
BULLETIN
BRAZILIAN

MATHEMATICAL
SOCIETY Bull Braz Math Soc, New Series 33(2), 263-292

© 2002, Sociedade Brasileira de Matemática

Minimal surfaces inH2 × R

Barbara Nelli and Harold Rosenberg

— Dedicated to IMPA on the occasion of its50th anniversary

Abstract. In H
2×R one has catenoids, helicoids and Scherk-type surfaces. A Jenkins-

Serrin type theorem holds here. Moreover there exist complete minimal graphs inH
2

with arbitrary continuous asymptotic values. Finally, a graph on a domain ofH
2 cannot

have an isolated singularity.
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1 Introduction

In this paper we consider minimal surfaces inH
2 × R; particularly, surfaces

which are vertical graphs over domains inH
2. When a convex domainD ⊂ H

2

is bounded by geodesic arcsA1, . . . An,B1, . . . , Bm, together with strictly convex
arcsC1, . . . , Cs , we obtain necessary and sufficient conditions (in terms of the
lengths of the boundary arcs ofD) which assure the existence of a unique function
u defined inD, whose graph is a minimal surface ofH

2×R, and which takes the
values+∞ on the arcsA1, . . . An, −∞ on the arcsB1, . . . , Bm, and arbitrary
prescribed continuous data on the arcsC1, . . . , Cs . In R

2×R, this is the theorem
of Jenkins and Serrin [JS].

For example, letD be a domain whose boundary is a regular geodesic octagon
with sidesA1, B1, . . . , A4, B4, and suppose the interior angles areπ

2 . Our theo-
rem yields a functionu inD, whose graph is minimal, taking the values+∞ on
eachAi , and−∞ on eachBj . The graph ofu is bounded by the eight vertical
geodesics passing through the vertices ofD. Rotation of eachH2 × {t}, by π
about each vertex ofD × {t}, extends the graph ofu to a complete embedded
minimal surface inH2 × R (one continues the rotation about all the vertical
geodesics that arise). One can take the quotient ofH

2 × R by various Fuchsian
groups to obtain interesting quotient surfaces. For example, one can obtain an
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264 BARBARA NELLI AND HAROLD ROSENBERG

8-punctured sphere in the quotient of total curvature−12π ; with four top ends
and four bottom ends.

One also obtains graphs over ideal polygons with vertices at infinity. For
example, consider the polygon which is the boundary of the convex hull of the
n roots of unity,n even and at least four. Then, there is a minimal graph over
the interior of this polygon taking the values plus and minus infinity on adjacent
edges (cf. Figure 2(b)).

We prove the existence of entire minimal graphs overH
2 (Bernstein’s theorem

fails here). In the model{0 ≤ x2
1 + x2

2 < 1} of H
2, the asymptotic boundary

of H
2 × R is {x2

1 + x2
2 = 1} × R. For any Jordan curve� in the asymptotic

boundary ofH2 × R that has a simple projection on{x2
1 + x2

2 = 1}, there is a
minimal graph overH2 having� as asymptotic boundary.

In [DN], the existence of such minimal graphs is established when� is the
boundary value of a function with very smallC3-norm on the disk.

Finally, we prove a theorem for minimal graphs defined over a punctured disk
in H

2 : the graph extends smoothly to the puncture.

2 Preliminaries

In the three dimensional manifoldH2 × R, we take the disk model forH2. Let
x1, x2 denote the coordinates inH2 andx3 the coordinate inR. The metric in
H

2 × R is

dσ 2 = dx2
1 + dx2

2

F
+ dx2

3

where

F =
(

1 − x2
1 − x2

2

2

)2

The graph of a functionu defined over a domain inH2 has constant mean cur-
vatureH if and only if u satisfies the following equation:

div

(∇u
τu

)
= 2H (1)

whereτu = √
1 + F |∇u|2 and the divergence is the divergence inR

2. We list
the principal steps for the computation of (1).

The Christoffel symbols for the metricdσ 2 are the following:

�1
11 = �2

12 = �2
21 = x1√

F

�2
22 = �1

12 = �1
21 = x2√

F

�2
11 = − x2√

F
, �1

22 = − x1√
F
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The other�kij are identically zero.

Let e1, e2, e3, be the canonical basis ofR
3 and setε1 = √

Fe1, ε2

√
Fe2,

ε3 = e3, so thatε1, ε2, ε3 is an orthonormal basis forH2 × R. Finally let ∇̄ be
the connection of the metricdσ 2. We have:

∇̄ε1ε1 = −x2ε2, ∇̄ε2ε2 = −x1ε1,

∇̄ε1ε2 = x2ε1, ∇̄ε2ε1 = x1ε2.

The coordinate vector fields on the graph ofu areX1 = 1√
F
ε1 + u1ε3,

X2 = 1√
F
ε2 +u2ε3 andN = τ−1(−u1

√
Fε1 −u2

√
Fε2 + ε3) is the upward unit

normal.
The induced metric on the graph is:

g11 = 1

F
+ u2

1, g12 = u1u2, g22 = 1

F
+ u2

2.

The coefficients of the second fundamental form are:

b11 = 〈∇̄X1X1, N〉 = 1

τ

(
−x1u1√

F
+ x2u2√

F
+ u11

)

b12 = 〈∇̄X1X2, N〉 = 1

τ

(
−x2u1√

F
− x1u2√

F
+ u12

)

b22 = 〈∇̄X2X2, N〉 = 1

τ

(
x1u1√
F

− x2u2√
F

+ u22

)

where〈 , 〉 is the scalar product for the metricdσ 2.
Equation (1) is obtained by substituting the quantities just calculated in the

following identity:

2H = b11g22 + b22g11 − 2b12g12

g11g22 − g2
12

.

3 Catenoids and Helicoids

Catenoids. We construct a family of minimal rotational surfaces inH
2 × R

(see also [PR]).

Let π be a vertical geodesic plane containing the origin and letγ be a curve
in π . Assumeγ to be a graph over thex3 axis. Letr be the Euclidean distance
between the point ofγ at heightt and thex3 axis: r = r(t) is a parametrization
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266 BARBARA NELLI AND HAROLD ROSENBERG

of the curveγ . Consider the surface of revolutionS obtained by rotatingγ about
thex3 axis.S is minimal if and only ifr = r(t) satisfies the following differential
equation:

4r(t)r ′′(t)− 4r ′(t)2 − (1 − r(t)4) = 0. (2)

A first integral for equation (2) is

J (t) = −r
′2

r2
− 1 + r4

4r2
= −C (3)

whereC is a positive constant (i.e. dJ (t)
dt

= 0 along the curveγ ).
Hence we obtain:

r ′ = ±
√
Cr2 − 1 + r4

4
(4)

The allowed values forC andr are

C >
1

2

2C −
√

4C2 − 1 ≤ r2 < 1 ≤ 2C +
√

4C2 − 1

i.e.

rmin =
√

2C + 1

2
−

√
2C − 1

2
≤ r < 1.

