consist
of a sequence of l + 1 vector spaces of dimension m, like

Tx(M), Tϕ(x)(M), . . . , Tϕl(x)(M)
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connected by linear maps, like

dϕ(x), dϕ(ϕ(x)), . . . , dϕ(ϕl−1(x)),

and with each of the vector spaces equipped with a linear function like

df (x), . . . , df (ϕl(x)).

In particular we are interested in the question how exceptional (in the sense of co-
dimension) it is that one cannot select for any 0 ≤ i ≤ l a co-basis in Tϕi(x)(M)
from the co-vectors df (ϕi(x)), . . . , d(f ϕl−i)(ϕi(x)). It will be (notationally)
more convenient to formulate the results on these linear systems in a somewhat
more abstract setting.

4.4.1 Linear systems

We assume that we are given an infinite collection of m-dimensional vector
spaces V0, V1, . . . . We then define a linear system of length l+ 1 as a collection
C consisting of l linear maps A1 : V0 → V1, . . . , Al : Vl−1 → Vl and of l + 1
linear functions f0 : V0 → R, . . . , fl : Vl → R. So the set of linear systems of
length l + 1 is the vector space

(⊕l
i=1Lin(Vi−1, Vi))⊕ (⊕l

i=0V
�
i )

where Lin(Vi−1, Vi) denotes the vector space of linear maps from Vi−1 to Vi .
This means that we can speak of the co-dimension of certain properties of linear
systems: for such a property there is a corresponding subset of those linear
systems which have the property in question. The co-dimension of a property is
then the co-dimension of the corresponding set in the vector space of all linear
systems (in our considerations these subsets will always be closed algebraic
subsets so that the co-dimension is well defined).

In some situations we shall also consider linear systems of length l+ 1 which
are not based on the vector spaces V0, . . . , Vl but on Vj , . . . , Vj+l . Also we will
use the notion of a restricted linear systemof length l + 1. This means just that
the last linear map (fl : Vl → R) is not included.

Definition. Let C = (A1, . . . , Al, f0, . . . , fl) be a linear system of length
l + 1. We say that a pair of indices 0 ≤ i ≤ j < l is a blocking pair if the
following holds:

– on the kernel K of the composition Aj+1 . . . Ai+1 : Vi → Vj+1 the re-
strictions of the linear functions fi, fi+1Ai+1, . . . , fjAj . . . Ai+1 do not
contain a co-basis of K;

– there is no index j ′ with i ≤ j ′ < j so that the above item also holds when
j is replaced by j ′. �
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The term blocking pair indicates that, even if we modify the linear system
after fj and Aj+1, where this modification may include extending the length
of the linear system, it will never be possible that the co-vectors fi, fi+1Ai+1,
fi+2Ai+2Ai+1, . . . contain a co-basis of Vi . Note that i, j being a blocking pair
is really a property of the restrictedlinear system of length j − i + 2 based on
the vector spaces Vi, . . . , Vj+1.

Lemma 1. In the space of restricted linear systems of lengths + 1, the set of
those restricted systems, for which the indices0, s − 1 form a blocking pair, is
algebraic and has co-dimension at leasts + 1. �

Proof. For the indices 0, s − 1 to form a blocking pair for the restricted linear
system C = (A1, . . . , As, f0, . . . , fs−1) of length s + 1, the kernel K of the
composition As . . . A1 should have positive dimension.

Since the dimension of K is at most equal to the sum of the dimensions of
the kernels of A1 up to As , and since in the space of linear maps between m-
dimensional spaces, the elements with a t-dimensional kernel form an algebraic
subset of co-dimension at least t (in fact that co-dimension is t2). This means
that the condition on the mapsA1, . . . , As that their composition has a kernel of
dimension l has co-dimension at least l. If l > s we even don’t have to consider
possible conditions on the linear functions f0, . . . , fs−1.

