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Abstract. We present a new class of one-dimensional particle systems, in which the
number of components may change in the process of interaction. We suggest that some
of these systems display spontaneous symmetry breaking.
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The bulk of modern theory of interacting particle systems as presented e.g. in [9]
(continuous time) or [1] (discrete time) is based on the assumption that the set of
components, also called the space, does not change in the process of interaction;
usually it isZ

d or R
d , whered is dimension. Elements of this space, also called

sites, may be in different states (e.g. 1 and 0, often interpreted as presence vs.
absence of a particle), but the sites themselves do not appear or disappear in the
process of functioning. This assumption is not the only possible one and seems
to be motivated partially by mathematical convenience. Here we present another
approach.

1 Systems with variable length: general approach

The first purpose of this article is to present a new class of one-dimensional locally
interacting particle systems, which we call “systems with variable length”. In
this paper we concentrate only on the one-dimensional case assuming that every
component has only two states: 0 and 1.
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By wordswe mean finite sequences of zeros and ones. By length of a word
we mean the number of letters (zeros or ones) in this word. The length of any
word W is denoted|W |. By definition, there is one word with length zero: the
empty word denoted�. We can write the set of words as

L =
∞⋃

k=0

{0, 1}k,

where{0, 1}k is the set of words with lengthk. In the finite case the setL will
serve as the set of states of our process, which are called configurations in this
case. In the infinite case the set of configurations is{0, 1}Z, the set of bi-infinite
sequences of zeros and ones.

Our main innovation is more easy to explain in the finite case: the number of
components, which is finite all the time, may change in the process of interaction
because, when one combination of states is substituted by another, the lengths
of these combinations may differ from each other. We shall write a generic
substitution rule in the form

old
r→ new. (1)

Informally speaking, this means that whenever the wordold is met in the con-
figuration, it is substituted by the wordnew with a rater. We shall say that
a substitution (1) hasconstant lengthif |old | = |new| andvariable length
otherwise.

Let us mention several simple substitutions. In fact, in every case we present
two symmetric substitution with a common name, but which may be used with
different rates. In every casej is an index of a component.

Conversion: 0 → 1 and 1 → 0. Thej -th component changes its state
from 0 to 1 or from 1 to 0. The number of components does not change, so this
is a substitution with constant length. All the next substitutions have variable
length.

Birth: � → 0 and � → 1. A new component in the state 0 or 1 appears
between the(j − 1)-th and thej -th component. The number of components
increases by one.

Death: 0 → � and 1 → �. Thej -th component disappears if it is 0
or if it is 1, the(j − 1)-th and(j + 1)-th components become neighbors and the
number of components decreases by one.
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Mitosis: 0 → 00 and 1 → 11. Thej -th component duplicates if it is 0
or if it is 1. The number of components increases by one.

Annihilation: 01 → � and 10 → �. If xj = xj+1, nothing changes,
if xj < xj+1 or if xj > xj+1, both components disappear, in result of which
the number of components decreases by two and the(j − 1)-th and(j + 2)-th
components become neighbors.

Although systems with variable length seem to have never been studied in
general, they may be useful in modeling various natural phenomena, in which
we are dealing with long chains of interacting units, whose number may change.
For example, some biological structures are long and thin and therefore may be
approximated by one-dimensional models, in which components may represent
cells or microorganisms, which may divide or die or be infected or otherwise
influenced. In linguistics, we may study evolution of utterances, in the course
of which the number of units (syllables, phonems, letters) may change also. For
example, the Portuguese word “geral” comes from “general” by omission of
the middle syllable. Computer modeling of systems with variable length is also
handy: if we represent the system as a doubly linked list, it is easy to write a
soubroutine for any local substitution.

We consider systems, functioning of which is determined by a finite list of
substitutions

old i

ri→ newi , i = 1, . . . , n. (2)

What happens to a configurationx in a small time�t , can be informally described
as follows. We preparen types of marks and for every typei = 1, . . . , n we
mark a fractionri · �t of indices existing at timet with thei-th mark at random.
Since�t → 0, we may assume that all marks are far enough from each other,
so that the following instruction is unambiguous: For every indexj marked
with the i-th mark we check whether the word, formed by|old i | components
starting with the componentxj , coincides withold i . If it does, we eliminate
these components and substitute them bynewi , otherwise we change nothing.
In particular, if newi = �, we simply eliminateold i . On the other hand, if
old i = �, we simply insertnewi between the(j − 1)-th andj -th components
of the present configuration.

