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Gumbel statistics for the longest interval of identi-
cal spinsin aone-dimensiona Gibbs measure

F. Redig

Abstract. We consider one-dimensional Gibbs measures on spin configurations o €
{—1, +1}%. For N € N let Iy denote the length of the longest interval of consecutive
spins of the same kind in the interval [0, N]. We show that the distribution of a suitable
continuous modification /. (N) of Iy convergesto the Gumbel distribution, i.e., for some
a,B € (0,00)andy € R,

limy 0o PUe(N) <alogN + Bx +y) = e~
Keywords: Gibbs measures, extreme values, Gumbel distribution.
Mathematical subject classification: Primary: 82C22; Secondary: 60K 35.

1 Introduction

In the theory of extreme values, one is interested in the asymptotic distribution
of the maximum of random variables. Thetypical question isthefollowing: for
astationary R-valued process {X,, : n € N} find u,,(x) such that the sequence of
probabilities

P (m_alx X; < un(x)) (11)

has a non-trivial limit G(x) asn tends to infinity. For i.i.d. sequences, a com-
pletepictureisgiven, i.e., al possiblelimiting distributions G (x) areknown, and
there isavery detailed description of the classes of distribution functions corre-
sponding to the different possibilities of G(x), see e.g. [6], [4]. For stationary
dependent sequences, the first results were obtained in [7]. Generally, two con-
ditions are needed in order to arrive at the usual extreme value distributions for
independent maxima. Thefirst oneis astrong mixing condition, and the second
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428 F. REDIG

one requires a control of certain conditional probabilities (see section 2 below
for a precise formulation). These two conditions then imply that the statement

lim nP (Xo > u,(x)) =x (1.2
is equivalent with the statement
lim P <m_alx X; < un(x)> =e ", (1.3)

Note that the equivalence of (1.2) and (1.3) istrivial in thei.i.d. case. Oncethe
equivalence between (1.2) and (1.3) is established, the problem of finding the
extreme value distribution is reduced to finding the sequence u,, (x) of (1.2). E.g.
if X, are non-negative variables with

. PXg=x
lim L =1
X—00 e—ax
then one can choose
logn x

u,(x) =

to obtain

lim P (m'éxXi < logn + f) —e "
n— 00 i=1 o o
The distribution G(x) = e¢ " is called the Gumbel distribution. If the limiting
distributionisof theform G (ax + b), then one saysthat it is of Gumbel-type. As
weal ready mentioned, the conditionsto obtain the equival ence between (1.2) and
(1.3) are amixing condition, and a condition involving conditional probabilities.
The context of one-dimensiona Gibbs measures seems therefore well-adapted
to thiskind of question because Gibbs measures have nice conditional probabil-
ities. Surprisingly, no general results on extreme values for Gibbs measures are
availableintheliterature. Itisthe aim of thispaper to connect both notions. The
context of one-dimensional Gibbs measuresis then the first test-case. Although
the one dimensional spin-systems are “trivial” from the point of view of critical
phenomena, the question we address here is rather detailed, and becomes much
more complicated in the two-dimensional situation.

A natural context in which Gibbs measures can be defined are discrete lattice
spin systems. This means that a Gibbs measure is a probability measure © on
configurationso e {—1, +1}%, specified by conditional probabilitiesof theform

exp(—Hy (o))

~ , (1.4)

w(oalnae) =
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where the Hamiltonians H ! (o) are of the form

H{(0) = ) U(A, oanao). (1.5)
ANAAD

An extreme value question which can be asked in this context is the following.
For N € N large what is the asymptotic distribution Py of the length of the
longest interval inside [0, N] which contains only + or — spins? Unhappily, the
guestion asked inthisway isnot well-defined: dueto the discreteness, thereisno
such asymptatic distribution (not even in the case of independent +, — spins, see
theorem 2.4.5, and example 2.4.1 in [4]). Indeed, for a stationary sequence X ;
taking values in the set of non-negative integers, a necessary condition for the
existence of a suitable normalization of the maximum (i.e., a sequence of num-
bers a, and b, such that (max_;X; — a,)/b, has a non-degenerate limiting
distribution) is

| P(X1=k)

k—>00 P(X 1= k) o
see [4], corallary 2.4.1. This condition cannot be satisfied if the tails of the
distributionof X; areexponential, ase.g. inthe case of thegeometric distribution.