If we assume that the linear mapsA1, . . . , As are given and that the kernelK of
their composition has dimension l, then, in order that C has 0, s−1 as a blocking
pair we need that among the co-vectorsf0, f1A1, . . . , fs−1As−1 . . . A1, restricted
toK , there is no co-basis forK . We denote the dimension of the linear subspace of
the dual K� of K , spanned by the co-vectors f0|K, f1A1|K, . . . , fiAi . . . A1|K
by ni , where i = 0, . . . , s − 1, and define n−1 = 0. Clearly, for each i =
−1, . . . , s − 2 we have ni ≤ ni+1 ≤ ni + 1. Since, in order that the indices
0, s − 1 form a blocking pair, we need ns−1 < l. This implies that there must
be a collection of at least s − l + 1 indices i for which ni = ni+1 (note that if
s − l + 1 ≤ 0, then l > s and, as we saw above, we know already that this
corresponds to a situation which has co-dimension at least s + 1). For each
index i with ni = ni+1 there are two alternatives: either fi+1 has to satisfy
a condition, which has at least co-dimension 1, in order to make ni+1 = ni
or fi+1 does not have to satisfy any condition because, due to the previous
A1, . . . , Ai+1, f0, . . . , fi , no choice of fi+1 could lead to ni+1 being ni + 1. In
the latter case however the indices 0, i would already form a blocking pair. In
that case, since i < s − 1, the indices 0, s − 1 cannot form a blocking pair. So
the former alternative has to hold. This means that each of the s − l+ 1 indices,
for which ni = ni+1, represents a restriction on f0, · · · , fs−1 corresponding to
one co-dimension. So we conclude that the whole linear system has to satisfy
a collection of conditions with total co-dimension s + 1: l for the restrictions
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on A1, . . . , As in order to obtain l as the dimension of K and s − l + 1 for the
restrictions on f0, . . . , fs−1. (So for each dimension l of the kernel we arrive at
the same total co-dimension and hence the value of l does not appear in the final
result.) This comples the proof. �

Lemma 2. In the space of linear systems of lengths + 1, with s + 1 ≥ m, the
set of those systems for which there is no0 ≤ i < s such that0, i is a blocking
pair and such that the co-vectorsf0, f1A1, . . . , fsAs . . . A1 do not contain a
co-basis ofV0, have co-dimension at leasts −m+ 2. �

Proof. Let C = (A1, . . . , As, f0, . . . , fs) be a linear system of length s + 1
such that there is no index 0 ≤ i < s such that 0, i is a blocking pair (this is an
‘open’ condition) and such that the co-vectorsf0, . . . , fsAs . . . A1 do not contain
a co-basis of V0. We denote by ni , i = 0, . . . , s, the dimension of the linear
subspace in V �

0 spanned by the co-vectors f0, f1A1, . . . , fiAi . . . A1; we define
n−1 = 0. As in the proof of the previous lemma we have for i = −1, . . . , s − 1
that ni ≤ ni+1 ≤ ni + 1. By our assumption ns < m. This means that the
set of indices i for which ni = ni+1 has at least s − m + 2 elements. For
each of these indices, assuming A1, . . . Ai and f0, . . . fi are given, fi+1 has to
satisfy a co-dimension 1 condition: the argument is similar to the argument we
used in the proof of lemma 1: if there is no linear function f̃i+1 on Vi+1 such
that f̃i+1Ai+1 . . . A1 is linearly independent of f0, . . . , fiAi . . . A1, then 0, i is a
blocking pair, contradicting our assumption. This means that fi+1 indeed had to
satisfy a condition with at least co-dimension 1 in order to have ni+1 = ni . So
in total the co-dimension is at least s −m+ 2. This proves the lemma. �

Proposition. In the space of linear systems of lengths + 1 ≥ m we consider
the subset of (exceptional) linear systems for which there are no integers0 ≤
j < s + 1 and0 ≤ j1 < . . . < jm such thatj + jm ≤ s and such that

fj+j1Aj+j1 . . . Aj+1, . . . , fj+jmAj+jm . . . Aj+1

is a co-basis ofVj . This subset of these exceptional linear systems has co-
dimension at leasts − m + 2. (The statement of this proposition should be
compared with the definitions in section 3.) �

Proof. Let C = (A1, . . . , As, f0, . . . , fs) be a linear system which belongs to
the above (exceptional) set. There are two possibilities: either there is an index
0 ≤ i < s such that 0, i is a blocking pair or there is no such index. If there is
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no such index we conclude, by assumption, that there are no integers j = 0 and
0 ≤ j1 < . . . < jm such that the co-vectors

fj1Aj1 . . . A1, . . . , fjmAjm . . . A1

form a co-basis of V0. This means, by lemma 2, that C belongs to the co-
dimension s−m+ 2 subset defined in that lemma. So we only have to consider
the case that there is a blocking pair 0, i.