Remark that asC−→1
2 thenrmin−→1 hence the curveγ disappears at infinity,

while asC−→∞ thenrmin−→0.
We can write equation (4) as follows:

dt

dr
= ± 2√

4Cr2 − (1 + r4)
(5)

In order to study the curveγ we can choose the positive sign in (5), i.e.t > 0.
In fact by the symmetries of equation (4) and (5), the curveγ for t < 0 will be
the reflection with respect to the planex3 = 0 of the curveγ for t > 0. With the
choice of the positive sign, we have the following properties.

(i) dt
dr
> 0 hencet is an increasing function ofr.

(ii) For r = rmin we havedt
dr

= ∞, i.e. the tangent to the curveγ at the point
r = rmin is parallel to thex3 axis and this is the only point where this
happens.
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(iii) As r−→1, we have:
dt

dr
−→

√
2√

2C − 1
.

Hence, whenC varies between12 and+∞ the asymptotic angle ofγ varies
betweenπ2 and 0.

(iv) d2t

dr2 < 0, hence the concavity does not change.

(v) Consider the change of variablesw = r2. Equation (5) becomes

dt = ± dw√
w(2C + √

4C2 − 1 − w)(w − 2C + √
4C2 − 1)

(6)

Hence

t (w) = ±
∫ w

2C−√
4C2−1

(
s(2C +

√
4C2 − 1 − s)(s − 2C +

√
4C2 − 1)

)− 1
2
ds

This is an elliptic integral. By the properties of elliptic functions limC→∞ t (w)
is independent ofw. For every value of the constantC we havet (4C −√

4C2 − 1) = 0, hence for the limit valueC = ∞, the surface is a horizon-
tal plane (doubly covered).

Using (i)-(v) we have the following theorem (see Figure 1).

����

��
��
��
��

�
�
�
�

��
��
��
��

����

����

rmin

x3

α

Figure 1

Theorem 1. Let �±(t) be the two circles at infinity ofH2 × R defined by
{x2

1 + x2
2 = 1, x3 = ±t}.

Then, for eacht > 0 there exists a rotational surface (catenoid)C(t), whose
asyptotic boundary is�+(t) ∪ �−(t). As t−→0, C(t) converges to the doubly
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268 BARBARA NELLI AND HAROLD ROSENBERG

covered planeH2 with a singularity at the origin. Ast−→∞, C(t) diverges to
the asymptotic boundary ofH

2 × R. Furthermore for any angleα ∈]0, π2 [ there
is a C(t) whose asymptotic normal vector at boundary points forms an angle
equal toα with thex3 axis.

Helicoids. Letα be a horizontal geodesic passing through thex3 axis. Consider
the surfaceE obtained by translatingα vertically and rotating it around thex3
axis. A parametrization forE is the following:

X(u, v) = (v cosθ(u), v sinθ(u), u)

v ∈ (−1,1), u ∈ R andθ : R−→R is aC2 function representing the angle
betweenα and thex1 axis at the levelu.
E is a minimal surface if and only if

θuu = 0.

Hence the solutions are:

(i) θ(u) = a, a ∈ R. In this caseE is a vertical plane forming an anglea
with thex1 axis.

(ii) θ(u) = au, a ∈ R \ {0}. In this case the surfaceE is congruent to the
Euclidean helicoid.

4 Scherk type surfaces

Let P be a regular 2k-gon in H
2 with (open) edgesA1, B1, . . . , Ak, Bk (see

Figure 2(a),k = 2). We will construct a minimal graph	 over the domainD
bounded byP such that the boundary values are alternatively+∞ on the edges
Ai and−∞ on the edgesBi . 	 will be called a Scherk type surface. Also, the
Scherk surface exists if the vertices ofAi andBj are at infinity; so thatP is a
ideal polygon whose vertices are the 2k roots of unity (see Figure 2(b),k = 2).

Choose one edge ofP where the desired value is+∞ and call itA. LetB and
C be the two geodesic arcs passing through the center ofP and the vertices of
A. Let T be the (open) triangle with sidesA, B andC. Let �(n) be the curve
obtained by the union of the following geodesics arcs:B,C together with the arc
obtained by raisingA to heightn, and the vertical geodesics joining the vertices
of the raisedA with the vertices ofA.

Let 	n be a solution of Plateau’s problem for�(n). Rado’s theorem is true
in H

2 × R, since vertical translation is an isometry, hence	n is the graph of a
functionun defined in the triangleT and

un|A = +n, un|B = un|C = 0.
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1 B
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A B
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D

1
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22

1 1

(a) Geodesic  4 − gon                                                   (b) Ideal  4 − gon

Figure 2

Theorem 2. The sequence{un} converges to a minimal solutionu defined in
T such that

u|A = +∞, u|B = u|C = 0.

Moreover, the gradient ofu diverges as one approaches the sideA.

Proof. The sequence{un} is non decreasing and positive. Hence, to show that
the functionu exists, we will prove that the sequence{un} is uniformly bounded
on compact subsetsK of T .

We start by constructing a barrier over the graph of theun in K.

A

p

p2

1

4

p3

d

p
p

8

ε

ε

q

q

1

2

ε

α

τ

δ β

γ

Figure 3

The following construction is represented in Figure 3.
Let α be the horizontal geodesic containing the sideA. Denote byq1 andq2

the vertices ofA. Fori = 1,2, letpi the point onα \A at a distanceε > 0 from
qi . Denote byaε the geodesic arc betweenp1 andp2. Let τ be the horizontal
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270 BARBARA NELLI AND HAROLD ROSENBERG

geodesic orthogonal to the edgeA passing through the mid-point ofA (in order
to simplify Figure 3 we assume thatτ passes through the origin ofH

2). Letp∞
be the point at infinity ofτ contained in the same halfplane asT defined byα.

Finally denote byβε the horizontal geodesic throughp1 andp∞ and byγε the
horizontal geodesic throughp2 andp∞.

Consider a horizontal geodesicδ orthogonal toτ and letp3 = δ ∩ βε, p4 =
δ ∩ γε. Call d the geodesic arc onδ betweenp3 andp4, bε the geodesic arc on
βε betweenp1 andp3 andcε the geodesic arc onγε betweenp2 andp4. We can
chose||bε|| and||cε|| large enough such that the quadrilateral with edgesaε, bε,
cε, d contains the triangleT .