There are two ways to make the question well-defined. First, one considers
all possible limit points of the distributions Py and showsthat they liein awell-
defined neighborhood of the Gumbel distribution. Second, we can remove the
discreteness of the random variablesy by putting around each spin an interval
of exponentially distributed length, to which we give a colour (say black for
+ spin, white for — spin). We then ask for the length of the longest interval of
one colour inside [0, N] (denoted by I5). In the second case, the distribution
of I, does converge to a Gumbel-type distribution. Of course, the choice of
the exponentia interval around each spin seems quite ad hoc. We will see
however that this choiceis very well adapted to the question, becausein the case
of independent +, — spins, the length of intervals of the same colour have an
exponential distribution.

The paper is organized as follows: in section 2 we introduce the elements of
extremevaluetheory and theory of Gibbs measureswhichweneed, and formulate
our results. In section 3 we consider the easy case of independent +, — spins.
Section 4 is devoted to the proofsin the general case.

2 Main Theorem

In this section we give some elementary background on Gibbs measures and
extreme values and state our results.
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2.1 Gibbsmeasures

We consider the configuration space @ = {—1, +1}%. The symbol S denotes
the set of al finite subsets of Z. The shift over x € Z on configurations o
isdenoted by t,: 7.(0)(y) = o(y + x). For A C Z we denote diam(A) =
max(A) — min(A). For A C 7Z we denote by F4 the o-field generated by
{o(x) : x € A}, and by Q4 the configuration space {—1, 1}4. For A € S, and
o,n € 2, we denote by o,nac the configuration coinciding with o on A and
with n on A€.

Definition 2.1. An interaction is a map
U:SxQ—>R (2.2
satisfying
1. U(A, o) depends only ob (x), x € A.

2. Translation invariance:

UA+a,o0)=U(A, 1,0) (2.3)
3. Strong Summability:
lU|l =) diam(A) sup|U (A, 0)| < oo (2.4)
A30 v

Remark 2.5. Weimpose herea" strong summability” condition whichismore
than one needs to define Gibbs measures. This condition implies that we do not
have phase transition (see e.g. [5] section 8.3).

Givenaninteractionwedefine, for A ¢ Z4 afiniteset, Hamiltoniansin volume
A with boundary condition #:

Hi(o)= Y U(A,0xn), (2.6)
ANAZ£D
and the finite volume Gibbs measures

exp(—Hj (o))

, 2.7
77 27)

U,
1298 ﬂ(a) =
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where the normalizing constant

Z} =Y M@ (2.8)

O’EQA

isthefinite-volume partition function with boundary condition ». MK"’ isthusan
n-dependent measure on {—1, +1}*, and will serve as a candidate conditional
probability distribution of theconfigurationinside A, given that the configuration
outside A is specified to be n. For a probability measure on €2, we denote 11} to
be the conditional probability distribution of the configuration inside A, given
outside A (defined for u-a.e. n). The following definition introduces the notion
of Gibbs measure in the DLR-sense.

Definition 2.9. A probability measure: is a Gibbs measure with interactidh
if for u-a.e. n:

wh =y (o) (2.10)

The set of all Gibbs measure with interaction U is denoted by G(U). In words,
Definition 2.9 states that a Gibbs measure is a measure specified by a priori
defined conditional probabilities. In our concrete one-dimensional context with
interactions satisfying (2.4), G(U) is asingleton (i.e., no phase transition, see
e.g. Theorem 8.93 in [5]) and hence we can use the symbol 1 (U) to denote the
unique Gibbs measure corresponding to U

2.2 Extremevalues

In this section we summarize the results on extreme value theory for stationary
processes which we need in this paper. These results, and more background
can befound in [6], [1] and [4]. We consider a stationary (two-sided) R-valued
process{X, : n € Z}. For afiniteor infinite A C Z, wedenoteby F4 theo-field
generated by X;,i € A. For A, B C Z, d(A, B) denotes the distance between
A and B:

d(A,B)=min{li — j|:i € A, j € B).