The existence of a blocking pair 0, imeans that (A1, . . . , Ai+1, f0, . . . , fi)be-
long to a subset of co-dimension i+2. The remaining (Ai+2, . . . , As, fi+1, . . . ,

fs) form a linear system of length s − i. If s − i is smaller than m, then the
co-dimension, corresponding to the blocking pair 0, i, is already at least equal
to s−m+ 2 and we are finished. If s− i ≥ m we use induction on the length of
the linear system. If the proposition holds for linear systems of length smaller
than s + 1, then we conclude that we have already ‘i + 2 co-dimensions’ for the
blocking pair and ‘s−m− i+1 co-dimensions’ for the remaining linear system
of length s − i. This gives in total even s −m+ 3 co-dimensions.

So finally we only have to prove the proposition for the smallest length, which
is s+1 = m. In this case the proposition is a direct consequence of the lemma’s
1 and 2. �

This concludes the discussion of general linear systems and we return to:

4.4.2 Continuation of the genericity proof

We have to show that for generic (ϕ, f ), for k ≥ 2m + 1, and for each pair
(x, x̃) ∈ M ×M the property Pk holds. We may and do assume, without loss of
generality, that k = 2m+ 1. Since we know that the property P is persistent, we
only have to show that we can change (ϕ, f ), by a perturbation which is arbitrarily
small in the C1 sense, so that after the perturbation the property P2m+1 holds for
all the pairs in M ×M . As we remarked before we may ignore periodic orbits
with period at most 4m.

We recall the definition of the meeting number j (x, x̃): it is the smallest integer
such that ϕj(x,x̃)(x) = ϕj(x,x̃)(x̃); if no such integer exists, then j (x, x̃) = ∞.
We denote by J l the subset of M × M of the pairs (x, x̃) with j (x, x̃) = l.
It is clear that J0 = 	 ⊂ M × M , which is an m-dimensional submanifold.
For each (x, x) ∈ 	 we consider the linear system of length 2m + 1 on the
vector spaces Tx(M), Tϕ(x)(M), . . . , Tϕ2m(x)(M) with linear maps dϕ(ϕi(x)),
i = 0, . . . , 2m−1, and linear functions df (ϕi(x)), i = 0, . . . , 2m. We note that
all the points x, ϕ(x), . . . , ϕ2m(x) are pairwise different (due to the proposition
in 4.3 we may disregard periodic points of periods up to 4m and their pre-images
up to order 4m, so that orbit segments of length 2m+ 1 do not ‘revisit’ points).
So we can perturb both df and dϕ in all these points independently. Hence,
for any property of linear systems of length 2m + 1 with co-dimension at least
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m+ 1 it is generic that it does not occur for any pair (x, x) ∈ 	. By the above
proposition, this means that generically the property P2m+1 holds for all pairs
(x, x) ∈ 	 because for each such x there should be some j ≤ 2m+ 1 such that
ϕj (x) is (2m− j + 1)-embedding. (In fact, the proposition in 4.4.1, applied to
linear systems of length 2m+ 1, yields a co-dimensionm+ 2 which is one more
than needed.) By persistence, the property P2m+1 also holds in a neighbourhood
of 	.

Now we consider J1 and will show that also there generically the property
P2m+1 holds. We will show this in such a way that it will be clear how to
continue by induction to J2, . . . , J2m; after this the situation becomes different.
As we observed above we can restrict ourselves to a (compact) complement
of a neighbourhood of 	. We first observe that generically the map (ϕ, ϕ) :
M ×M → M ×M , restricted to the complement of a neighbourhood of 	, is
transversal with respect to	. This means that genericallyJ1 is anm-dimensional
submanifold, except possibly in a small neighbourhood of 	 = J1 where the
properyP2m+1 holds anyway. From now on we assume J1 is such a submanifold.