Let h be a positive number and call∗(h) each object obtained by translating
vertically to heighth an object ofH2 × {0}. Consider the following curves (see
Figure 4):

L

L1

2
h

h

p

p

p
3

4

2

1
p

c

b

b

c

ε

ε

ε

ε (h)

(h)

Figure 4

Lh1 = bε ∪ (p1 × [0, h]) ∪ bε(h) ∪ (p3 × [0, h]),
Lh2 = cε ∪ (p2 × [0, h]) ∪ cε(h) ∪ (p4 × [0, h]).

We claim that there exists a least area, hence stable, minimal annulus bounded
by Lh1 ∪ Lh2, if ||bε|| is sufficiently large. A sufficient condition is given by
the Douglas criteria for the Plateau problem: if there is an annulus bounded by
Lh1 ∪Lh2 with area smaller than the sum of the areas of the flat geodesic domains
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bounded byLh1 andLh2, then there exists a least area minimal annulus bounded
byLh1 ∪ Lh2.

By a straightforward computation we obtain that the sum of the areas of the flat
geodesic domains bounded byLh1 andLh2 is equal to 2||bε||h (as||cε|| = ||bε||).

Now, consider the annulus that is the union of the four geodesic domains
bounded by the following quadrilaterals (see Figure 5):

Q1 = aε ∪ (p1 × [0, h]) ∪ aε(h) ∪ (p2 × [0, h]),
Q2 = d ∪ (p3 × [0, h]) ∪ d(h) ∪ (p4 × [0, h]),
Q3 = aε ∪ bε ∪ d ∪ cε,
Q4 = aε(h) ∪ bε(h) ∪ d(h) ∪ cε(h).

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

Q

Q

Q
3

Q

2

1

4

Figure 5

The area of the annulus is at most 2π + 2||aε||h, as the area of a hyperbolic
triangle is always smaller thanπ .

Then, in order to satisfy the Douglas condition, we need:

2π + 2||aε||h < 2||bε||h
that is verified as soon as we choose the edgebε long enough. Hence, there
exists a least area minimal annulusAhε bounded byLh1 andLh2, for anyh. By the
maximum principleAhε is contained in the convex hull ofLh1 ∪ Lh2.

For eachn the annulusAhε is above the surface	n (the graph ofun); by above
we mean that if a vertical geodesic meets both surfaces, then the point of	n is
below the points ofAhε .
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272 BARBARA NELLI AND HAROLD ROSENBERG

To see this, translate verticallyAhε to heightn (so, every point ofAhε is above
heightn). Then lower the translatedAhε back to height zero. By the maximum
principle, there is no interior contact point betweenAhε and	n before returning
to the original position ofAhε . Moreover, ifε > 0, the boundaries of the two
surfaces do not touch. Lettingε−→0, we conclude thatAh0 = Ah is above	n
and, by the boundary maximum principle at each interior point of the vertical
geodesicsq1 × [0, h] andq2 × [0, h] the tangent plane toAh is “outside” the
tangent plane to	n (i.e. the angle between the tangent plane to	n and the
geodesic plane containing eitherLh1 orLh2 is bigger than the angle between this
last plane and the tangent plane toAh).

The barrierAh shows that the sequence{un} is uniformly bounded on compact
subsetsK of T such thatK is contained in the horizontal projection ofAh. The
idea is to show that the horizontal projections ofAh exhaustT ash−→∞.

For k > h, one can useAh as barrier to solve the Plateau problem to find a
stable annulusAk with boundaryLk1, L

k
2. So, translatingAh vertically, one sees

that the two surfaces are never tangent (neither at interior points, nor at boundary
points). Hence ask−→∞, the angle the tangent plane ofAk makes along the
vertical boundary segments is controlled by that ofAh.

Now, for eachn letMn be the surfaceA2n translated down a distancen. As
eachMn is stable, one has local uniform area bounds and uniform curvature
estimates (see [Sc]). So, a subsequence of{Mn} converges to a minimal surface
M∞. By the maximum principle, one can translateAh up to +∞ and down
to −∞ without ever touchingM∞. Then, there is some componentM of M∞
whose boundary is the union of the two vertical geodesicsq1 × R andq2 × R.
Furthermore the distance betweenM andA×R is bounded. In fact this distance
is uniformly bounded.

Now, we have to prove thatM = A× R.
In H

2, consider the family of equidistant circles{Ct}t≥0 defined as follows:
C0 = α, eachCt is the circle equidistant from the geodesicα, whose curvature
vector points towards the halfplaneP+ determined byα, containing the triangle
T (see Figure 6).

The family of surfacesCt × R foliatesP+ × R. Whent is large one has

(Ct × R) ∩M = ∅.
Now decreaset : By the maximum principle, one cannot have a first point of
contact betweenM andCt × R beforet = 0. ThenM = A × R and we are
through.

Thus{un} has a subsequence converging to a minimal solutionu defined on
T . The convergence is uniform on compact subsets ofT . Furthermore, as we
desired:

u|A = ∞, u|B = u|C = 0.
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α

M
C t

P+

Figure 6

The last assertion of Theorem 2 follows from a more general fact proved in
Lemma 1 of next section.

Remark 1. We notice that our construction can be done for any angle, smaller
thanπ , between the two geodesic arcs where the boundary value is zero. In
a 2k-gonP as above, such angles areπ

k
, k = 2,3, . . . . Then, we make the

symmetry of the graph ofu with respect to one of the two geodesic arcs where
u is zero and keep on going with such symmetries in order to close the surface.
The surface thus obtained is the Scherk type surface	, which we were looking
for.

Also one can show that the Scherk solutionsu in T converge to a Scherk
solution in the ideal triangleT ∗ obtained as limit of the trianglesT when the
length of the sidesB andC tend to infinity. Reflection then gives a Scherk
surface graph over the interior of a 2k-gonP.

Remark 2. When interior angles ofP are choosen to beπ2 , (k > 2), then	
extends to a complete embedded minimal surface inH

2×R. In fact the surface	
is bounded by the 2k vertical geodesic through the vertices ofP and one extends
	 by rotation ofπ about all the vertical geodesics that arise.

Remark 3. LetP be the regular 2k-gon with π
2 angles. Consider the symmetry

of P about each of its vertices. This produces 2k new 2k-gons isometric toP,
each having a vertex in common withP. Consider the hyperbolic isometries
identifying alternate sides ofP (that is the translation along the edge between

Bull Braz Math Soc, Vol. 33, N. 2, 2002



274 BARBARA NELLI AND HAROLD ROSENBERG

the two chosen sides). The quotient of the surface	 by these translations gives
a 2k-punctured sphere whose total curvature is−4π(1 − k).

