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Markov approximations of chains of infinite order

R. Fernandez and A. Galves

Abstract. We consider chains whose transition probabilities depend on the whole
past, with summable continuity rates. We show that Ornstein’s d-distance between
one such chain and its canonical Markov approximations of different ordersis at worst
proportional to the continuity rate of the chain. The result generalizes previous bounds
obtained by X. Bressaud and ourselves, while relying on a similar coupling argument.
Keywords: Chains of infinite order, chains with complete connections, Ornstein dis-
tance, coupling.
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1 Introduction

This article addresses the following question: How well can we approximate a
chain of infinite order by a Markov chain of order k? This leads to a second,
technical, question: Which distance should we use to measure the quality of an
approximation?

It isnatural to use as Markov approximation a Markov chain whose transition
probabilities can be estimated from a sample of the infinite-order chain. This
isthe so-called canonicalMarkov approximation. The conditional probabilities
of the canonical approximation of order k coincide with the order-k conditional
probabilities of the original infinite-order chain.

The main result of the present article is an upper bound of Ornstein’s
d-distance between a chain of infinite order and its canonical Markov approx-
imation of any given order. In fact, the bound is proportional to the continuity
rate of the chain of infinite order, whenever the sequence formed by these rates
issummable.

Thepresent result appliesto amoregeneral typeof chainsthan thosecovered by
Bressaud, Fernandez and Galves [2] (see Remark 4 below). The result actually
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applies to any Markov approximation whose transition probabilities satisfy a
suitable sandwich inequality [(25) below]. In addition, in this work we do not
assume stationarity of the chain. Thus, in particular, our result appliesto chains
starting at afinite time from afixed past.

Our proof isconstructive. Following the spirit of the graphical constructiorof
interacting particle systemsintroduced by Harris[5, 7], we construct an explicit
coupling between the original chain and its k-step approximation. In this cou-
pling, the probability of coincidence of the chainsat agiventimeisan increasing
function of the length of the immediately preceding period of coincidence. Fur-
thermore, if the chains differ at some time, there is a nonzero probability that
they will become equal at the next instant. Therefore, the coupled processes tend
to coincide most of the time, and separations do not last too long.

Chains of infinite ordeseem to have been first studied by Onicescu and Mihoc
[9] who called them chains with complete connectio(@haines a liaisons com-
pléteg. Their study was soon taken up by Doeblin and Fortet [ 3] who proved the
first results on speed of convergence towards the invariant measure. The name
chains of infinite order was coined by Harris[6]. We refer the reader to losifescu
and Grigorescu [8] for acomplete survey, and to our notes with Pablo Ferrari for
theVVth Brazilian School of Probahility [4] for an elementary presentation of the
subject from a constructive point of view.

2 Definitionsand main result

We consider stochastic processes (X ),z taking values in afinite alphabetA
and defined on a probability space (2, F, P). We adopt the following nota-
tion. For k < n € Z, x! denotes the sequence x4, ... , x,, and A} the set
of such sequences. Likewise, x"  denotes the sequence (x;);<, and A" _ the
corresponding space. Full sequences will be denoted without sub or super-
scripts, x € A%. The notation yn1x; indicates the sequence that takes values

xkv"’ 7xn7yn+17“‘ va-

Definition 2.1. A system of transition probabilitiesis a family{P,(-|-) : n €
7} of functionsP, : A x J’Zl’ij,i — [0, 1], such that the following conditions
hold for eactw € Z:

(i) Measurability: Foreachx, € A the functionP, (x,| - ) is measurable with
respect to the produet-algebra.
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(i) Normalization: For eachx" 2} € A" 22,

D Pl = 1. €N

xXp €A

Definition 2.2. A stochastic processX,),cz defined o2, F, P) is consistent
with a system of transition probabilitigd,) if

P(X, = x| X" =x"1 = P.(x,x"D) 2

foralln € Z,x € AZ.

Remark 1. Notethat we do not assume stationarity (i.e. P, may depend on n).

Definition 2.3. A system of transition probabilities ntinuous if for each
n € Z and eachx, € A4

B(s) = SUP SUP| P, (x| x" D) — Pu(x xRy Y

nezZ x.,y
— 0. (3)
§—>00
The sequencé3(s));en is called thecontinuity rate.
A compactness argument shows that every system of continuous transition
probabilities has at least one stochastic process consistent with it.

Remark 2. A stronger notion of continuity, often usedin theliteratureinvolves
the log-continuity rates

P,(x, xf;}
)/(S) = Sup sup (nJ1 n—s—1~ 1 (4)

nezZ x.,y Pn(xnlxn—s Y-

A system of transition probabilities is log-continuousf y (s) — 0 ass — oo.

Definition 2.4. A system of transition probabilities vgeakly non-null if

; : n—1
,'szz inf P, (yulx"50) > 0. (5)

yn€A
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Remark 3. The stronger requirement

inf inf P,(y,|x"2}) > 0 (6)
nezZ x

isinstead often assumed in the literature.