Let (x, x̃) ∈ J1. If f (x) �= f (x̃), the the property P2m+1 holds for this pair. If
f (x) = f (x̃), we consider the linear system of length 2m on the tangent spaces
at ϕ(x) = ϕ(x̃), . . . , ϕ2m(x) = ϕ2m(x̃). In order that property P2m+1 does not
hold in (x, x̃), conditions with a total co-dimension of at least m + 2 must be
satisfied: 1 co-dimension for f (x) = f (x̃) and m + 1 co-dimensions for the
linear system of length m to be exceptional in the sense of the proposition in
section 4.4.1.

As we observed above we can continue by induction till J2m. Now we have the
property P2m+1 holding on all of J = ⋃2m

i=0 J i , and hence also on a neighbour-
hood of this set. For each pair (x, x̃) outside J we have that ϕi(x) �= ϕi(x̃) for
i = 0, . . . , 2m. So now we can apply the proposition in 4.2.2 with k = 2m+ 1
and obtain that generically for all these pairs (x, x̃) the corresponding recon-
struction vectors are unequal: Rec2m+1(x) �= Rec2m+1(x̃).

This completes the proof that generically all pairs (x, x̃) have the property
P2m+1.

5 Reconstruction of endomorphisms

In this section we assume that ϕ : M → M is an endomorphism on the closed
m-dimensional manifold M and that f : M → R is a read out function, both at
least C1 and such that, for some k, the k-reconstruction condition holds, i.e. that
for all pairs (x, x̃) ∈ M ×M the property Pk holds. We prove here that there
is a differentiable map πk : Xk → M such that πkReck = ϕk−1. So this holds
even for k ≤ 2m.
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Lemma 1. Under the above hypothesis there is a unique mapπk : Xk → M

such thatϕk−1 = πk Reck. �

Proof. The uniqueness, in case of existence, is clear. For each ξ ∈ Xk there
is an x ∈ M such that Reck(x) = ξ . So then πk(ξ) has to be equal to ϕk−1(x).
The only problem with existence could be that there are different x �= x̃ with
the same reconstruction vectors Reck(x) = Reck(x̃). Due to the property Pk
however, in that case we have ϕk−1(x) = ϕk−1(x̃) so that there is no ambiguity
in the definition of πk(ξ). �

Lemma 2. The mapπk is differentiable. �

Proof. For a reconstruction vector ξ we construct a differentiable extension of
πk to a neighbourhood of ξ in R

k. We make use of the second and equivalent
formulation of the k-reconstruction condition, see the lemma in section 3. It
implies the existence of an integer j (ξ) and a point p(ξ) such that for each
x ∈ Rec−1(ξ), ϕj(ξ)(x) = p(ξ) and such that p(ξ) is (k − j (ξ))-embedding.
This means that there are integers 0 ≤ j1 < . . . < jm < (k − j (ξ)) such that

f ϕj1, . . . , f ϕjm

form a local coordinate system in a neighbourhood U of p(ξ). Then we define
a smooth map λ from a neighbourhood V of ξ in R

k to U such that for η =
(η1, . . . , ηk) ∈ V , the values of f ϕji (λ(η)) agree with the coordinates ηj(ξ)+ji
for i = 1, . . . , m. Then it is clear that for all points

x̃ ∈ W = ϕ−j (ξ)(U)
⋂

Rec−1
k (V ) we have ϕj(ξ)(x̃) = λReck(x̃) .

So � = ϕk−j (ξ)−1λ, if necessary after restricting to a subset of V , is a smooth
extension of πk. In order to see that� can indeed be defined on a neighbourhood
of ξ , we observe that M \W and hence Reck(M \W) is compact and that the
latter set does not contain ξ . We can take V \ Reck(M \W) as the domain of�.