Remark 4. There is another natural way to obtain a complete surface from
	n when the interior angles ofP are equal toπ2 (	n is the graph ofun over
the triangleT ). Assume that the polygonP has 2k sides. Do the symmetry
of 	n about all the geodesic arcs of its boundary. Then continue extending the
surface by symmetry in the geodesic arcs of the boundary. This yields a complete
embedded minimal surface inH2 × R that is invariant by vertical translation by
2n. The quotient of the surface by this translation gives a compact surface of
genusk.

5 Jenkins-Serrin type theorems

We give necessary and sufficient conditions to solve the Dirichlet problem for
the minimal surface equation inH2 × R, over a convex domain ofH2, allowing
infinite boundary values on some arcs of the boundary of the domain.

Let us fix some notation.
We consider an open bounded convex domainDwhose boundary∂D contains

two sets of (open) geodesic arcsA1, . . . , Ak andB1, . . . , Bl with the property
that no twoAi and no twoBi have a common endpoint. The remaining part of
∂D is the union of open convex arcsC1, . . . , Ch and all endpoints.

We want to find a solutionu of the minimal surface equation inD such that

u|Ai = +∞, u|Bj = −∞,

i = 1, . . . , k, j = 1, . . . , l andu takes assigned continuous data on each arc
Cs , s = 1, . . . , h.

The existence of such a solution depends on a relation between the lengths of
the geodesic arcs of the boundary and the perimeter of polygons inscribed in∂D
whose vertices are chosen among the vertices ofAi , Bj .

LetP be such a polygon and let

α =
∑
Ai⊂P

||Ai ||, β =
∑
Bj⊂P

||Bj ||, γ = Perimeter(P).

Theorem 3. LetD be a domain as above and letf s : Cs−→R be continuous
functions. If{Cs} �= ∅, then the Dirichlet problem inD with boundary values

u|Ai = +∞, u|Bj = −∞, u|Cs = f s

has a solution if and only if

2α < γ, 2β < γ (9)
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for each polygonP as above. If{Cs} = ∅ the result is the same except that if
P = ∂D, then condition(9) should be replaced byα = β.

If it exists, the solution is unique; in the case{Cs} = ∅ uniqueness is up to a
constant.

Remark 5. We notice that two convex arcsCs may have a common endpoint
p; there may be a discontinuity of the dataf s at p. It will be clear from the
proof of Theorem 3 that the minimal surface obtained in this case will contain the
vertical segment throughp, between the two limit values atp, of the continuous
boundary data.

This result is analogous to that of Jenkins and Serrin for minimal graphs inR
3

(cf. [JS]).
We prove Theorem 3 in 6 steps. Each step, especially 1 and 3, is an interesting

result on its own.

Step 1. Existence when∂D contains only one geodesic arcA, and one strictly
convex arcC. The functionf : C−→R is continuous and positive.

Step 2. Existence when∂D contains geodesic arcsA1, . . . , Ak and strictly
convex arcsC1, . . . , Ch. The functionsf s : Cs−→R are continuous and posi-
tive.

Step 3. The same as Step 2, withC1, . . . , Ch convex arcs (not necessarily
strictly convex).

Step 4. Existence when∂D contains geodesic arcsA1, . . . , Ak, B1, . . . , Bl
and convex arcsC1, . . . , Ch with h ≥ 1.

Step 5. Existence when∂D contains only geodesic arcsA1, . . . , Ak,
B1, . . . , Bl.

Step 6. Uniqueness.

Proof of Step 1. Let un : D−→R be the minimal solution with boundary
values

un|A = +n, un|C = min(n, f )

(Figure 7(a)). Let us prove thatun exists. Define�(n) to be the union of the
following geodesic arcs: the geodesic arcA raised to heightn, the graph of the
function min(n, f ) and the vertical geodesic arcs joining the endpoints of the
curves just described. Let	(n) be the solution of the Plateau problem for the
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curve�(n). By Rado’s theorem,	(n) is the graph of a functionun defined in
D, with the desired boundary values. By the maximum principle,{un} is an
increasing sequence.

A

u

C

= min(un

n= n

f,n )

D

(a)

ϕ+ 8=

ϕ+= ϕ+=0 0

K

(b)

C

A

∆

Figure 7

We now prove that the sequence{un} is uniformly bounded on compact subsets
of D. Let� be a horizontal geodesic triangle containingD, with sidesa, b, c,
such that the sidea containsA in its interior. Letϕ+ be the Scherk type solution
equal to+∞, ona, and zero onb andc (Figure 7(b)).

LetK be a compact set inD ∪ C. On∂K we have

0 ≤ un ≤ max
K∩C f + ϕ+

By the maximum principle, the previous inequality holds inK. Hence{un} is
uniformly bounded inK, and{un} converges to a minimal solutionu in every
compact subset ofD ∪ C. As {un} is an increasing sequence,u takes the right
boundary values.

Remark 6. Let C be a strictly convex arc and denote byC(C) the (open)
convex hull ofC. Let u be a minimal solution inC(C) with bounded values on
C. As a result of the previous proof,u is bounded on every compact set ofC(C)
depending only on the values ofu onC and on the distance of the compact set
to the boundary ofC(C).

Assertion. If u is a minimal solution that is unbounded onC, thenu is un-
bounded inC(C).

This assertion implies that for solving the Dirichlet problem one can not assign
infinite data on a strictly convex arc of the boundary of the domain.

For the proof of the assertion we use a modification of the argument of step
1. LetA be the geodesic arc in the boundary ofC(C). For eachn ∈ IN , define
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the functionun = min{n, u}. Let� be a horizontal geodesic triangle containing
C(C) with sidesa, b, c, such that the sidea containsA in its interior. Letϕ+ be
the Scherk type solution equal to+∞, ona, and zero onb andc.

LetK be a compact set inC(C) ∪ C. On∂K we have

min
K∩C un ≤ un ≤ max

K∩C un + ϕ+

By the maximum principle, the previous inequality holds inK. Letting
n−→∞, one sees thatu is unbounded onC(C).

For the proof of Step 2, we need several preliminary results.
The first depends on the fact that the tangent plane to the graph of a minimal

solution is almost vertical at points near to a geodesic arc of the boundary where
the solution diverges to infinity. Let us be more precise.

Denote byS the graph of a minimal solutionu : D−→R and let

(ν)u = ((ν1)u, (ν2)u, (ν3)u)

be the inward unit conormal to the boundary ofS.
Let (x1(s), x2(s), x3(s)) be an arc length parametrization of the boundary of

S. A straightforward computation yields:

(ν3)u = −∂x1

∂s

u2

τ
+ ∂x2

∂s

u1

τ
.