Definition 2.11. The procesgX; : i € Z} is calleda-mixing if there exists
a: N — [0, 00), witha(n) — 0asn — oo such that for anyA, B C Z, and
anyF S an G e fB:

IP(F N G) —P(F)P(G)| < a(d(A, B)). (2.12)
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In the following definition we write [-] for the greatest of integer function.

Definition 2.13. Letu, be a sequence of real numbers. The stationary sequence
is said to satisfy conditio®’(u,,) if

[n/k]
lim limsup E P(X1>u,, X; >u,) =0. (2.14)
k=00 psoo 4
j=2
Let us denote
M, = max X;.
i=1

The following theorem is proved in [6].

Theorem 2.15. Letu, be a sequence of real numbers such that foamixing
stationary proces$X; : i € Z} the conditionD’(u,) is satisfied. Then

lim P(M, <u,)=¢* (2.16)
is equivalent with
lim nP(X1 > u,) = x (2.17)

This theorem implies that as far as the behavior of the maxima of the stationary
sequence is concerned, we can consider it as a sequence of i.i.d. copies of X;.
The condition 2.14 is usually called “short range condition” and ensures that
large values do not occur in “clumps’. E.g., a sequence with X, .1 = X5, for
al n, where large values would occur in pairs, is excluded by this condition.

2.3 Theproblem

Let i be the Gibbs measure with interaction U asin Definition 2.1. For o € Q
we define
Xo(o)=minfk >0:0(k)o(k+1) = -1}

_ (2.18)
Xppa=minfk > X, +1:0k)ok+1) =—-1}forn>0

We will suppose herethat all X; < oo, excluding configurations o with a half-
line of agreeing spins. Thisisnot arestriction, sincewewill only need u-typical
configurations. We then define the intervals

Io(0) = [0, Xo(0)]

(2.19)
Ii(0) = [Xi—1(0) + 1, Xy (0)], fork > 1.
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Inside each interval I;, the spins are of the same kind. By tranglation invariance
of u, conditioned on the event o (—1) # o (0), the lengths of the intervals with
positive index

il = Xk — Xp1+ 1 (2.20)

form astationary sequence. We areinterested in the distribution Py of thelength
of thelongestinterval of type I; inside[0, N], as N tendstoinfinity. Asexplained
intheintroduction, dueto thediscrete character of thevariables| I, |, the sequence
Py will not converge (cf. example 1.7.15in [6]). Therefore we first construct a
natural continuous version of the variables I, and [, by an extra randomization
asfollows. Consider a sequence {&; : k € N} of i.i.d. exponentia variables. We
then define the random variables

zZo= Y & (2:21)

i€l (o)

and the corresponding random intervals

Jo = [0, Zo]
k-1 k

L o= [Y.Z.) 7l (2.22)
r=0 r=0

In words this means the following: to each + or — spin we associate a* colored”
interval (say black for +, white for —) with exponential length and we glue
these intervals together. The advantage of these extra randomized intervals is
the fact that now the lengths |7, | have a continuous distribution. Therefore these
intervals can be considered from the point of view of extreme value theory.
Later wewill argue that the particular choice of randomization (&; exponentially
distributed) is actually not important. We have chosen it here for the el egance of
the presentation.

In what follows we will denote by P, the joint distribution of the Gibbs
measure . (distribution of o) conditioned ono (—1) # o (0) and theindependent
I.i.d. sequence {& : k € N}. Under P, the sequence {|Z«| : k € N} isstationary.
The symbol g will denote the measure . conditioned on o (—1) # o (0).
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2.4 Resaults

Theorem 2.23. Let . be the Gibbs measure with interaction as in Definition 2.1.
There existr, 8 > 0andy € R such that for allx € R:

limP,, (rpj_}/;\i( 17| < alogN + Bx + y) = (2.24)

For the following theorem, we need some more notation. For N € N we define
My = max{|%| : % C [0, N1}, (2.25)

with the convention max(¥) = co. Inwords, M), isthe length of the maximal
interval of type 7, inside [0, N]. The variable M, is physically more relevant
than the maximum My = maxY_; |7;|, where the index of theinterval is varied.
Thefollowing theorem showsthat asimilar extreme value theorem hold for M, .