This completes the proof of the lemma and also of the theorem 2 as stated in
the introduction. �

6 Applications: deterministic structure and the estimation of dimensions
and entropies

Also in this section we assume that (ϕ, f ) is a dynamical system on a compact
manifold M and that for some k the k-reconstruction condition is satisfied.
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6.1 The dynamics on Xk
The set of k-dimensional reconstruction vectorsXk can also be considered as the
state space of a dynamical system with map� (in this case we have a dynamical
system without read out function) in such a way that Reckϕ = �Reck. The
argument is simple:

Ifw ∈ Xk and x ∈ M with Reck(x) = w then we want�(w) to be Reck(ϕ(x)).
The problem is that the element x may not be uniquely determined by w. How-
ever, in any case, the first k−1 coordinates of�(w) should be equal to the last k−1
coordinates of w. The last coordinate of�(w) should be equal to f ϕ(ϕk−1(x)).
Though x may not be uniquely determined by w, ϕk−1(x) = πk(w) is uniquely
determined by w; πk is the map discussed in the previous section. So the map
� has the explicit form

�(w) = (w2, . . . , wk, f ϕπk(w)), where w = (w1, . . . , wk).

We have derived the dynamics in Xk from the dynamics in M defined
by ϕ. This can be done differently: if the k-reconstruction condition
holds, then the dynamics on Xk can be deduced from Xk+1. This is
done in the following way: if w = (w1, . . . , wk) ∈ Xk, then �(w) should
have the form (w2, . . . , wk, h(w1, . . . , wk)) and it should be such that
(w1, . . . , wk, h(w1, . . . , wk)) belongs to Xk+1. From the above considerations
it follows that this determines h(w1, . . . , wk) uniquely.

So, from the k-reconstruction condition it follows that Xk+1 completely de-
termines which (finite or infinite) time series the dynamical system (ϕ, f ) can
produce.

6.2 Dimensions and entropies

We first recall the definitions of the correlation dimensions and entropies. We
assume that we have a dynamical system with state space K and map ψ (also
here we don’t have a read out function). We assume K to be a compact metric
space with metric d and ψ to be continuous. We also assume that there is a
ψ-invariant Borel probability measure µ.

The dimensionsDq(µ), with q �= 1 are defined in terms of the metric d and
the measure µ, and are independent of the map ψ :

Dq(µ) = lim
ε→0

log
∫
(µ(B(x, ε)))q−1dµ

(q − 1) log ε
,

where B(x, ε) denotes the ε-neighbourhood of x. The limit may not exist (in the
sense that lim inf and lim sup are different) in which case one can define a lower
and an upper dimension, or the limit may diverge to infinity, in which case the
corresponding dimension is ∞. For q = 1 there is a different definition which is
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suggested by continuity considerations. Also for that dimension the arguments
below are still valid, but we omit the details.

For the definition of the entropiesHq(ψ,µ)we need metrics which are derived
from d and ψ : di(x, y) = maxj=0,... ,i−1 d(ψ

j (x), ψj (y)); Bi(x, ε) is the ε-
neighbourhood of x with respect to the metric di . For q �= 1 we define:

Hq(ψ,µ) = lim
ε→0

lim
n→∞

log
∫
(µ(Bn(x, ε)))

q−1dµ

(1 − q)n
.

For these definitions, see also [P], [TV], and [V].
Next we introduce the notion of a morphism between two dynamical systems.

So we let (K,ψ,µ) and (K ′, ψ ′, µ′) denote two dynamical systems as above, i.e.
K,K ′ are compact metric spaces with metrics d and d ′,ψ andψ ′ are continuous
maps on K and K ′ respectively, and µ and µ′ are invariant Borel probability
measures. A map g : K → K ′ is called a morphism between these dynamical
systems if:

– g is continuous and even Lipschitz in the sense that for some constant C
and any x, y ∈ K we have d ′(g(x), g(y)) ≤ Cd(x, y);

– ψ ′g = gψ ;

– µ′ = g�(µ), i.e. for measurable U ′ ⊂ K ′, we have µ(g−1(U ′) = µ′(U ′).

Proposition. If g : K → K ′ is a morphism between two dynamical systems as
above, then we have

Dq(µ) ≥ Dq(µ
′) andHq(ψ,µ) ≥ Hq(ψ

′, µ′). �

Proof. We define the functions hn(x, ε) = µ(Bn(x, ε)), see the above defini-
tions of dimensions and entropies; the corresponding functions for the second
dynamical system (on K ′) are denoted by h′

n. If C denotes a Lipschitz con-
stant for g, i.e. if d ′(g(x), g(y)) ≤ Cd(x, y) for all x, y ∈ K , then clearly
hn(x, ε) ≤ h′

n(g(x), Cε). This means that, for q > 1 we also have that∫
(hn(x, ε))

q−1dµ(x) ≤
∫
(h′
n(x

′, Cε))q−1dµ′(x ′).