Definition 2.5. A stochastic process ischain of infinite order of typeA ifitis
consistent with a system of transition probabilities that is continuous and weakly
non-null.

Remark 4. Thistype of chains was already considered by Doeblin and Fortet
[3]. They also considered the chains of type Bdefined by transition probabilities
that are log continuous [see (4)] and satisfy the more restrictive non-nullness
condition (6). The approximation result of Bressaud, Fernandez and Galves[2]
only appliesto chains of type B while the result here applies to the more general
class of chains of typeA.

Definition 2.6. Thecanonical Markov approximation of order k € N of a
process(X,).cz is the Markov chain of ordek X* = (XxI¥),_, having as
transition probabilities,

PM(a|x}= ) =P(X, =a| X} "} = x1"} )

for all integern, k > 1and alla € A andx""} € A"}

n

Definition 2.7. Thedistance d between two processés= (X,) andY = (Y,)
is defined as

d(X,Y) =inf {supIP’(Yn #Y,) : (X,Y) coupling of X and\]’.
neZ

This definition naturally extends Ornstein’s to non-stationary chains.
We now state our main result.

Theorem 1. Let X = (X,).ez be a chain of infinite order of type A with
summable continuity rateg® (s)),>1. Then there is a constadt > 0 such that,
forall k > 1,

dX, X" < c gy,

wherex™ = (X%), _; is the canonical Markov approximation of ordeof the
processX.
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3 Construction of the coupling

The proof of our theorem is based on the construction of a suitable coupling
between the transition probabilities P, (- | -) of the original chain and the prob-
abilities PKI (- | ) of its Markov approximation.

In general, a coupling of two systems of transition probabilities P,(-|-) and
0.,(-]-) isasystem of transition probabilities 5,, : A2 x (ﬁl'i;i)z — [0, 1]
such that

Z ﬁn <xl’lv Yn xﬁ;j’ yi;) = P, (Xn xi;j)

yn€A

Z Pn (xn, Yn xi;" yﬁ;}) = Qn (yn yi;j) (8)
X, €A

foraln e Z, al x,, y, € A andal x"3%, y"5 € AL [This definition s, in

fact, aparticular instance of the notion of coupling among probability measures.]
We resort to a coupling with the following properties:

(a) it loads the diagonal as much as possible, and
(b) each step of the coupling depends only on the past.

In fact, we shall use the well known maximal coupling(see, for instance, Ap-
pendix A.l in Barbour, Holst, and Janson [1]). We present here a graphical
construction of this coupling which is convenient for our purposes.

Giventwotrgjectoriesx = (x,), y = (y,) and an element a of the alphabet A,
let us define

tan(x,y) = PualxX"H A Qualy
Fan(x,y) = [Pu(@|x" D) — Qula]y";HIvO0 )
San(x,y) = [Qn(@|y"h) — Pia|x" DHIvO.
Notice that
either r,,(x,y)=0ands, ,(x,y) >0 (10)
or ra,n(x, )’) > 0and Sa,n(xs y) =0
and that
tan(X,Y) +ran(x,y) = Pualx"}) (11)
tan (6, ¥) + San(x,¥) = Oulaly"d). (12)
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As a consequence,
Zta,rz(xvy)+zra,n(x’y) =1 (13)
acA acA
D tan )+ D sanxy) = 1. (14)
acA acA

I dentities (13)/(14) enable us to define two partitions of [0, 1], each one formed
by the non-empty sets of the following 2| A| intervals:

(T3, AL Ry R Y and (T T S S )
(15)
These are intervals of lengths

|Taxn‘| =ta,n(x» y), IR;Cy” ="a,n(X,y) and |S§:p):|=sa,n(x’ )’),

foralla € A
We define the transition probabilities
|Taxn) |f a = b,
Pu((a, b) | (&L, y" 30 o= : o (16)

IRan NSyl ifa#b

The properties of this coupling are summarized in the following theorem

Theorem 2. If the chains with transition probabilitie® and Q are both of
type A, so is the coupling defined by (16). More explicitly, we have

B(s) < const [B(s) v B2()], (17)

and

> it B (@b | (rdoynd) =

a,be A

> [Yinf Pl h] A [P inf Outalxrh]

acA acA

(18)

We remark that, even if the transitions P, and Q,, are of type B, this coupling
isnot in general of type B, because there may be pairs (a, b) with

: D 1
inf P,((a.b) | 25730) = 0.
This happens whenever Rz, N S, = 0.
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Pr oof.

Non-nullness.