Theorem 2.26. Let 1 be a Gibbs measure with interaction as in Definition 2.1
and M), defined as in (2.25). Then there exists strictly positiygs’ € (0, co)
andy’ € R such that

—X

IiAr/n Py (My <o'logN +Bx+y')=¢¢ (2.27)

3 Theindependent case

As an easy test case, we consider the case of i.i.d. £ spinswith u(o(x) = 1) =
p > (1— p). Under uo, theinterval lengths || arei.i.d. with distribution

1 1
(el = n) = Ep"—lu -p+50- P tp (39
Theinterval lengths |7, | have distribution
1
Puo(1%] = %) = 5 (e7P* + e~ 1Py (3.2)
Therefore,
_ logn + log +
lim nP,, <|?k| > g 92 x) =e " (3.3
n—00 1-— p
and we conclude
. logn +log 3 + x o
Py (rpff( 17:] < 1_ p2 =e . (34)
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In this specia case we can compute everything explicitly, due to the exact distri-
bution (3.1) of |Iy|. The following elementary lemma showsthat it is enough to
know thetail of the distribution of | I| to decide about the tail of the distribution
of |Zo].

Lemma 35. If o, and B, is a sequence of positive numbers such that
Y oy <00, Y B, <ooand

lim 2% =1 (3.6)

then

i = (1 e 1) 1 37
m = .
N B ([ et

Proof: Letuscall a thelimitinthelhsof (3.7). Applying L' Hopita'srulen + 1
times gives the identity

oo x"
Zr 0 r'ar+”

a=lim =5—— (3.8)
reo Zr =0 r!lBr-‘rn
which gives
. Uyipn Crin
inf — <a < sup . (3.9
r Brin Brn
Since thisinequality holdsfor any n € N, we concludea = 1. O
4 Proofs

The proof of Theorem 2.24 and Theorem 2.27 is divided in three steps:
1. First we prove that Theorem 2.24 implies Theorem 2.27.

2. The second step consists in verifying the condition D’(u,,) for general
one-dimensional Gibbs measures.

3. Finally, we haveto study thetail of the distribution of |7o| under IP,,,. This
amounts in proving that there exists ¢, ¢’ > 0 such that

. Ip| >
(EON

n— 00 e—¢n

(4.1)
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Notethat thisisnot animmediate consequence of thelarge deviation prop-
erty of Gibbs measures: what we need hereis u(|Ip] > n) ~ e~"0(1)
for n — oo. The fact that the correction to the large deviation behaviour
isO(1) istypical for one-dimensional Gibbs measures (in general correc-
tions of the order of the boundary can occur).

41 Stepl

Lemma4.2. Let{X,, n € Z} a stationarya-mixing sequence satisfying condi-
tion D'(u,). Suppos€q,, is a sequence of positive random variables on the same
probability space such that

T,

lim — =q. (4.3
n—-oo n
If
lim nP (X1 > u,(x)) = x (4.4)
then we have
lim P (I’Yié]?( < u[na](x)) =e (45)

Proof: We follow the lines of [6], Theorem 3.4.1. Abbreviate F(x) = P(X; <
x), M, =max"_; X;.

P (n{éj?(xz = u[na](x)) =
= (4.6)
< P (["%:a][?in] Xi < l/t[na](X)) + P (Tn = [Oll’l] - [El’l]) .
Fix k € Nand put n’ = [([na] — [n€])/k]. Since
{My > upno) ()} = Uf;/zl{Xj > Upna) ()} (4.7)
we have the inequality
D PG >t () = Y P (X0 > ey (), X > e (1) <
j=1 l<i<j=n’ (48)

’

<P(My > o) (0)) < Y P(X; > thjug(x)),
j=1
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which gives, using stationarity,
1—n'(1= F(upe(x))) <P (My < ttjney(x))