In the finite case our process is a Markov chain with a countable setL of
states and continuous time. Let us write down the rates of this Markov chain.
For any finite sequence of wordsW1, . . . , Wn we callconcatenationand denote
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concat(W1, . . . , Wn) the word obtained by writing all the words in the brackets
one after another in that order in which they are listed. The rate of going from a
statex to any other statey equals

p(x → y) =
|x|−| old i |∑

j=1

n∑
i=1

πi,j (x → y), (3)

where

πi,j (x → y) =




ri if there exist wordsW0 andW1 such that|W0| = j − 1

and x = concat(W0, old i , W1)

and y = concat(W0, newi , W1),

0 otherwise.

Generally we define any sum with an empty set of summands to be equal to
zero. In particular, if|x| − |old i | < 1, the right part of (3) equals zero.

Thus the process in the finite case is defined. In the infinite case we can define
our process as a limit of the finite case, but we shall do it in general in another
publication. Here we shall do it only for a special case.

2 Spontaneous symmetry breaking

One may suggest that systems with variable length are essentially the same
as traditional systems, only more cumbersome. We think otherwise. Let us
concentrate on one problem — the possibility of phases in 1-D systems.

For a long time it was a common opinion among physicists that phase transi-
tions are impossible in one-dimensional systems. For example, §152 of Landau
and Lifshitz’s “Statistical Physics” was called “The impossibility of the existence
of phases in one-dimensional systems” and an argument of physical nature was
presented in support of this impossibility. Another example: “In one dimension
bosons do not condense, electrons do not superconduct, ferromagnets do not
magnetize, and liquids do not freeze” [10], p. vi. Based on this tradition and
some computer simulations [11], several authors (see Chapter 4, section 3 of [9],
or p. 115 of [1] or [6] or [13]) proposed a “positive rates conjecture”, which
informally may be expressed as follows: “all one-dimensional particle systems
with non-degenerate local interaction are ergodic, that is cannot display analogs
of phase transitions.” When this conjecture was formulated, various people tried
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to produce counter-examples to it [14, 4, 7, 2, 12], but none of them succeeded
to refute this hypothesis in the proper sense for one or another reason.

Only after fifteen years of hard work Gács [3] developed a very involved
system, which completely refuted the positive rates conjecture. However, this
system has an enormous number (≈ 2100) of states of a single component, very
complicated deterministic rule of interaction and a very small (≈ 2−50) probabil-
ity of deviation from this rule. Gray [5], who has studied the question in detail,
believes that no much simpler system can refute the conjecture. So much about
the traditional 1-D particle systems.

It seems that systems with variable length provide new, unexpected possibil-
ities. Our main example is pretty simple, every component of it has only two
possible states 0 and 1, the interaction is local, the rules of interaction are sym-
metric and the rateε with which any 0 turns into 1 and vice versa is positive.
Nevertheless, computer simulation and some approximations suggest that most
alive components remain in the state 0 and vice versa for allt ≥ 0 provided the
initial condition was “all zeros” andε is small enough.

This example makes a contrast with the positive rates conjecture, but does not
refute it, because all those who proposed that conjecture meant systems with
constant length.

Main example. The system with these three substitutions:

0
ε→ 1, 1

ε→ 0, 01
1→ �, 10

1→ �. (4)

Let us explain how to define the infinite process in this case. We should be
careful with indices. Initially our components are indexed using integer numbers:
a finite range of them in the finite case or all of them in the infinite case. However,
in the process of functioning some indices disappear due to annihilations. Let
us denoteIt the set of indices at timet . If s ∈ It , we call the point(s, t) ∈ R

2

alive, otherwise we call itdead.
Our process can be interpreted as a process in which the set of sites remainsZ

all the time and every site has three possible states 0, 1 ordead with a special
non-local rule of interaction in which alive sites interact as if the dead sites were
absent.

When we speak about distributions on the segment[a, b], we mean distribu-
tions on{0, 1, dead}[a,b] and when we speak about convergence of these distri-
butions, we mean convergence on every element of{0, 1, dead}[a,b].
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Theorem 1. Take the system (4) and start with a finite configuration “all
zeros” of length2w + 1 indexed by integer numbers in the range[−w, . . . , w].
Then for anyt > 0 and any integerr > 0 the restriction of the distribution of
our system at timet to the segment[−r, r] has a limit whenw → ∞ and this
limit is invariant under space translations.

We shall prove this theorem in another publication. Let us assume that it is
proved and take this limit as a definition of the infinite system.

Conjecture. Take the infinite system (4) with a bi-infinite sequence of zeros
as the initial condition. Then the density of ones among alive sites, that is the
conditional probability

Prob
(

x(0, t) = 1 (0, t) is alive
)

(5)

never exceeds a function ofε, which tends to zero whenε → 0.

Let us emphasize that our hypothesis, even if proved, is useless as such because
all the finite systems in this example shrink on the average pretty quickly, thereby
losing any non-symmetry. What we need is a similar statement for systems
similar to (4) , but with addition of symmetric births and/or mitosis, due to
which the finite systems would grow.
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