> inf P, (@.b) ‘ (b)) = _int P, ((a a) ’ ("3 1))

a,be A Y acA
(19)
But theright-hand sideis
Yoinf| Puale) A aalyd)] =
acA
(20)
> [Zinf Pn(a|xﬁ;,})] A [Zinf Qn(a|xﬁ;})].
acA g acA *
Continuity. Let usdenote
Annta,b) = sp |Py((@b) | (22 b)) -
X,y,u,w (21)
Pi((@.b) | @b s )|
Casea = b:
Am,n(a’ a) = Sup fa,n(X,}’)—la,n(X,'f:,},M’i;" l’ y,f ,]y-, T 1)’ . (22)
X,y u,w
Usingla AB —aod' AB| <|a—d|V|B— B weget
Annta,a) = sip [|P(alx"5) = Paale, "7 H] v
X,y,u,w (23)
10(aly™3) = Qulaly;—hw" 2]
Hence,
Apala,a) < BF(m)v B2(m) (24
uniformly in n.
Casea # b: Computations are similar but longer. O
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4 Proof of thetheorem

We are ready to prove Theorem 1.

4.1 Boundsfor thetransition probabilities
Let P*! be the transition probability defined by (7). The following proposition
contains the only property of the canonical approximation needed for the resullt.
Proposition 3. For each trajectoryy € A%,

inf Pl ot = RY@IZ) = s Paly St

ue AL

(25)

Proof. First observethat, by definition, thetransition probabilitiesof the canon-
ical Markov approximations satisfy

PMal =) = Pulala =) . (26)

The conclusion of the proof is an exercise on conditiona probabilities. Indeed,
each condltlonal probablllty P,(alx,” ) can bewritten asan integral of thefunc-
tion u b P (alu"2}) with respect to a probability measure conditioned on
{X” = xn k . Inequalities (25) follow by taking the corresponding supremum
and infimum of the integrand. O

Remark 5. Infact, (25) isthe only property of the Markov transitions used in
the sequel. Thus, our results apply to any Markov approximation scheme, not
necessarily the canonical one, satisfying (25).

4.2 The proof

Positive probability of coincidence

By the definition of the coupling,

P(%, =X |02 y5D) = 2 taate ). (27)
We define Ag as
Ao := inf Zinf P, (alx"h) (28)
ac A
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and observe that, by (18),
Z ta,n(xa y) = )‘0 (29)

which is positive because the chain (X,,) isweak non-null.

Probability of remaining coincident
In the sequel we use the short-hand notation

P(B | (odyid) = P(B | R @d = 2 ymh) . (30
for B an event measurable with respect to the variables (X°, (X!¥1)%).

Lemmad4. If x"~1 = y"=1 then

P(%, # X | ardymd) = 1Ak Am) . (31

Proof. By definition of the coupling

(X, # X | (22 37) = Y rantey). (32)
Inequalities (25) imply
sup|P<a|x D= P,y | < pmak) . (33
Hence, in (32),
DUIPalx" = PY@lysh| < |AIBhkAm) O (34)
acA
Let us denote
B0 = 1-io
. 35
{ Brm) = min(B*(0). || Bn)). (39)
Let usintroduce the following notation, for integersm < n
Dy = (X, =X, (36)
j=m

The previous lemma yields, by straightforward manipulations, the following
bounds:
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Lemmab.

(i) Forallintegersm < n and¢ > 0, and all (x, y) with x"~} = y" 7,

(D), | artoyrsh) = [T(1-ptene+in). @)
Jj=0
(i) Forallintegersk > 1,
k
p(ppHt | ppt) = (1-p70) (39)
(i) For all integersk > 1,
+00
(Dt | o) = [T(1- ) - (39)
j=0
Lemma 6.
- - n+k—1yc
spP(X, # X1) < P, PP, 1) (40)
n Z ]_[ (1= B*(m))
Proof.
PADL 4 = P(Kpara # XUy ) +
n+k—2 N N - - (41)
3 P(ng{‘ 1 ‘ %, # XE“) IP’(X,Z ” Xg"]) .
{=n
By (37),
J
]P’( fﬂ‘x@#x ) ]—[(1 B* (m)) (42)
Replacing thisin (41) and taking supremum over n in both sides, we obtain (40).
]
To conclude the proof of the theorem, we observe that
P [Derkfl]c —P [D’rll+kfl]c DZ:l P Dz:l
(101) =5( e(or) -

+ P([D:+k—1]c

SO P(LD,) -
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Using parts (ii) and (iii) of Lemma5, the right-hand side of (43) can be bounded
above by

~+00
1-@-p &)+ [1-[Ja-pun]p(ior) . @
j=0
Hence

e L L@
supP([DIH 1) < =—— : 45
op?( ) o —p(j) “

Plugging (45) into (40) we finally get

1-(1-p k)t
o =BG T (@ = Br(m))
1—(1— Bt
.
e[ —sGn]

app(, % X1 =

(46)

By definition, 8*(k) is equal to | A|B (k) except, may be, for the first k's. By
assumption, B (k) issummable, thus k8 (k) — 0 and

1— (1— B*(k)* < const k B(k) . (47)

To conclude, we observe that the product in the denominator is strictly positive,
again by the summability of the (k). O
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