, (4.9
<1l-rn@A- F(u[na](x))) + Sn,
where
Sn = Sn,k = I’l/ ZP (X]_ > u[na](x), Xj > u[m](x)) (410)
j=2
Condition D'(u,,) implies that
klim limsup S, = 0. (4.11)
Next, condition (4.4) implies that
lim n' (1 — F(upe(x)) = lim W[an](l — F(Uppe)(x))
on (4.12)
€ X
=1--)-.
( a)k
This gives
€ X . .
(1-@=<2) = liminf Py < )
=< ||mSUpIP)(Mn’ = M[mx](x)) (413)

€. X 1
1-1-)=+0o(5)).
5( ( a)k+0(k))
By the «-mixing condition we obtain that for any & fixed:

lim I:]P) (M[an]f[en] < u[,,a](x)) — (]P (M([[an]f[en])/k] = M[not](x)))k] =0

(4.19)
By taking k-th powersin (4.13) we then obtain
€ x \k .
(1 - (1 - a%)) =< Il]m)logf P (M[om]f[en] =< u[na](x))
=< ||mSUp]P (M[om]f[en] =< M[na](x)) (415)

< (1— <1— € +o(}))>k
- ak k '
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Letting £ tend to oo we obtain

lim P (M[om]_[én] < u[m](x)) = 6_(1_‘%))[. (416)

n—o00

which gives, combined with (4.6):

limsupP (mTalx X; < u[m](x)) < e~ (-x, (4.17)
i=

n—o0

Since ¢ > Oisarbitrary, we conclude

limsupP (rrialx X, < u[,m](x)> <e ", (4.18)

n—o0

To prove the opposite inequality, we start from

PN X; < () =

lan]+(en] (4.19)
= P( m_a]?( Xi =< u[noz](x)) + IP)(Tn = [O[n] + [El’l]) )
and follow the same line of reasoning. d

Inorder to seethat thislemmaisenough to deduce Theorem 2.26 from Theorem
2.23, notice that (see (2.25))

M)y, = My, (4.20)
where
Ty = max{j < N :1; C [0, N1}. (4.21)

Under P,,,, thesequence (|7, |, n € Z} isstationary and o-mixing. Thisisadirect
consequence of the renewal construction of chains of infinite order (of which our
Gibbs measures are particular examples) of [3]. Therefore, P, amost surely:

T
lim WN == (E,|l)" (4.22)

N—o0

4.2 Step 2: the condition D' (u,,)

Here we prove that the condition D’ (u,,) is satisfied for Gibbs measures with an
interaction asin Definition 2.1.
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Lemma 4.23. Suppose:,(x) is chosen such that

lim P(Xy > u,(x)) = x. (4.24)
Then, if
sup <]P)(X1 = un(x)lxj = un(x)) < OO,) (425)
j#LneN P(X1 > u,(x))
conditionD’(u,,) is satisfied.
Proof: First remark that, by stationarity
[n/k]
Jim limsupn D P = ua(0))P(X1 = 1,(x))
® n—o0 =2
= lim Ilmsupn[ 1(P(X1 > up(x))? (4.26)

k=00 no00

= I|m — =0
k—oo k
Therefore,
[n/k]
lim limsupn ZIP’(X > u,(x), X1 > ,(x))

[n/k]
P(X1>u,(x)|X; > u,(x))
I|m Ilmsupnz < P o)

k— 00
n—00 =2

< s (P(Xl > u,(X)|X; > un(X))) .
a IP)(Xl = un(x))

—Qpaazw@»z

Jj#LneN

lim lim supn[ 1(P(X1 > u,(x))2=0. (4.27)

k=00 o0

g

Lemma 4.28. If U is an interaction satisfying the conditions of Definition 2.1,
andu = u(U) the unigue Gibbs measure correspondindg/itathen

P 7| =an|1,| >
ap (Pallizenibizo 429
ae(0,00),neN Pﬂo (171] = a)
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Proof: For&; i.i. d. exponential (mean one) random variables we abbreviate

n—1

n 00 t
(@) =P &>a)= / e 'dt. (4.30)
; . (n—1)!