Then|(ν3)u| < 1 and(ν3)u is integrable on arcs of∂D regardless of the boundary
behaviour ofu on such arcs. The behaviour of the flux of(ν3)u on geodesic arcs
of the boundary is established in the following Lemma.

Lemma 1. LetD be a domain and letA be a geodesic arc of the boundary of
D.

(i) Let u : D−→R be a minimal solution such thatu|A = ∞. Then∫
A

(ν3)uds = ||A||.

(ii) Let {un} be a sequence of minimal solutions inD continuous inD∪A. If
{un} diverges uniformly to infinity on compact subsets ofA and remains
uniformly bounded in compact subsets ofD, then

lim
n−→∞

∫
A

(ν3)nds = ||A||,

where(ν3)n is the third component of the unit conormal to the boundary
of the graph ofun.
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If {un} diverges uniformly to infinity in compact subsets ofD and remains uni-
formly bounded on compact subsets ofA, then

lim
n−→∞

∫
A

(ν3)nds = −||A||.

Proof. (i) First we prove that the tangent plane toS at points(z, u(z)) with z
next toA is almost vertical. LetN = (N1, N2, N3) be the upward unit normal

to S, then|(ν3)u| =
√

1 −N2
3 at boundary points. We extendν3 to the interior

points ofD by setting|(ν3)u| =
√

1 −N2
3 and choosing the sign that makesν3

continuous at the boundary (where it is already defined).
At points where the tangent plane is almost vertical,N3 approaches zero, hence

(ν3)u approaches one. In other words the tangent plane at points(z, u(z)) with
z next toA is almost vertical if and only for anyε > 0 there is a neighborhood
of A in D such that

|(ν3)u| > 1 − ε (10)

at each point of the neighborhood.
A minimal graph is stable, so one has Schoen’s curvature estimates for the

surfaceS : let p be a point ofS and letD(p,R) be a disk contained inS
centered atp of intrinsic radiusR, then

|A(q)| ≤ κ ∀q ∈ D
(
p,
R

2

)
(11)

whereA is the second fundamental form ofS andκ is an absolute constant (see
[Sc]).

Now, assume by contradiction that there is a sequence of points{zm} in D
approachingA (i.e. un(zm) → ∞ asm → ∞) such that (10) does not hold.
Then, there is a radiusR independent onm such thatD(pm,R) ⊂ S, where
pm = (zm, u(zm)). Hence, by the curvature estimate (11), around eachpm the
surfaceS is a graph over a diskD(pm, r) of the tangent plane atpm, and the graph
has bounded distance from the diskD(pm, r). The radius of the disk depends
only onR, hence it is independent ofm. It is clear that, ifzm is close enough
toA, then the horizontal projection ofD(pm, r) and thus of the surfaceS is not
contained inD. Contradiction. Hence (10) holds in a neighborhood ofA.

Now, fix ε > 0 and letδ ≤ ε. Let q1, q2 be the points ofA at distanceδ
from the endpoints ofA and callAδ the subarc ofA bounded byq1, q2. We
construct a neighborhood ofAδ in D (see Figure 8). Letτ be a horizontal
geodesic orthogonal toA passing through the mid-point ofA. We can assume
that τ passes through the origin. Fori = 1,2, letαi be a horizontal geodesic
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throughqi forming an angle ofπ2 withA. Finally, letβ be the horizontal geodesic
orthogonal toτ , at distanceδ fromA and callq3 = β ∩α1, q4 = β ∩α2. Denote
byQδ the geodesic quadrilateral having vertices at pointsq1, q2, q3, q4.

��

��

�
�
�
�

��

q
3

q
4

q
1

q
2

α
1

α2

τ β

δQδ

A

Figure 8

The form(ν3)uds is exact, hence:

0 =
∫
Aδ

(ν3)uds +
∫
Qδ\Aδ

(ν3)uds.

Then, ifε is small enough, using (10) we obtain:∫
Aδ

(ν3)uds ≥ −2ε + (1 − ε)||Aδ||.

Letting ε (and soδ) tend to zero yields:∫
A

(ν3)uds ≥ ||A||.

The opposite inequality is obvious, so (i) follows.
For the proof of (ii) one makes the obvious modifications of the arguments in

(i). �
Let us prove another useful result.

Lemma 2. Letu : D−→R be a minimal solution continuous on a convex arc
C of the boundary ofD. Then:∫

C

(ν3)uds < ||C||.
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Proof. It is enough to prove the result for a closed subarc ofC, sayC̃. Then
we can assume thatu is defined in a convex set̃D with continuous boundary
data. Denote byv the solution of the Dirichlet problem iñD such that:

v|∂D̃\C̃ = u, vC̃ = u+ a

wherea is a constant to be fixed later. Letw = v − u, then

w|∂D̃\C̃ = 0, w|C̃ = a

By the maximum principlew is uniformly bounded inD̃.
Using Stokes’ theorem (together with a standard approximation argument at

the points of discontinuity) we obtain:∫
∂D̃
w[(ν3)u − (ν3)v]ds =

∫ ∫
D̃

[
w1

(
v1

τv
− u1

τu

)
+ w2

(
v2

τv
− u2

τu

)]
dx1dx2.

The argument of the last integral is equal to the following expression:(
τu + τv

2

) [(
u1

τu
− v1

τv

)2

+
(
u2

τu
− v2

τv

)2

+ 1

F

(
1

τu
− 1

τv

)2
]
.

Hence, it is non negative and not identically zero inD̃. Then we have:

a

∫
C̃

[(ν3)u − (ν3)v]ds > 0.

choosing alternativelya = ±1 we obtain the result. �

Remark 7. We point out that the results of Lemma 1 and 2 hold for non convex
domains as well.

Proof of Step 2. We prove that the first condition in (9) is sufficient and nec-
essary for existence. We start by sufficiency.

Let un : D−→R be the minimal solution with the following boundary values

un|Ai = +n, un|Cs = min(n, f s).

By Remark 6,{un} is uniformly bounded in compact sets contained in each
of the convex hullsC(Cs), s = 1, . . . , h. Hence, passing to a subsequence,{un}
converges on compact subsets of

∪hs=1C(Cs)
to a minimal solutionu defined in an open setU containing∪hs=1C(Cs). Further-
more{un} diverges uniformly on compact subsets ofD\Uandu is a countinuous
function with values inR ∪ ∞.