So, apart from the fact that ε changed to Cε, this implies that Dq(µ) ≥ Dq(µ
′)

and Hq(ψ,µ) ≥ Hq(ψ
′, µ′). This factor C in front of the epsilon disappears

in the limits defining the dimensions en entropies. This completes the proof for
q > 1. For q < 1, the above inequality between integrals reverses, but also
the factor (1 − q) in the denominators in the definitions of the dimensions and
entropies changes sign, so the outcome is the same inequality for q < 1. We did
not spell out the definitions of D1 and H1, but the same arguments also lead to
the same result in that case. �
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From the above proposition on (abstract) morphisms between dynamical sys-
tems, we obtain, by applying then to the ‘morphisms’ Reck : M → Xk and
πk : Xk → M the following:

Theorem. Let(ϕ, f )define a smooth dynamical system (with read out function)
on the closed manifoldM, which satisfies thek-reconstruction condition. Let
� : Xk → Xk define the corresponding dynamics (without read out function)
on Xk. Let µ be someϕ-invariant Borel probability measure onM and let
µ′ = (Reck)�(µ). ThenReck andπk are morphisms in the above sense between
the dynamical systems(M, ϕ,µ) and(Xk,�,µ′) and hence the dimensions and
entropies of these systems are the same. �

Estimates of dimensions and entropies. The estimates of dimension and en-
tropy (for convenience we restrict to the correlation dimension D2 and entropy
H2) of a dynamical system from time series are based on the following consider-
ations. We consider an orbit x0 = x̄, x1 = ϕ(x̄), . . . of the dynamical system on
M defined by ϕ and assume that this orbit defines a Borel probability measure
µ on M so that for each continuous function g : M → R we have

∫
M

gdµ = lim
n→∞

1

n

n−1∑
i=0

g(xi).

(This is called the natural measure defined by the orbit. For the existence or non-
existence of such measures see [RU].) Such a measure µ is ϕ-invariant. Next we
assume that the k-reconstruction condition is satisfied for (ϕ, f ). Then the maps
Reck : M → Xk and πk : Xk → M are morphisms between dynamical systems
(the dynamics on Xk being defined by the map � as introduced in section 6.1).
We want to estimate, from the time series corresponding to the orbit x0, x1, . . . ,
which is y0 = f (x0), y1 = f (x1), . . . , the correlation dimension and entropy of
ϕ with respect to the measure µ.

From the above theorem it follows that this is the same as estimating these
quantities of�with respect to the measureµ′ = (Reck)�(µ). This can be done in
terms of the correlation integrals Cn(ε), which are defined as the probability that
two ‘random’ reconstruction vectors of dimension n are coordinate wise within
distance ε. This quantity is estimated by counting the number NN,n(ε) of pairs
(i, j)with 0 ≤ i < j ≤ N such that | yi −yj |< ε, . . . , | yi+n−1 −yj+n−1 |< ε.
Then

Cn(ε) = lim
N→∞

NN,n(ε)

(N(N + 1)/2)
.

So the quantities
NN,n(ε)

(N(N + 1)/2)
,
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for N sufficiently big, are estimates for Cn(ε).
The relation between these quantities and the definitions of the dimension and

entropy (with q = 2) for � with respect to µ′ is
∫
Xk
µ′(Bn(x, ε)dµ′(x) = Cn+k(ε)

where the distance function d ′ onXk is given by d ′((z1, . . . , zk), (z
′
1, . . . , z

′
k)) =

max1≤i≤k | zi − z′i |. This means that we find for the correlation dimension and
entropy the usual expressions

D2 = lim
ε→0

ln(Cn(ε))

ln(ε)
for n ≥ k

and

H2 = lim
ε→0

lim
n→∞

− ln(Cn(ε))

n
.

This justifies the use of the standard algorithms, see e.g. [GPa] and [T3], for
estimating the dimension and entropy of the natural measure of a given orbit also
for endomorphisms.
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