Then we write,

Py (Ll >an|t)>a) X, a@an@po (1Ll =n,|1;| =m)
Py (1] > a)? X, . @an(@po(la] = n)po(|1;| = m)

(4.31)

- o (|11l = n, |1;] = m)

= sup .
nm \ Ho(l 12| = n)po(|1;| = m)

To prove that the supremum in the right hand side of (4.31) is finite, we can
replace u by o and vice versa. This can be seen asfollows. For o € Q let us
denote by o* the configuration “flipped” at site x, i.e., 6 (y) = (=1%o (y).
The transformed measure p* defined via [ f(o*)u(do) = [ f(o)u*(do) is
absolutely continuous w.r.t. « with Radon-Nikodym derivative

du* .
i (0) = exp (— AEBX [UA, o) —U(A, 0)]) , (4.32)
which clearly satisfies
L du” (o) < VI (4.33)
J— du p— 9

where ||U|| is the norm introduced in Definition 2.1. Note by E the event
{o :0(—1) #0(0)}. Forall A € F0,.) We have

[inp b _ fynedi™ 034
fAmEC du fAﬁEC du
This gives, together with (4.33),
e 2Vl < —MO(A) < AUl (4.35)
T p(A) T
Denote
Eu={oc:0k)=0ck+D)=---=0ck+1-1) #0k+1)}
(4.36)
Fu={c:0k)=0ck+1)=---=ck+1-1)}.
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The bound (4.33) gives the existence of 0 < ¢; < ¢2 < o0, such that for any
A € Fliti+1.00)"

EyunA
M( ki )_ . (4.37)
M(sz NA)
Now we can estimate
p(ll =nnlll=m)
= Y w(Eanlh©)=kn...0|L0)]=m)
koo hjt (4.38)
<Cu(Fo) Y, u[lh@)l=kN...0[a@) =m |t (Fo)].

k2,....kj—1

Herewe used (4.37) and trandation invariance of u to arrive at the last equality.
Now we can use the following property which is typical for one-dimensional
Gibbs measures. For A € F_,—1) ad B € Fjo,) We have the estimate

w(BlA) _ < w(B|n)
I/L(B) o U,SGQ[O,OC) M(B|$)

< p(ZSupsup sup |H g yy(0) — KN](O)I)

NeN KeNn,&E,0eQ

(4.39)
exp (4 > U(A)oo)

ACZ,min(A)<0<max(A)

A

< exp (42 diam(A)”U(A)”oo> = exp(4|U]) < oo.

A>0

Using this estimate, we can proceed with (4.38):

w (1Ll =n0 1] =m)

< CzM(FOn)ZM (@) =keN...N[;—2(0)| = kj—1 N |I;_1(0)| = m)
k2,....kj-1

= Cou(Fo)u (11j-1] = m)

< Csu(Fo)po (11,1 = m)

< Cau(Fo)u (1| =m). (4.40)
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Here in the last steps we used (4.35) and the stationarity of {|I;| : k € N}
under wo. From (4.40) we obtain, using (4.37)

po(ll =n,jl=m) _  p(Fo.)
o( Il = myuo( ;1 =m) = *u(Eon)

< Cs < 00. (4.41)

g

Since the estimate in the previous lemma is uniform in a, n, D'(u,(x)) is
satisfied for the stationary «-mixing sequence {|7,|, n € Z}.

4.3 Step 3: tail probability

The last step in proving Theorem 2.24 consists in showing that the tail of the
distribution of |7o| under IP,,, is exponential. By Lemma 3.5 it suffices to prove
the following.

Lemma 4.42. If U is an interaction as in Definition 2.1, and is the unique
Gibbs measure corresponding &g then there exist, ¢’ € (0, co) such that

: Io| =
i WDl =m

n—o0o e—¢n

(4.43)

Proof: We will use ¢, ¢’ for strictly positive constants, but their value can
change from placeto place. We haveto provethat thereexist ¢, ¢’ € (0, co) such
that

. p0@=0@)=---=0m)=1=-0cm+1) ,
m =cC

li (4.44)
n— 00 e—¢n
By the continuity of the conditional probabilities of w, the ratio
pe@=0c@)=---=0n)=1=-0(n+1) (4.45)
pe@=0@)=---=0cn)=1=0@m+1)
converges, asn goes to infinity, to
du®
E, <W|f(—oo,o)) (+), (4.46)

where + denotesthe all-plus configuration, and % the Radon Nikodym deriva-
tive of u with respect to spin-flip at the origin. Therefore, it sufficesto show that
there exists constants ¢, ¢’ € (0, co) such that

lim po@ =0 =--=om)=1 _ o

n—oo e—¢n

(4.47)
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The probability inthedenominator of thelhsof (4.47) canberewritten asfollows:

0
Z[+—N,1]u[n+1,N] eXp(—Hg,(+))

wo@=oc@=-=0m=1= Iim

Z[+—N,N] ’
(4.48)

where
Zh =" exp(—H{(0)), (4.49)

gEQ
and
H (=Y UMA+$ (4.50)
AC[O,n]

Since we are in the one-dimensional situation, the partition function of alattice
interval [a, b] satisfies

Zi = exp((b — a)P(U) + O(1)), (4.51)
where the pressure P (U) is defined as

1
PU) = lim 5 log Z* \ n1- (4.52)

N +1
and where O (1) is bounded and converges to a constant when b — a tends to
infinity. Moreover,

Z+

SNV LN (4.53)

T T
2N 92N

where «,, converges to one, uniformly in N as n tends to infinity. Combination
of (4.48), (4.51), (4.52) and (4.53) together with the following lemma finishes
the proof. O

Lemma4.54. LetU be an interaction as in Definition 2.1. Then the limit

lim( > U, +) —ne* (V) =c, (4.55)
e AC[O,n]

exists and defines a finite constant, where

HGEDY % (4.56)
A>0
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Proof: Werewrite, asin [5]

Yooan = ¥y S

AC[O0,n] x€[0,n] Asx,AC[O,n]
x€[0,n] Aax |A| x€[0,n] \ A>x,AN[0,n]¢#£0 |A|

net(U) — Z Z M . (4.57)

A
x€[0,n] \ Asx,AN[0,n]¢#0 | |

Therefore, it is enough to show the existence of the limit

lim Y 3 % . (4.58)

x€[0,n] \ As>x,AN[0,n]¢#£P

Aswe will seelater, cf. (4.63) the sum

Z Z |U(|1:,|+)| (4.59)

A30 \ x€[0,n],AN[—x,n—x]¢ £

is finite, uniformly in n. Therefore, we can interchange the sumsin (4.58) and
prove the existence of the limit

_ U(A, +
nILngoZ > % . (4.60)

A30 \x€[0,n],AN[—x,n—x]¢#0

which can be rewritten as

JLTOZ % > I(min(A) < —x or (n — x) < max(A)).  (4.61)

A>0 0<x=<n

Clearly,
{0<x <n:min(A) < —x or (n — x) < max(A)}| < diam(4). (4.62)

S0 we obtain the uniform estimate

U(A, H)I
Z—

a > I(min(A) < —x of (n — x) < Max(4)) <

0<x<n

A30

(4.63)
<Y diam(A) | U (A) oo,

A30
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as we claimed before. Therefore, it is now enough to show that the limit

lim |[{0<x <n:min(A) < —x or (n — x) < max(A)}| (4.64)

n—o00

exists for any finite subset A C Z. Thisfollows easily, since
HO<x <n:min(A) < —xor (n —x) < max(A)}| = diam(A) (4.65)

assoon asn > diam(A). O

5 Additional Remarks

1. The choice of + spins can be easily generalized to spins taking values
in a finite alphabet. As long as we choose interactions satisfying the
summability condition of Definition 2.1, Theorems 2.24 and 2.27 hold
once one introduces the obvious modifications of the intervals I and 7.

2. Theextrarandomizationwhichweintroducedin order to maketheinterval-
lengths |I;| into continuous random variables |7, | used the exponential
distribution, i.e.,

L= &. (5.1)

J€lk

If for &£; we choose i.i.d. random variables with distribution F; having an
“exponential tail”, then the same results hold. By “having an exponential
tail” we mean here that the moment generating function of £ hasto havea
singularity of typel/x whenx ~ 1, x < 1. Inthat caseitiseasily verified
that for X geometrically distributed with P(X = n) = p" (1 — p) the
moment generating function of

7 = Zg,. (5.2)
has asingularity of typel/x whenx ~1— p,x <1— p.
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