LetV = D \U. We claim thatV = ∅. We start by showing that∂V has a
very special structure, whenV is not empty.
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Lemma 3. With the notation above, one has:

(i) ∂V consists only of geodesic chords ofD and parts of the boundary ofD;

(ii) two chords of∂V cannot have a common endpoint;

(iii) the endpoints of chords of∂V are among the vertices of the geodesic arcs
Ai ;

(iv) a component ofV cannot consist only of an interior chord ofD.

Proof. It is clear by Remark 6 that each arc of∂V must be geodesic and that
no vertex of∂V lies inD, then (i) follows. Now assume by contradiction that
(ii) does not hold. LetK1, K2 be two arcs of∂V having a common endpoint
q ∈ ∂D. Choose two pointsq1 ∈ K1 andq2 ∈ K2 such that the triangleT with
verticesq, q1, q2 lies inD. We have:∫

∂T

(ν3)nds = 0

where(ν3)n is defined as in Lemma 1 at interior points ofD. The triangleT may
be either inU or inV . Assume the former is true, then, by the first equality in
(ii) of Lemma 1, choosing correctly the orientation, we have:

lim
n→∞

∫
qq1

(ν3)nds = ||qq1||, lim
n→∞

∫
q2q

(ν3)nds = ||qq2||. (12)

Here∗ indicates the geodesic arc between two points and(ν3)n is defined as in
Lemma 1 at interior points ofD.

On the other hand: ∣∣∣∣
∫
q1q2

(ν3)nds

∣∣∣∣ ≤ ||q1q2||. (13)

(12) and (13) together with the triangle inequality give a contradiction.
If T ⊂ V , we make the same reasoning using the second equality in (ii) of

Lemma 1.
(iii) and (iv) are proved with analogous arguments, using Lemma 1. We leave

this to the reader. �
Now, we come back to the proof of Step 2. Assume by contradiction thatV is

not empty. The convex hull of eachCi is contained inU, and each component of
V is bounded by a geodesic polygonP, whose vertices are among the endpoints
of theAi . Denote byÂi those edges ofAi that are contained inP. In the notation
of Theorem 3,||P|| = γ ,

∑ ||Âi || = α.
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For eachun we have:

0 =
∫
P
(ν3)nds =

∫
∪Âi
(ν3)nds +

∫
P\∪Âi

(ν3)nds.

By (ii) of Lemma 1, we infer:

lim
n→∞

∫
P\∪Âi

(ν3)nds = −(γ − α).

For everyn, |(ν3)n| < 1, so∣∣∣∣
∫

∪Âi
(ν3)nds

∣∣∣∣ ≤
∑

||Âi || = α.

Henceα ≥ γ − α, that contradicts the assumed conditions.
We are left with the proof of the necessity of the condition 2α < γ . Let u be

the minimal solution with the given boundary values and letP be a polygon as
in the hypothesis of Theorem 3. We have:∫

∪Âi
(ν3)uds +

∫
P\∪Âi

(ν3)uds = 0.

Furthermore|(ν3)u| < 1 onP \ ∪Âi , hence∣∣∣∣
∫
P\∪Âi

(ν3)uds

∣∣∣∣ < γ − α

and by (i) of Lemma 1, we have:∫
∪Âi
(ν3)uds = α

Hence 2α < γ . �

Proof of Step 3. Let {un} be defined as in Step 2. First we prove that{un} is
bounded at some point ofD. Assume that this is not the case, thenV = D and
we have:

0 =
∫

∪Ai
(ν3)nds +

∫
∪Ci
(ν3)nds.

(ii) of Lemma 1 implies

lim
n→∞

∫
∪Ci
(ν3)nds = −

∑
||Ci || ≤ −(γ − α).
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Hereγ = ||∂D|| andα = ∑ ||Ai ||.
On the other hand, as|(ν3)n| < 1 for everyn, we have∣∣∣∣

∫
∪Ai
(ν3)nds

∣∣∣∣ < ∑
||Ai || = α.

Thenα ≥ γ − α, a contradiction.
Hence the sequence{un} is bounded at some point ofD. In fact we will prove

that there is a disk inD of radius independent onn where eachun is uniformly
bounded.

Up to an isometry, we can assume that{un} is bounded at the originσ ∈ H
2.

We remark that by the maximum principle eachun is positive in the domain of
definition.

Letmn = un(σ ). We assert that the gradient ofun atσ is bounded depending
only on the constantmn. In order to prove it, we will compare the gradient ofun
with that of a Scherk type surface.

Up to a rotation ofx1, x2 coordinates, we can assume that

∂un

∂x1
(σ ) > 0,

∂un

∂x2
(σ ) = 0.

Let�(n) be a geodesic triangle contained inD with edgesa, b, c such that
thex1 axis bisects the edgea orthogonally and�(n) is symmetric with respect
to thex1 axis (see Figure 9).

����

��

����

D

b

c

aσ

Figure 9

Letϕ�(n) denote the Scherk type surface over�(n)with value+∞ ona, value
0 onb, c andϕ�(n)(σ ) = mn (we allow translations of�(n) along thex1 axis
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in order to find such a Scherk type surface). DefineC(mn) = |∇ϕ�(n)(σ )|. We
claim that:

|∇un(σ )| ≤ C(mn). (14)

In fact, assume by contradiction that (14) does not hold. Then, the symmetries
of ϕ�(n) imply:

∂un

∂x1
(σ ) >

∂ϕ�(n)

∂x1
(σ ),

∂un

∂x2
(σ ) = ∂ϕ�(n)

∂x2
(σ ) = 0.

Now, we move�(n) by hyperbolic translations along thex1 axis, pushing the
edgea towardsσ . Asϕ�(n) and∂ϕ�(n)

∂x1
diverge as one approaches the sidea, there

is a position of�(n) such that:

un(σ ) < ϕ�(n)(σ )

and
∂un

∂x1
(σ ) = ∂ϕ�(n)

∂x1
(σ ),

∂un

∂x2
(σ ) = ∂ϕ�(n)

∂x2
(σ ) = 0.

Definew = ϕ�(n) − un. We have:

w(σ) = χ > 0, ∇w(σ) = 0.

Then, there are at least four level lines ofw = χ throughσ ([CM],[Se]).
These level lines divide every small neighborhood ofσ in at least four domains
in whichw is alternately greater than and less thanχ . We prove that this yields
a contradiction (our argument is analogous to [Se], we give it for the sake of
completeness).

LetG be the subset of�(n) whose points are at distance less thanε from the
boudary of�(n). The functionun has bounded continuous gradient in�(n),
hence, using the form of the graph ofϕ�(n), one has that the setG is divided into
two components by the conditions

w > χ, w < χ,

for suitably smallε.
The first component is adjacent to edgea, while the second is adjacent tob

andc and the components themselves are separated by two level linesw = χ

exiting from the vertices ofa. By the maximum principle, each component of
the setw > χ must extend to the boundary of�(n). It follows that the set
w > χ consists of one component. Then, any two regions nearσ wherew > χ

can be joined by a simple Jordan arcC+ along whichw > χ . Analogously any
two regions nearσ wherew < χ can be joined by a simple Jordan arcC− along
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w=χ

C+

−C

Figure 10

whichw < χ . Then, the curvesC+ andC− must intersect (see Figure 10). This
is a contradiction.

Now letM = supn∈IN un(σ ). As mn ≤ M, with the same reasoning used
for proving (14), one has thatC(mn) ≤ C(M). Hence the sequence{un} has
uniformly bounded gradient atσ .

Now, by Schoen’s curvature estimates (see (11)), one has that in a neighbor-
hood of the pointpn = (σ, un(σ )) the surface is a graph of bounded height and
slope over a diskD(pn,R) of the tangent plane to the surface atpn, of radius
R independent ofn. As |∇un(σ )| is uniformly bounded, the projection of each
D(pn,R) on the horizontal plane contains a disk of fixed radius and{un} is uni-
formly bounded there. Then, there exists an open setU in which{un} converges
uniformly. Now we can apply the same reasoning as in Step 2, in order to prove
thatU = D. �

Proof of Step 4. By the previous arguments we can find a minimal solution
u+ : D−→R such that

u+|Ai = ∞, u+|Bj = 0, u+|Cs = max{0, f s}.
Furthermore we can find a minimal solutionu− : D−→R such that

u−|Ai = 0, u−|Bj = −∞, u−|Cs = min{0, f s}.
Then, define for eachs:

(f s)n =




−n if f s < −n
f s if |f s | ≤ n

n if f s > n
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and letun : D−→R be the minimal solution such that

un|Ai = n, un|Bj = −n, un|Cs = (f s)n.

By the maximum principle:

u− ≤ un ≤ u+ in D.

Hence, the sequence{un} is uniformly bounded on compact subsets ofD
and there exists a subsequence converging to a minimal solution that takes the
prescribed boundary values.

This proves existence under condition (9). The necessity of condition (9) is
proved as in Step 2. �

Proof of Step 5. We remark that in this case the number of edgesAi is equal
to the number of edgesBj , sayk. We need to construct some auxiliary sets and
minimal solutions.

Let vn : D−→R be the minimal solution such that

vn|Ai = n, vn|Bi = 0.

For c ∈]0, n[, we introduce the following subsets ofD:

Ec = {vn > c} ∩D, Fc = {vn < c} ∩D.
LetEic be the component ofEc whose closure contains the edgeAi and letF jc

be the component ofFc whose closure contains the edgeBj . By the maximum
principleEc = ∪ki=1E

i
c andFc = ∪ki=1F

i
c . We choosec close enough ton such

that theEic are disjoint and we define:

µ(n) = lim sup{c ∈]0, n[ | Eic ∩ Ejc = ∅ i �= j}.
Of course there is at least one pairi, j such that

Eiµ(n) ∩ Ejµ(n) �= ∅

and this implies that for any givenF iµ(n), the setF jµ(n) is disjoint from it.
For eachn, we define the following minimal solution inD :

un = vn − µ(n).

In order to prove that the sequence{un} is uniformly bounded on compact
subsets ofD, let us define two auxiliary minimal solutions inD.
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Let ui+ andui− be the minimal solutions inD with the following boundary
values:

ui
+|Ai = ∞, ui

+|∂D\Ai = 0

ui
−|Bj = −∞, j �= i, ui

−|∂D\∪j �=iBj = 0

For everyi = 1, . . . , k, ui+ andui− exist by previous steps.
Finally, for anyz ∈ D we define:

u+(z) = max
1≤i≤k{ui

+(z)}, u−(z) = min
1≤i≤k{ui

−(z)}.
We claim that at any point ofD:

u− ≤ un ≤ u+. (15)

Let p ∈ D such thatun(p) > 0, thenp belongs toEiµ(n) for somei. On
∂Eiµ(n) one hasun ≤ u+

i , then this inequality holds inEiµ(n), and

un(p) ≤ u+
i (p) ≤ u+(p).

Sinceu− is non positive, the left inequality in (15) is obvious at the pointp.
The proof of (15) at points whereun is negative is analogous, using the set

F iµ(n).

Hence{un} has a subsequence converging to a minimal solutionu : D−→R.
Let us prove thatu takes the right boundary values.

Recall that:
un|Ai = n− µ(n), un|Bi = −µ(n),

so we must prove that the sequences{µ(n)} and {n − µ(n)} both diverge to
infinity. We prove it for the sequence{µ(n)}; the proof will be analogous for the
latter sequence.

The assumption that{µ(n)} does not diverge will give a contradiction to the
hypothesisα = β. By contradiction, take a subsequence (still denoted by{un})
such thatµ(n) tends to a finite limitµ0. Then:

un−→∞ on Ai, un−→ − µ0 on Bi.

Then, for the limit functionu we have:

u|Ai = ∞, u|Bi = −µ0.

Let (ν3)u be the unit inward conormal to the boundary of the graph ofu. We
finally obtain:

α =
∫

∪Ai
(ν3)uds = −

∫
∪Bi
(ν3)uds > −β,

where the first equality is given by (i) of Lemma 1. This is a contradiction.
The necessity of the conditionα = β is proved as in Step 2. �
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Proof of Step 6 (Uniqueness). Letu andv be two minimal solutions assuming
values+∞ on eachAi,−∞ on eachBj and the same data on each geodesic arc
Cs .

LetM be a large constant and define:

ψ =




−M if u− v < −M
u− v if |u− v| < M

M if u− v > M

Let 0< δ < ε and denote byDδε the subset ofD whose distance from∂D is
greater thanδ and whose distance from the vertex of eachAi andBj is greater
thanε. It is clear that the boundary� ofDδε consists of bounded arcs̃Ai, B̃j , C̃s
adjacent to theAi ,Bj ,Cs and circular arcs adjacent to the vertices ofAi ,Bj . Let
(ν3)u and(ν3)v be defined as in Lemma 1 for the functionsu andv respectively.
Consider the following integral:∫

�

ψ[(ν3)u − (ν3)v]ds.

For δ small enough, we have:∫
∪C̃s

ψ[(ν3)u − (ν3)v]ds ≤ 2
∫

∪C̃s
|ψ | ≤ 2ε

∑
||Cs ||.

We recall that next to boundary arcs where the solution is infinity,|ν3| is almost
one, hence:∫

∪Ãi
ψ[(ν3)u − (ν3)v]ds =

∫
∪Ãi

ψ[(ν3)u − 1]ds −
∫

∪Ãi
ψ[(ν3)v − 1]ds

≤ 2εM
∑

||Ãi ||
In the same way we obtain:∫

∪B̃j
ψ[(ν3)u − (ν3)v]ds ≤ 2εM

∑
||B̃j ||

By summing the previous inequalities, we infer:∫
�

ψ[(ν3)u − (ν3)v]ds ≤ 2ε
∑

(||Cs || +M||Ãi || +M||B̃j ||)+
+ 4πsinh(ε)M(k + l)

(16)
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where the last term is the contribution of the circular arcs next to vertices.
On the other hand, integrating by parts, we obtain:∫
�

ψ[(ν3)u − (ν3)v]ds =
∫ ∫ [

ψ1

(
v1

τv
− u1

τu

)
+ ψ2

(
v2

τv
− u2

τu

)]
dx1dx2

where the double integral is taken over the setDδε∩{|u−v| < M}. The argument
of the last integral is non-negative and it is zero only at points where∇u = ∇v
(see Lemma 2).

Then, lettingε−→0 in (16), we obtain:

ψ1

(
v1

τv
− u1

τu

)
+ ψ2

(
v2

τv
− u2

τu

)
= 0

at points where|u − v| < M. Hence∇u = ∇v in D, sinceM can be taken
arbitrarily large.

It follows thatu = v + const in D. If the family of boundary convex arcs
{Cs} is empty, this proves the result. If not, the constant must be zero by the
boundary condition onCs. �

6 Existence of complete minimal graphs

Theorem 4. Let� be a continuous Jordan curve in∂∞H
2×R, that is a vertical

graph. Then, there exists a minimal vertical graph onH
2 having� as asymptotic

boundary. The graph is unique.

Proof. In the modelD = {0 ≤ x2
1 + x2

2 < 1} for H
2, the curve� is a graph

over the circlex2
1 + x2

2 = 1. Consider an exhaustion ofD by disksDn centered
at the origin, of Euclidean radius 1− 1

n
. For eachn, let �n be a verticalC2

graph over∂Dn converging to� asn−→∞. We choose the curves�n contained
in the convex hull of�. The curves�n may be taken as the trace on∂Dn × R

of the function whose graph is aC2 extension of� insideD. Let Mn be the
Plateau solution with boundary�n; by Rado’s theoremMn is a vertical graph
of a C2 function vn : Dn−→R. The sequence{vn} is uniformly bounded on
compact subsets ofD, hence there is a subsequence converging to a minimal
solutionv : D−→R, uniformly on compact subsets ofD. LetM be the graph
of the functionv. We have only to prove that the asymptotic boundary ofM is
�. By definition ofM, one has that� ⊂ ∂∞M. In order to prove the converse,
we show that any pointp �∈ � is not contained in∂∞M. Let p such a point
and assume that it lies below� (the reasoning is analogous, whenp lies above
�). We construct a surface that separates the pointp from theMn’s, with mean
curvature vector pointing upwards (a barrier, see Figure 11).
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Γ

Mn

p

C t

Graph 
of g

c

Figure 11

We can assume that the first two coordinates of the pointp are(1,0). Consider
a family of circlesCt in the plane{x3 = 0}, with Euclidean radiust , centered at
a fixed point(c,0,0), c > 1. If t > c − 1, such circles intersect the hyperbolic
plane{x3 = 0} in equidistant circles with curvatureκt = √

1 − (sinβt)2, where
βt is the angle betweenCt and∂D. EachCt divides the hyperbolic plane into two
components: the curvature vector ofCt points towards the component containing
the origin. Consider the functiong defined as follows:

g(x1, x2) = exp(α(t0 − t))− k, (x1, x2) ∈ Ct, t ∈ [t0, c − 1]
α, t0, k, positive constants to be fixed later. The functiong is constant on each
Ct and

g|Ct0 = −k, g(1,0) = exp(α(t0 − c + 1))− k,

Using equation (1), one obtains that the mean curvature of the graph ofg with
respect to the upward unit normal vector is:

H(x1, x2) = Fα

2τ2 exp(α(t0 − t))

{
α2

√
F exp(α(t0 − t))

t
[√F + x1c − 1] + α − 1

t

}
.

We can choosec andt0 such that the mean curvatureH is positive. Then we
chooseα andk such thatg(1,0) is larger than the third coordinate of the pointp
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and such that the graph ofg does not interesect the curves�n, for n large. Then,
as forn large, the boundary ofMn lies above the graph ofg, so does the surface
Mn ( by the maximum principle). Hence the asymptotic boundary ofM (that is
the limit of the sequence{Mn}) does not contain the pointp.

Uniqueness follows by the maximum principle.
Theorem 4 is proved. �

7 Isolated singularities

Theorem 5. LetD∗
ρ be a punctured disk of radiusρ in H

2. Letu : D∗
ρ−→R

be aC2 function such that the graph ofu is minimal inH
2 × R. Thenu extends

C2 to the puncture.

Proof. First we prove thatu is bounded onD∗
ρ . Up to isometry, we can takeD∗

ρ

centered at the origin ofH2. Letε < ρ and consider the annulusAε = Dρ \Dε.
Let Cε the half catenoid that is a graph overH

2 \Dε with waist on∂Dε. The
functionu is bounded onAε, hence there is a vertical translation ofCε that does
not touch the graph ofu. Now translate verticallyCε towards the graph ofu. By
the maximum principle the first contact point is on∂Dρ × R.

Letting ε−→0, Cε tends to a plane, hence:

min
∂Dρ

u ≤ u ≤ max
∂Dρ

u

Now, letv : Dρ−→R be the minimal solution with boundary valuesu|∂Dρ
. We

will show thatu ≡ v in D∗
ρ .

Consider the formθ defined inD∗
ρ by:

θ = (u− v)

(
u1

τu
− v1

τv

)
dx2 −

(
u2

τu
− v2

τv

)
dx1

We have: ∫
∂Dε

θ =
∫
∂Aε

θ =
∫
Aε

dθ

where the first equality depends on the fact thatu ≡ v on ∂Dρ and the last
equality is by Stokes’ theorem.

The formθ is bounded onD∗
ρ becauseu, |ui |τu−1, |vi |τv−1 are bounded for

i = 1,2. Then: ∫
∂Aε

θ−→0 as ε−→0 (17)

As in Lemma 2, we obtain thatdθ is non negative and it is 0 if and only ifui = vi ,
for i = 1,2. Lettingε−→0 we obtain∇u ≡ ∇v and sou ≡ v onD∗

ρ. �
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